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BOUNDARY APPROACH FILTERS FOR
ANALYTIC FUNCTIONS

by J. L. DOOB

1. Introduction.

Let D be the unit disk of the complex plane, with boundary C.
Let H°° be the class of bounded holomorphic functions on D. The
purpose of this paper is to discuss the filters along which the members
of H°° have limits at C. If A is a subset of D with accumulation
point 1, discussing the limits of members of H°° at the point 1 along
A is equivalent to discussing the limits of these functions along the
filter generated by the traces on A of neighborhoods of 1. It is
essential to treat filters with limit 1 which are not of this type,
however, for example the filter T\ corresponding to nontangential
approach to 1 and the filter Tp corresponding to approach to 1
in the fine topology relative to D.

Local problem. — For what filters T of subsets of D, with limit 1,
is it true that there is no coarser filter T^ with the property that
every/in H°° with limit along F also has this limit along I\ ? Sufficient
conditions for this kind of maximality are given in Section 19.

Global problem. — If T is a filter of subsets of D, with limit 1,
and if z G C, let zT be the image of T under the rotation about the
center of D taking 1 into z. According to Fatou's theorem each/in
H°° has a nontangential limit /*(z) = lim / for (Lebesgue) almost

^A
every z on C. What other filters T with limit 1 have the property
that lim / == /"(z) for almost every z on C ? The coarser such a

zr
"Fatou" filter the better the Fatou type theorem. It is shown in
Sections 22-30 that there are many Fatou filters coarser than I\,
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in fact that in a natural topological sense nonFatou ultrafilters are
exceptional. The Fatou filters, partially ordered by coarseness, form
a directed set but there is no coarsest Fatou filter, that is no "best"
Fatou theorem.

Some aspects of the discussion are interpreted probabilistically
in Sections 20 and 21 but the problem seems to be essentially
topological and algebraic rather than measure theoretic.

The work is carried through in the context of the minimal
compactification D of D under which members of D have continuous
extensions, that is, the maximal ideal space of the algebra H°°. Thus
on the one hand the extensive theory of this algebra is available
and on the other hand the results add to the known properties of
this maximal ideal space. It would however perhaps be somewhat
more natural analytically to choose the minimal compactification for
which positive superharmonic functions have continuous extensions.

The Maximal Ideal Space

2. Compactification of the unit disk.

The maximal ideal compactification D of D is the (unique up
to homeomorphisms) Hausdorff space with the following properties :

a) D is compact ;
b) D is an open dense subset of D ;
c) each function / in H°° has a continuous extension to D and

the class of these extensions separates D.
See [3] for this space and its properties described in this and

the next section.
If u is a harmonic function on D, bounded from above or

below, with conjugate function v, either the function exp (u + iv)
or its reciprocal is in H°°, and it follows that u has a continuous
extended real valued extension to D.

I f / i s a function on D with a continuous extension to D, the
extension will be denoted by /. If A C D, A will denote the closure
of A in D and A' will denote the set A n (D — D). In particular
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D' = D — D. The identity function on D has a continuous extension
to D and the compact subset of D' on which the value of this function
is 1 will be denoted by D^. The rotation about the center of D
taking 1 into z has a continuous extension taking D onto itself and
the image of a set A [filter T] will be denoted by zA [zF].

Let / be a function from D into a first countable Hausdorff
space and suppose that / exists. Then the set A = {z G D^ : f(z) = a}
is perfect.

3. Harmonic measure and the Silov boundary.

The following is an outline of the material on harmonic measure
and the Silov boundary needed later. The space L°°(C) using complex
valued functions andiLebesgue measure is an algebra under ordinary
multiplication. The maximal ideal space X of this algebra can be«
identified with the Silov boundary of H°°, a compact extremally
disconnected subset of D'. The space L°°(C) is algebraically and
metrically isomorphic to the space C(X) of continuous complex
valued functions on X with sup norm, under the following map.
If u* G L°°(C), the Ppisson integral of u* defines a bounded complex
valued function u on D. The map u* -> u5, where u3 here and below
is the restriction of u to X, is the stated map. In particular ifu* = 1^
is the indicator function of a Lebesgue measurable set A, u5 is the
indicator function of a subset of X, denoted by A5, clopen relative
to X. In this case, u = ^i(- , A) is the harmonic measure of A. In the
general case u is given by

u(z) 4 f ^*0) /z(z ,rf$) , z € D. (3.1)•'ci
If (u* , u , u5) is a triple as just described and if z G D, the map
u s ^ u ( z ) is a linear functional on C(X) which determines a pro-
bability measure v(z , . ) on X,

^00==^ ^a)^,^)==/ U(K) v(z ,rf$) , ZED. (3.2)
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Instead of determining the triple (u* ,u ,u5) starting from u* one
can start from any complex bounded harmonic function u on D
and define u* as its (nontangential limit) Fatou boundary function.
In particular, (3.2) is valid for every u in H°°. Moreover v (z ,.) is
uniquely determined by (3.2) for u in H°°. The measure v (z ,.) varies
continuously with z (vague topology of measures on X). If A5 C X
is clopen, v (. , A5)^ = ^i(., A) is harmonic and has the continuous
extension v ( . , A5) = /x ( . , A) to D.

The classical Jensen inequality

log |/(z)| < ̂  log |/^)| ii(z , rf$) , z E D , (3.3)

for / in H°°, yields

log |/(z)| < f log |/0)| v(z , (/S) , z G D. (3.4 )%) x

According to (3.4), /(z) = 0 if / vanishes on a subset of X having
strictly positive v(z ,.) measure.

