Boundary approach filters for analytic functions
Annales de l'Institut Fourier, Tome 23 (1973) no. 3, pp. 187-213.

Soit H l’espace des fonctions bornées holomorphes dans D:|z|<1, et soit D ¯ l’espace des idéaux maximaux de l’algèbre H , une compactification de D. On étudie les relations entre les fonctions de H et leurs valeurs limites sur D ¯-D. Soit D 1 le sous-ensemble de D ¯ sur le point 1. Un sous-ensemble A de D 1 est un “ensemble de Fatou” si tout f dans H a une limite en e iθ A pour presque tout θ. Le sous-ensemble nontangentiel est un ensemble de Fatou d’après le théorème de Fatou. Il y a beaucoup d’ensembles de Fatou plus grands, par exemple le sous-ensemble de D 1 des points fixes, mais il n’y a pas un ensemble de Fatou maximal. L’ensemble des points Q de D 1 dont {Q} est un ensemble de Fatou est dense dans D 1 .

Let H be the class of bounded analytic functions on D:|z|<1, and let D ¯ be the set of maximal ideals of the algebra H , a compactification of D. The relations between functions in H and their cluster values on D ¯-D are studied. Let D 1 be the subset of D ¯ over the point 1. A subset A of D 1 is a “Fatou set” if every f in H has a limit at e iθ A for almost every θ. The nontangential subset of D 1 is a Fatou set according to the Fatou theorem. There are many larger Fatou sets, for example the fine topology subset of D 1 but there is no largest Fatou set. The set of those points of D 1 which are Fatou singletons is dense in D 1 .

@article{AIF_1973__23_3_187_0,
     author = {Doob, J. L.},
     title = {Boundary approach filters for analytic functions},
     journal = {Annales de l'Institut Fourier},
     pages = {187--213},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {23},
     number = {3},
     year = {1973},
     doi = {10.5802/aif.476},
     zbl = {0251.30034},
     mrnumber = {51 #3448},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.476/}
}
TY  - JOUR
AU  - Doob, J. L.
TI  - Boundary approach filters for analytic functions
JO  - Annales de l'Institut Fourier
PY  - 1973
SP  - 187
EP  - 213
VL  - 23
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.476/
DO  - 10.5802/aif.476
LA  - en
ID  - AIF_1973__23_3_187_0
ER  - 
%0 Journal Article
%A Doob, J. L.
%T Boundary approach filters for analytic functions
%J Annales de l'Institut Fourier
%D 1973
%P 187-213
%V 23
%N 3
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.476/
%R 10.5802/aif.476
%G en
%F AIF_1973__23_3_187_0
Doob, J. L. Boundary approach filters for analytic functions. Annales de l'Institut Fourier, Tome 23 (1973) no. 3, pp. 187-213. doi : 10.5802/aif.476. https://aif.centre-mersenne.org/articles/10.5802/aif.476/

[1] M. Brelot and J.L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier, 13 (1963), 395-415. | Numdam | MR | Zbl

[2] J.L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85 (1957), 431-458. | Numdam | MR | Zbl

[3] Kenneth Hoffman, Banach spaces of analytic functions, Prentice Hall 1962. | Zbl

[4] Kenneth Hoffman, Bounded analytic functions and Gleason parts, Ann. Math. 86 (1967), 74-111. | MR | Zbl

[5] L. Lumer-Naïm, Sur le rôle de la frontière de R.S. Martin dans la théorie du potentiel, Ann. Inst. Fourier 7 (1957), 183-281. | Numdam | MR | Zbl

[6] Gabriel Mokodobzki, Ultrafiltres rapides sur N. Construction d'une densité relative de deux potentiels comparables, Séminaire Théorie Potentiel Brelot-Choquet-Deny 1967/1968 Exp. 12. | Numdam | Zbl

[7] M. Rosenfeld and Max L. Weiss, A function algebra approach to a theorem of Lindelöf, J. London Math. Soc. (2) 2 (1970), 209-215. | Zbl

[8] M. Tsuji, Potential theory in modern function theory, Tokyo 1959. | MR | Zbl

Cité par Sources :