The Markov property for generalized gaussian random fields
Annales de l'Institut Fourier, Tome 24 (1974) no. 2, pp. 143-167.

Nous obtenons des conditions nécessaires et suffisantes pour qu’un processus gaussien (ou, plus généralement, une distribution aléatoire gaussienne) à plusieurs paramètres possède la propriété markovienne par rapport à la famille des ensembles ouverts.

We obtain necessary and sufficient conditions in order that a Gaussian process of many parameters (more generally, a generalized Gaussian random field in R n ) possess the Markov property relative to a class of open sets. The method adopted is the Hilbert space approach initiated by Cartier and Pitt. Applications are discussed.

@article{AIF_1974__24_2_143_0,
     author = {Kallianpur, G. and Mandrekar, V.},
     title = {The {Markov} property for generalized gaussian random fields},
     journal = {Annales de l'Institut Fourier},
     pages = {143--167},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {24},
     number = {2},
     year = {1974},
     doi = {10.5802/aif.509},
     zbl = {0275.60054},
     mrnumber = {53 #9362},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.509/}
}
TY  - JOUR
AU  - Kallianpur, G.
AU  - Mandrekar, V.
TI  - The Markov property for generalized gaussian random fields
JO  - Annales de l'Institut Fourier
PY  - 1974
SP  - 143
EP  - 167
VL  - 24
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.509/
DO  - 10.5802/aif.509
LA  - en
ID  - AIF_1974__24_2_143_0
ER  - 
%0 Journal Article
%A Kallianpur, G.
%A Mandrekar, V.
%T The Markov property for generalized gaussian random fields
%J Annales de l'Institut Fourier
%D 1974
%P 143-167
%V 24
%N 2
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.509/
%R 10.5802/aif.509
%G en
%F AIF_1974__24_2_143_0
Kallianpur, G.; Mandrekar, V. The Markov property for generalized gaussian random fields. Annales de l'Institut Fourier, Tome 24 (1974) no. 2, pp. 143-167. doi : 10.5802/aif.509. https://aif.centre-mersenne.org/articles/10.5802/aif.509/

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, 1965. | MR | Zbl

[2] P. Assouad, Étude d'un espace reproduisant attaché au mouvement brownian à paramètre temporel dans Rn, C.R. Acad. Sc., Paris, 269 (1969), 36-37. | MR | Zbl

[3] P. Cartier, Introduction à l'étude des mouvements Browniens à plusieurs paramètres, Séminaire de Probabilités V, Springer-Verlag, (#191), (1971), 58-75. | Numdam

[4] A. Friedman, Generalized Functions and Partial Differential Equations, Prentice-Hall, 1963. | MR | Zbl

[5] H. P. Mckean Jr, Brownian motion with a several dimensional time, Theory Prob. Applications, 8 (1963), 335-354. | MR | Zbl

[6] G. M. Molchan, On some problems concerning Brownian motion in Lévy's sense, Theory Prob. Applications, 12 (1967), 682-690. | Zbl

[7] G. M. Molchan, Characterization of Gaussian fields with Markovian property, Dokl. Akad. Nauk SSSR, 197 (1971). Translation Soviet Math. Dokl, 12 (1971), 563-567. | Zbl

[8] J. Peetre, Rectification à l'article «une caractérisation abstraite des opérateurs différentiels», Math. Scan, 8 (1960), 116-120. | MR | Zbl

[9] L. Pitt, A Markov property for Gaussian processes with a multidimensional time, J. Rational Mech. and Anal, (1971), 368-391. | Zbl

[10] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967. | MR | Zbl

Cité par Sources :