Let S(z) be the compact support of the measure v (z , .). Then
S(z )CXn wDi if zGwDl and in particular S(z) = {z} if zEX.
If z € D'— X, S(z) is perfect, and nowhere dense in X.

Cluster Sets

4.

Let r be a filter of subsets of D, with Euclidean limit 1. Let
/ be a function from D into a compact Hausdorff space, and let
/(A)- be the closure of/(A). Then 0 /(A)~ will be called the

A e r
set of r cluster values o f / a t 1. In particular if the range space of
/ is D and if / is the identity function from D onto D, the set of
cluster values is a compact subset of D^ which will be denoted by
r' and the points of F' will be called T points. A point ZQ is a r
point if and only if every D neighborhood of ZQ meets every member
of r, that is if and only if for every finite subset f^,. . . , f^ of H°°
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and every £ > 0 the set {z E D : |/y(z) — f,(Zo)\ <£, 7 < k} meets
every member of T, equivalently if and only if the vector function
[/^,. . . , /J has r cluster value [/i(Zo), . .. , f^o)}' If / is a function
from D into a compact Hausdorff space, and if / has a continuous
extension to D, / has T cluster value a at 1 if and only if aG/(r'),
and lim / = a if and only if the restriction of/ to r' is identically a.

r

If B is a closed subset of D^ we denote by F(B) the filter of
traces on D of D neighborhoods of B. Then B = r(B)'. If T is a
filter of subsets of D with Euclidean limit 1, T ( T ' ) C r, and the
inclusion may be strict. Thus it may be a stronger statement to
say that a function on D has a limit along T (T') than that the
function has a limit along r. If the range space of the function
is a compact Hausdorff space and if the function has a continuous
extension to D the assertions are equivalent, however, because both
assert that the extension is constant on T9.

5. Convergence stable filters.

A filter T of subsets of D with Euclidean limit 1 will be called
convergence stable if whenever {A^ , n > 1} is a sequence of sets
in r there is a sequence {G^ , n > 1} of disks of center 1, so small
that A = n {A^ u (D\G^)} G F.

n

PROPOSITION. — Let T be a filter of subsets of D with Euclidean
limit 7. Then T is convergence stable if and only if whenever f is a
function from D into a first countable Hausdorff space, the existence
of lim / = a implies the existence of a member A of F for which f

r
has limit a at 1 along A.

Suppose that T is convergence stable and that lim / = a. Let
r

{G^ , n > 1} be a basis for the neighborhoods of a, and define
A^ = /^(G;?. Then A^ € T and if{G^ , n > 1} satisfies the conditions
of the convergence stable definition, / (A n G^) C G .̂ Hence/has limit
a at 1 along A. Conversely suppose that A^ E r , n > 1. We wish
to find G^ with the properties stated in the convergence stable defi-
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nition (and we shall need only numerical valued functions). Define

n n+1 oo
B, = H A, - H A, and / =^ 2- 1^ + 1^.

Then {z : /(z) < 2-"} = ^ A, G r
i

so Urn / == 0 and under the hypotheses of the converse / has limit 0

along some set A in T. If G^ is a disk with center 1, so small that
/< 2-" on A n G ^ then

A n G^ C 0 A^ C A^ and A C ^ {A^ u (D - Gj}.

Hence the intersection on the right is in T, as was to be proved.

6. Ouster stable filters.

A filter of subsets of D with Euclidean limit 1 will be called
cluster stable if whenever A^ D A^ 3 . . . are subsets of D, each of
which meets every member of F, there is a sequence (G^ ,n > 1}
of disks of center 1 so small that H {A^ u (D — G^)} meets every

n
member of r.

PROPOSITION. - Let T be a filter of subsets of D with Euclidean
limit 1. Then T is cluster stable if and only ifwhenever fis a function
from D into a first countable Hausdorff space which has T cluster
value a, there is a subset A of D, meeting every member ofT, along
which f has limit a at 7.

If r is cluster stable and / has T cluster value a let {G^ , n > 1}
be a basis for the neighborhoods of a, with G^ D G^ D . . . and define
\ = /"^G^). Then A^ D A^ 3 .. . » A^ meets every member of F,
and if GI , G^ , . . . satisfy the conditions of the cluster stable defi-
nition, /(A n G^) C G^. Thus / has limit a at 1 along A. Conversely
suppose that A^ is a subset of D which meets every element of T
and that A^ D A^ D . . . . Define
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f = V 2~" 1 4- 1J L L -A^-A^+i r ^-Ai ?

so that / has T cluster value 0 at 1. Under the hypotheses of the
converse there is a set A C D which meets every member of r along
which / has limit 0 at the point 1. If G^ is a disk with center 1, so
small that/ < 2-" on A n G^ then

A n G^ C A^ and A C F\ {A^ u (D - G^)}

so the intersection on the right meets every member of F, as was
to be proved. As in Proposition 6, the converse proof only involved
numerically valued functions.

7. A separation theorem.

If u is a harmonic function on D, it is the Poisson integral of a
(signed) measure if and only if it is the difference between two
positive harmonic functions. We suppose in the following theorems
that the Poisson measure on C for u assigns measure 0 to the point 1,
but it is not clear whether or not this hypothesis is necessary. The
hypothesis is satisfied if u is bounded because the measure is then
absolutely continuous with respect to Lebesgue measure on C.

THEOREM. — Let u be a harmonic function on D, with

a = inf u > — °° ,
D

whose Poisson measure on C assigns measure 0 to the point 1.
Suppose B is a subset of D, with accumulation point 1, and that
u has limit a at I along B. // A = { z G D^ : u (z) > a}~ then
A n B' = 0 and there is a positive harmonic function V on D with
HB1) = 0, v(A) = + oo.

It is sufficient to prove that there is a function v as described
in the theorem. We can assume that a = 0. Let G^ D G^ . . . be
open disks of center 1 so small that u < 2-yl on B n G^. The function
u is the Poisson integral of a measure. Let u^ (< u) be the Poisson
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integral of the part of this measure in a neighborhood of the point 1,
choosing this neighborhood so small that u^ < 2~" outside Gy,. Define

00

V = ^ u^. Then V is either harmonic or identically -h oo. On
1

B n (G^ - G^) , 1^ < k 2-^ + ^ 2-" ,
k+l

so that i^is harmonic, has limit 0 at the point 1 along B, and ft (B') = 0.
Since the restrictions to D^ ofu and u^ are identical,

fc
Hz)>^^(z)=^(z)

i

for z in A. Thus ^(A) = P<A) = + °° and the proof is complete.

Nontangential and Tangential Cluster Values

8. The nontangential filter 1\.

If w G C, the open connected subset of D cut off by two
rays into D from W will be called a Stolz angle with vertex w. A
subset of D which, for each Stolz angle A with vertex w, contains
the part of A in a sufficiently small disk with center w, will be
called a deleted nontangential neighborhood of w. The filter of these
deleted nontangential neighborhoods will be denoted by w T\, or
by I\ if w = 1. From now on it will be convenient to phrase all
definitions and theorems for w = 1. It is trivial that a function /
from D into a topological space has a limit along I\ if and only if
/ has that limit at 1 along every Stolz angle with vertex 1.

A subset A of D which meets every member of T^ must contain
a sequence converging to 1 in a Stolz angle (or D — A G T^ even
though A does not meet D — A).

The filter I\ is convergence stable. In fact if A^ A ^ , . . . are
in r^, let K^ be the complement of an open disk G^ with center
the point 1 and radius so small that A^ u K^ contains the symmetric
Stolz angle with vertex 1 and angular measure TT — n~1. Then

n (A^ u K^) E r^.
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The filter I\ is not cluster stable. To see this let L^ be the
ray from the point 1 into D making the angle ?r/2 — l / n with the
radius to 1 and let L^ be the set of points on Ly, at distances 1,
1/2, 1/3,. . . from the point 1. Define A^ = U L^. Then A^ D A^ 3.. .

k>n
and A^ meets every member of I\. If G^ is an open disk with center
the point 1 and if

A=n{A^u(D\G^)} ,
n

then A n Gy, C A^ n Gy,. We conclude that A contains no sequence
converging to the point 1 in a Stolz angle, that therefore A does
not meet every member of I\, as it would have to for proper choice
of{G^} if r^ were cluster stable.

9. Stolz and nontangential points of DI.

If A is a Stolz angle with vertex the point 1 and if T is the
filter of traces on A of Euclidean neighborhoods of the point 1,
the r cluster set of a function / will be called the cluster set of /
at 1 along A and the union of these sets for all A will be called the
Stolz cluster set o f / a t 1. In particular if / is the identity function
from D into D the Stolz cluster set at 1 will be called the set of Stolz
points of DI.

Define the harmonic function u on D by u(z) = arg(l — z )
(branch with values between — 7T/2 and Tr/2). If ZQ is a Stolz point
of DI the set {z G D^ : \u(z) — u(zo)\ <e} is an open (relative
to D^) set of Stolz points of D^, for small £. Thus the set of Stolz
points of D^ is open relative to D^.

The T\ cluster values of a function / on D will be called the
nontangential cluster values o f / a t 1, and the points of T^ will
be called the nontangential points of D^.

PROPOSITION. — Iff is a function from D to a compact Hausdorff
space, the set of nontangential cluster values of f at the point 1 is
the closure of the set of Stolz cluster values there. In particular F^
is the closure of the set of Stolz points of Dp
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In fact if a is a nontangential cluster value o f / a t 1 but is not
in the closure of the set of Stolz cluster values there, some closed D
neighborhood G of a contains no Stolz cluster value of /. Hence
the intersection of f~\G) with a Stolz angle of vertex 1 contains
no point sufficiently near 1. That is D — f~\G) is a deleted non-
tangential neighborhood of 1, and a cannot be a nontangential
cluster value o f / a t 1, contrary to hypothesis.

10. Tangential points.

Let u be defined as in Section 9. A subset B of D will be said
to be tangent to C at the point 1 if \u\ has limit Tr/2 at 1 along B,
equivalently if D — B is a deleted nontangential neighborhood of
the point 1. A point of D^ will be called tangential if it is in B' for
some set B tangent to C at 1. Trivially \u\ has the value 7T/2 at every
tangential point of D^, but also at every nontangential point which
is not a Stolz point. The following proposition justifies the nomen-
clature.

PROPOSITION. — Each point of D^ is either nontangential or tan-
gential, never both.

If a point z of D^ is not in the nontangential set F^, some closed
D neighborhood B of z does not meet r^, that is D — B is a deleted
nontangential neighborhood of the point 1. But then B is tangent
to C at 1, and z is tangential. There remains the proof that no
tangential point z of D^ is in F^. Suppose that z is tangential, that
is that z is in B' for some subset B of D, tangent to C at the point 1.
We can suppose that B is tangent only on one side, say from above,
so that, defining u as in Section 9, u has limit — (7T/2) = inf u at 1D
along B. If Theorem 7 is applied we find, using the notation of that
theorem, that B' and F^ C A are disjoint. Hence z is not in F^, as
was to be proved.

This proof shows what is obvious from simpler considerations,
that no point of T^ is a D accumulation point of D' — D^.
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THEOREM. — If A is a deleted nontangential neighborhood of the
point 1, A u DI is a D neighborhood ofT'^ Hence I\ = T(T^).

The theorem is an immediate consequence of the fact that
(D — A)' is tangential so does not meet T^ and, as remarked above,
D' — D^ has no nontangential accumulation point.

This theorem, together with the fact that I\ is convergence
stable, implies for example that if / in H°° has a nontangential limit
c at the point 1, that is if/(T^) = c, then / has limit c along the
trace on.D of a D neighborhood of F^ and thus that/is identically
c on a neighborhood relative to D^ of F^.

Fine Cluster Values

12. Fine points.

The filter of deleted fine neighborhoods of the point 1 relative
to D, that is of complements in D of subsets of D thin at 1 relative
to D (sometimes called "minimally thin" at 1) will be denoted by
Fp. The wTy cluster values of a function defined on D will be
called fine cluster values of the function at w and the points of
wTp will be called fine points of wDi. From now on we always
take w = 1.

Define / = exp (z + l)/(z — 1). Then h = — log |/| is a minimal
harmonic function for D corresponding to the boundary point 1.
It is trivial that h has Euclidean limit 0 on C except at the point 1,
and it is well known that h has fine limit °° at that point. Then /
has Fatou nontangential boundary function f* of modulus 1 (almost
everywhere) but has fine limit 0 at the point 1. Now if z is a Silov
point in D^ it is known [3] that f* is arbitrarily close to f(z) on a
subset of C whose trace on each neighborhood of the point 1 has
strictly positive Lebesgue measure. Hence no fine point of D^ is
on the Silov boundary.

It is a standard fact of classical potential theory that Fp is
both convergence and cluster stable.
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The relation r (Fp) C Fp is strict. For example the complement
in D of a countable dense set is in Fp but not in T (Tp).

13.

PROPOSITION. — The sets T'p and F^ are connected.

We give the proof for Fp The proof for T'^ is similar but simpler.
Let B be a D open superset of T ' . Then Fp = H B .̂ Now B n D is

B

a deleted fine neighborhood of the point 1, so by a theorem of
Nairn-Lumer [5] some (unique) open component B()(B) of B is also
a deleted fine neighborhood of the point 1. Then B^ = H Bo(B)crp.

_ _ B
Since B^ is connected and since the class of sets Bo when ordered
by inclusion is a directed decreasing class, B^ is connected. The set
Tp was defined as the intersection of the D closures of the deleted
fine neighborhoods of the point 1. Hence F p C B p We have already
proved the reverse inclusion, so B^ = Fp and T'p is connected.

14.

THEOREM. — r^ C T'p and the inclusion is strict.

Since F^ is the closure of the set of Stolz points in Dp to
prove the stated inclusion it is sufficient to prove that every Stolz
point of DI is a fine point. If z is a Stolz point for the Stolz angle S,
and if /i,. . . , /^ are in H°°, there is a sequence {z^ , n > 1} in S
along which [/p . . . , /J has the limit L/\(z), . . . , /^(i)]. Let c be
a strictly positive constant. If G^ is a disk of radius c\z^ — \\ and
center z^ ,f. is uniformly (as n varies) near /-(z^) in G^ when c is
small, by a standard normal family argument. Since for each c > 0
every deleted fine neighborhood of the point 1 meets U G^ [I],

n
[fi,. . ., /J has fine cluster value [/i(z),. . . , .400] at the point 1
and according to Section 4 this condition implies that z is a fine point.
We have now proved that T'^ C T^ To prove that the conclusion
is strict we need merely remark that T^ contains tangential points.
This fact can be seen for example as follows. We must show that
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there is a set B in D tangent to C at the point 1, with B' 0 T'p ̂  0.
It is convenient to replace D by the upper half plane. Then [1]
if 0 is monotone increasing on (0, 1), with 0(0 +) = 0, the set
{[x,000] , 0<x < 1} is thin at the origin or, equivalently, the
set {(x , y ) : 0 <x < 1, y < 0(.x)} is thin at the origin, if and only

/, i
if / 0(x) x~2 dx < oo. We need only define 0(x) = x / \ log x | say, toJQ
find a set which is tangent to the boundary at the origin and which
has fine cluster points.

It is easy to check that if T^p = I\ n Tp then T'^p = Tp and
the inclusion relations r (Tp) C T^p C T^ are strict. Thus the assertion
that a function on D have at the point 1 a nontangential limit, both
a nontangential and fine limit, a limit along r (Tp) are successively
strictly stronger, but the latter two are actually equivalent for functions
with continuous extensions to D.

15. Example.

We shall give an example of a function in H°° which has a non-
tangential but not a fine limit at a point of C. This example provides
a second proof that T^ ^ Tp. The existence of such an example
was announced in [1]. It is sufficient to exhibit a positive harmonic
function u with nontangential limit °° at a boundary point but not
with a fine limit there. In fact if v is a conjugate function of u the
function exp (— u — iv) is the required element of H°°. Going to the
upper half plane we shall exhibit a positive harmonic function u there
with nontangential limit °° at the origin but with limit 0 along a
continuous arc A to the origin, where A is not thin at the origin.
The arc A is in the first quadrant, with equation

y = x(-logx)~1 , 0 <x < 1 (15.1)

and u is defined in (15.2) as the Poisson integral of a function
with limit + oo at the origin from the left, vanishing on the right,
so that u has nontangential limit + °° at the origin,

, . />0 (-log M)172 dtu ( x , y ) = y j - — — — ' (15.2)J-\ (x — t)2 + y2
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If (x , y) G A,

u(x , y) < (- x log x)-1 F (- ̂ S /)l/2 dr
•/o

+ ;c(- log x)-1/2/1 r-2 ̂  < 2 (- logx)-1/2.

Hence u has limit 0 along A. Finally A is not thin at the origin
according to the criterion already used in Section 14.

16. Thin sets.

Even if a subset A of D is thin at the point 1 the cluster set
A' may contain fine points of Dp For example a sequence of points
of D converging nontangentially to the point 1 is thin at 1 but its
cluster set in D^ consists of points in T^ C Fp. However if A is suffi-
ciently strongly tangential to C at the point 1, A' will not contain
any fine points of D^. We shall state conditions that A' contain fine
points using the upper halfplane instead of the disk. We suppose that
D has been mapped onto the upper halfplane by a linear transformation
taking 1 into 0, and it should cause no misunderstanding if we keep
the notation used for D wherever possible. That is, in the halfplane
context Fp is the set of fine points over the Euclidean boundary
point 0 and so on.

THEOREM. — Let <f> be a function from an interval (0, 6) to the
positive reals, monotone increasing, with 0(0 +) = 0 and

lim (f>(x)lx = 0.
x-+0

Let G be the graph {(x , y ) : y = 0(x), 0 <x < §}, and define
A = {(x , y ) : 0 < x < 8 , y < 0(;c)}.

6

a) If j (j)(x)x~2 dx = oo, G is not thin at the origin (relative

to the upper halfplane) and, if 0 is continuous, G' contains both
fine and nonfine points,

y6
b) If / 0(x)x~2 <oo^ A is thin at the origin (relative to thevo

upper halfplane).
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The only assertion not covered by the already used criterion
for thinness is the assertion about G' in a). If the integral is infinite,
G is not thin at the origin, so G1 must contain some fine points.
On the other hand we shall show that G' cannot be a subset of Fp.
In fact, translating the context back to the disk, if G7 C Fp a function
/ in H°° has a limit at w on C along wG whenever the function has
a fine limit at w. Since / has a fine limit at w for Lebesgue almost
every w (fine topology Fatou theorem), / has a limit at w along wG
for almost every w. According to a theorem of Littlewood [8] this
is impossible for a continuous curve G, tangent to C at the point 1,
so G' must contain nonfine points.

It seems plausible that A' in the theorem contains no fine points
over the origin when A is thin but the author was able to prove
this result only under additional restrictions on 0, as indicated in
the following theorem.

17.

THEOREM. — Let 0 be a function from an interval (0 ,5 ) to the
positive reals, satisfying the following conditions.

a) 0 and x ̂  0(x)/x are continuous and monotone increasing,
with limit 0 at the origin.

b) For some £ > 0, x H- <f>(x) ̂ e-2 is monotone decreasing, with
limit °° at the origin.

c) f6<t>(x)x-2 dx < oo.
Jo

Then the set A = {(x , y ) : 0 < x < 5, 0 < y < <f>(x)} is thin at the
origin relative to the upper halfplane and A' contains no fine point
over the origin.

According to this theorem, the closure in the Gelfand compacti-
fication of the complement of A in the open halfplane is a neigh-
borhood of Fp. We need prove only that A' contains no fine point
over the origin. Note that hypotheses a) and b) imply that £< 1.
Let u be the Poisson integral for the upper halfplane of the function
t ̂  — ^/0(— t) on (— § , 0) (vanishing elsewhere),
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/»5 tydt'.5 ______fydt

Jo 00) [(x+t)2 ^y2}"^'X ^[(^^-i (17• l )

If (x , ̂ ) G A we use a) to find

^x t dt /*5 rf^
u ( x , y ) <<t>(x) f ———T+x [ (17.2)

^o 0(rt x- ^c (x 4- r)2

and then using b)

u(x , y ) < 1/e + 1/2 < 2/£. (17.3)

Define B^ == {(x , y ) : 0 < x < 5, y > b(t>(x)}, where & is a strictly
positive number to be chosen later. If y = b(f>(x),

u ( x , y ) >bx [ x l > b/2 (17.4)
Jo (x + t)2 + b2^)2

if x is near 0. Now choose b > 4/£, and let ^ be the restriction
of u to the following domain B :

B = {(x , y ) : x < 0 , y > 0} u {(x , y ) : x > 0 , y > b(f>(x)}.

The function u^ is positive, harmonic, and has a continuous boundary
function in a deleted neighborhood of the origin. At the origin this
boundary function has limit + °° along the half axis and, by (17.4),
limit inferior > b/2 along the arc on the other side. Then u^ and u
have inferior limit > b/2 > 2/e at the origin along B. Moreover, by
the criterion already used, B is a deleted fine neighborhood of the
origin, relative to the upper halfplane. Hence u > 2/E. on the set of
fine points over the origin. On the other hand, by (17.3), u < 2/E:
at the points of A', and we conclude that A' contains no fine points.

18. Example.

Define log^ = log. .. log y as the nth iterated logarithm of
y for y so large, say y > 1/6,,, that the logarithms involved are all
well defined and positive. Define

A(n ,£) = {(x , y ) : 0<x<8^ , 0 < y < x [(log 1/x) . . .

(log^l/^l^dog.l/x)-1-8}.
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If € > 0, A(n ,c) is thin at the origin relative to the upper halfplane
and A(n, e) contains no fine point over the origin. But A(n , 0)
is not thin at the origin and A (n , £)' contains fine points over the
origin.

Extreme Filters and Sets

19. L minimal filters ; L maximal sets.

Let r be a filter of subsets of D, with Euclidean limit 1. Then T
will be called L minimal if there is no strictly coarser filter I\ with
Euclidean limit 1 for which lim / exists whenever / G H°° and lim /r! r
exists. Since / in H°° has a limit along F if and only if / has a limit
along r(r'), minimality of T implies that F(r') = F.

A subset A of D^ will be called L maximal if there is no strictly
larger subset A^ of D^ (equivalently of D) for which / is identically
constant on A^ whenever / E H°° and / is identically constant on A.
If A is L maximal it is closed. A filter r of subsets of D, converging
to 1, is L minimal if and only if T = r (T') and T' is L maximal.
Since the extensions to D of the members of H°° separate D each
singleton subset of D^ is L maximal.

Let A be any subset of D^ and consider the set A1' of all points
z in DI such that, whenever/is in H°°,/(A) = 0 implies that/(z) = 0.
Then A1' is the smallest L maximal superset of A. If/in H°° is identically
constant on A C D^ then/is even identically constant on A1'.

The intersection of an arbitrary number (finite or infinite) of L
maximal sets is trivially L maximal. The union of a finite number of
L maximal sets is L maximal. In fact if A^ , . . . , A^ are L maximal
and if z is not in their union there is a function /. in H°° for which
/}(Ap = 0 but ^.(z) =7^= 0. The function II/. = g has the property

that g (U A.) = 0 but g (z) =^ 0 from which it follows that U A. is
J J f J

L maximal. In particular, finite subsets of D^ are L maximal.

THEOREM. — Let u be a bounded harmonic function on D, with
a = inf u < b = sup u. Then each of the sets
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{z E DI : a < ii(z)}~ , {z G DI : &(z) < 6}- , {z E D^ : ̂  < ^(z) <&}-

is L maximal or empty.
It is sufficient to prove that the first set is L maximal, because

the second set is reduced to one like the first if u is replaced by — u,
and the third set is the intersection of the first two. If the first set,
denoted by A, is D^ itself, there is nothing to prove. Otherwise let
z be in D^ — A. It will be sufficient to prove that there is a member
of H°° vanishing identically on A but not vanishing atz. Since u(z) = a
Theorem 7, with B the trace on D of a closed neighborhood of z not
meeting A, can be applied to yield a positive harmonic function v
with ?(z) = 0, ^(A) = °°. If V^ is conjugate to V, exp(— V' — iv^)
is the desired function in H°°.

This same argument shows that if u is harmonic on D with
finite infimum a, and if u is the Poisson integral of a measure on C
assigning the value 0 to the singleton {1} then the first of the three
sets in the theorem is L maximal or empty.

Rosenfeld and Weiss [7] proved a theorem equivalent to Theorem
19 with u the harmonic measure of a subset of C.

If u = arg (1 -- z) (branch with values in (— TT , TT)) the theorem
implies that T^ is L maximal, that is I\ is L minimal. If / in H°°
has a radial limit at 1 it is classical that / has a nontangential limit
at that point. Thus the cluster set in D^ of the radius to 1 is not L
maximal.

If A is an L maximal set and if z is a point of D^ with v(z , A) > 0
then z E A because (see Section 3) if, for/in H°°, /vanishes identically
on A the function also vanishes at z. The Silov set X n D^ is therefore
not L maximal.

Brownian Paths

20. Brownian cluster points.

We recall that (conditional) Brownian paths from a point of D
to the point 1 are continuous paths and that a subset B of D is thin
at 1 relative to D if and only if there is a Borel superset BQ of B



BOUNDARY APPROACH FILTERS FOR ANALYTIC FUNCTIONS 205

with the property that almost no Brownian path from a point of D
to 1 hits BQ sufficiently near 1. This property is independent of the
initial path point. The cluster set in D^ of a Brownian path from a
point of D to the point 1 is compact and connected. Since almost
every such path hits every ray from 1 into D arbitrarily near 1, the
cluster set in D^ contains many Stolz points. It will be shown below
that this cluster set also contains fine tangential points.

LEMMA. — A point z of D^ is in Tp if and only if whenever
ZQ G D and f^, . . . , /^ is a finite subset of H°° the vector function
[/p . . ., /J has cluster value [/^(z), .. ., .4(z)] on almost every
conditional Brownian path from ZQ to 1. If f^,. . . , /^ are specified,
the condition is satisfied either for every ZQ or no ZQ.

The last assertion is true because if h is minimal harmonic in
D corresponding to the point 1, the probability that a conditional
Brownian path from ZQ to 1 hits a specified open subset of D arbi-
trarily near the path lifetime defines an /z-harmonic function of ZQ,
bounded and therefore identically constant. To prove the lemma
recall that z E Fp if and only if whenever f^,. . . f^ is a finite subset
of H°° and £ > 0 the D neighborhood of z

A = {w E D : | fj(w) - ^.(z)| < £ , / < k}

meets every set in Fp, that is D — A is not to be thin at 1 ; equiva-
lently almost every conditional path from a point of D to 1 is to
meet A at times arbitrarily near the path lifetime. The lemma is
now obvious.

21.

In the following theorem "Brownian path to the point 1" refers
to conditional Brownian paths from a point of D. The assertions
are true for every initial point, using the reasoning of the proof
of Lemma 20.

THEOREM. — If A C D^ and if A is a neighborhood of Fp relative
to Dp the cluster set of almost every Brownian path to the point 1



206 J.L. DOOB

is a subset of A. If A C D^ a^rf z/ A ^ a neighborhood relative to D^
of some fine point then almost every Brownian path to the point
1 has a cluster point in A.

In proving the first assertion we can assume that A is the trace
on D^ of a closed D neighborhood B of Tp. Then B n D is a deleted
fine neighborhood of the point 1 and the cluster set of almost
every Brownian path to that point must be a subset of B n D^ = A,
as was to be proved. To prove the second assertion let z be a fine
point in A and assume as we can that A is the trace on D^ of a closed
D neighborhood B ofz. According to Lemma 20 almost every Brownian
path to the point 1 meets B arbitrarily near (Euclidean topology)
the point 1, and it follows that almost every such path has a cluster
set meeting B n D^ = A, as was to be proved.

Boundary Limit Theorems

22. Fatou filters.

An otherwise unspecified measure of subsets of C is to be
understood to be Lebesgue measure. Let r be a filter of subsets of
D with Euclidean limit the point 1. The filter will be called a Fatou
filter if, for each / in H°°, lim / exists and is equal to the nontangential

zr
limit of / at z for almost every z on C for which the latter limit exists.
According to Fatou's theorem the latter limit exists almost everywhere
on C. If r is a Fatou filter, every finer filter is also a Fatou filter,
as is the (possibly coarser) filter r (F'). The intersection of two Fatou
filters is a Fatou filter, so the class of Fatou filters, ordered by inclusion,
is a decreasing directed set. Each Fatou filter corresponds to a Fatou
type boundary limit theorem, and the coarser the filter the stronger
the theorem. Since Tp is a Fatou filter [2], T (Fp) is also one, coarser
than both Tp and I\, using Theorem 14. In going from one Fatou
theorem to a stronger one there is a gain in that the approach
filter is coarser, a possible loss (actual in going from T^ to T (Tp))
in that the exceptional Lebesgue null set on C for some members
of H°° may be larger.
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23. Fatou sets.

A nonempty subset B of D^ will be called a Fatou set if, for /
in H°° and almost every specified w on C (depending on /), the
restriction o f / t o w ( B u F^) is a constant function. Every nonempty
subset of a Fatou set is a Fatou set, and the closure of a Fatou set
is a Fatou set.

If B is a Fatou set, F(B) is a Fatou filter. Conversely if r is a
Fatou filter, F' is a Fatou set and we have already noted that T (T') C F
and is a Fatou filter. In the sense of Section 22, strengthening a
Fatou theorem with filter r = r(T') means enlarging the corresponding
Fatou set T\ For example, if A is a Fatou set, the smallest L maximal
superset A1' of A (see Section 19) is also a Fatou set, giving a stronger
Fatou theorem unless A is already L maximal.

If a singleton is a Fatou set its point will be called a Fatou point.
Every point of a Fatou set is a Fatou point. A countable union
of Fatou sets is a Fatou set.

If a set B is a Fatou set then for u harmonic and bounded
on D from above or below, the restriction to w (B u r^) of u is
a constant function, for almost every w on C. Conversely the latter
condition implies that B is a Fatou set, even if imposed only for
bounded harmonic u. Moreover the condition is sufficient even if
imposed only for u = JLI(. , A) for every measurable subset A of C,
since a bounded harmonic function can be uniformly approximated
by linear combinations of harmonic measures. Finally it is therefore
even sufficient if (for every A) the restriction to wB of

A C , A) = ^(..A^)

is identically 1 for almost every w in A. This condition is stated
for reference in a trivially equivalent form in the following proposition,
using the notation of Section 3.

PROPOSITION. — A subset B of D^ is a Fatou set if and only
if whenever A is a measurable subset of C there is a Lebesgue null
set AQ of A for which S (wz) C A3 for z in B and w in A — AQ.
If B C X this condition reduces to wK C A5 for w in A — AQ.
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24.

THEOREM. — // B is a Fatou set, so is U S(z).
zee

Let A be a measurable subset of C, corresponding to A5 C X.
According to Proposition 23, wS(z) = S(wz) C A5 simultaneously for
all z in B, if w is in A less a null set, and, since S(wz)CX, the
theorem follows from the second assertion of the proposition.

25.

THEOREM. — If B is a closed Fatou set ofSilov points, the set
{z G DI : v(z , B) > 0} is also a Fatou set.

If /G H°°, if w E C and if the restriction of/to wB is constant
then / has that same constant value at every point wz of wD^ for
which v(wz , B) > 0, according to the remarks in Section 3. Hence
the set described in the theorem is a Fatou set.

26. Gleason parts.

(See 3,4). We first outline certain material needed below. A
sequence {z^ , n > 1} in D is called an interpolation sequence if
/->{/(z^), n > 1} maps H°° onto the space of bounded complex
sequences. It is sufficient for this if |zJ -^ 1 exponentially fast. Thus
every sequence with an accumulation point on C has an interpolation
subsequence. A point of D' is called an interpolation point if it is
a cluster point of an interpolation sequence. The set of all interpo-
lation points is open relative to D' and contains no Silov boundary
points.

Each point z of D' determines a Gleason part, a subset G(z)
of D' containing z. If z^ €EG(z) then G(z^) = G(z). If z is not an
interpolation point, G(z) == {z}. The Gleason part of an interpolation
point is an analytic disk, in D^ if z is. Specifically, let L(. , w) be
the linear transformation depending on w defined by
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? + W
L ^ , w ) -———— , M < 1,1 + w^

mapping D onto itself. If w -> w' G D^ along an ultrafilter, L (. , w)
has a limit map L (. , w ' ) and z ̂  L(z , u^) is a homeomorphism
between D and L (D , w9) = G (V). Moreover if / E H°°, the res-
triction o f / t o L (D , w ' ) referred back to D by this map, is holo-
morphic on D, and yields every element of H°° as / varies. If u is har-
monic, the restriction of u to L (D , w ' ) referred back to D is harmo-
nic on D.

If z^ and z^ are in the same Gleason part, v (z^ ,.) and v (z^ , .)
are mutually absolutely continuous measures. Hence S(z^) = S(z^).

27.

THEOREM. - //B is a Fatou set, so is G(B) = U G(z).
zGB

It is obviously sufficient to prove the theorem for B a Fatou
set of interpolation points. With this hypothesis on B, let A be a
measurable subset of C. Then the harmonic measure ^ (. , A) is
harmonic on D and ft (wz , A) = 1, simultaneously for all z in B,
for almost every w in A. If w is not exceptional and if z E B, the
restriction to G (wz) of jEx(- , A) is a bounded (by 1) harmonic
function (when referred canonically back to a disk), with value 1
at a point, and is therefore identically 1. According to Proposition 23,
G(B) must be a Fatou set.

28.

THEOREM. — The set of Fatou points is dense in D^. More speci-
fically, if A : {z^ , n > 1} is a sequence in D, with Euclidean limit 1,
A' contains an interpolation point z for which G(z) is a Fatou set.

The second assertion implies the denseness of the set of Fatou
points because if B is any closed D neighborhood of a point of
D^, A can be chosen in B n D.
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Going to a subsequence if necessary, we can suppose that A

is an interpolation sequence. Let/ be a member ofH00,/^) = V^ ^,
o

with Fatou nontangential boundary function /*. Then

f^ |/* (e16) - /(z^)|2 dQ = ZTT ̂  |^(1 - z^)|2 (28.1)"n- 71 — -" ̂  i^ fcv* -n^
0

so the sequence {w ^/(wZy,) , n > 1} of functions on C converges
to /* in the mean and in measure. Now according to a theorem of
Mokobodzki [6] there is a "rapid" ultrafilter of integers with limit
00 and such an ultrafilter has the property that a sequence of measurable
functions converging in measure on a totally finite complete measure
space necessarily converges pointwise along the ultrafilter to a limit
which is almost everywhere the limit in measure. Along a rapid
ultrafilter, z. converges to some point z of Dp /(vvz ) converges to
/(wz), and /(wz) = /*(w) for almost every w on C. Thus z is a
Fatou point and hence by Theorem 27 the set G(z) is a Fatou set.

COROLLARY. — There is no maximal Fatou set, no minimal Fatou
filter.

The two assertions are equivalent, and we prove the first. A
maximal Fatou set B would be a closed subset of D^ and would
include every Fatou point, because the union of two Fatou sets
is a Fatou set. But then B = D^ by Theorem 28, and this is absurd.

Note that the set of Fatou points is countably closed, that is
the closure of a countable set of Fatou points consists of Fatou
points, in fact is a Fatou set because the closure of a countable
union of Fatou sets is a Fatou set.

29. Example.

Let FQ be a Fatou set and define Fatou sets £„ and F^ for n > 0
inductively by

s..i= ru ^r? F^= { z : v{z 9 ̂ ^> 0} 9 n > °-[zeF. j
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Then

F . n X C ^ , , CF^, n X , F, C F^ ,

so 2^ C 2^i. The sets F^ = U F^, and 2^ = U 2,, are Fatou sets
n n

satisfying

U S(z) C 2^ = F^ n X , F^ ={z : v(z , 2J>0}
Z€EF^

= = { z : ^ ( z , 2J= 1} .

Since G(z) C F^+^ whenever z G F^ , F^ is a union of Gleason parts.
Thus F^, is a Fatou set with nice properties. If one applies the same
inductive process to F^ as to FQ one can go on by transfmite induction,
defining 2 and F for indices running through the countable ordinals.
It would be interesting to have conditions on FQ ensuring the existence
of a countable ordinal 7 with F^ = F^ = . . . .

30. Gg sets.

The corollary to the following theorem implies that F^ and
Fp are not Gg sets. Note that a subset of D^ is a Gg set if and
only if it is a Gg set relative to D^, because D^ is a Gg set.

THEOREM. — Let (A^ , n > 1} be a sequence of open subsets of
D and let V be a convergence stable filter of subsets of D, with
limit the point 1. IfY1 C n A^, there is a member A ofV with A' C n A^.

n n

Decreasing the sets A^ if necessary we can suppose thatA^^ C A^.
The hypotheses imply that each set A^ is a superset of every member
of r sufficiently near the point 1. Hence A^ n D E r, and convergence
stability of F implies that there is a member A of F with the pro-
perty that each set Ay, includes the part of A sufficiently near the
point 1. Then A7 C A^i C A^ for all n, as was to be proved.

COROLLARY. - No Fatou superset of F^ is a Gg.

If B is a G^ Fatou superset of r^, the theorem asserts that
there is a member A of F^ with A' C B. Hence A' is a Fatou set
and it follows that each member of H°° has a limit at w along wA
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for almost every w on C. This is impossible according to the Littlewood
theorem already used, because A contains a continuous curve tangent
to C at 1.

31. Baire functions on D ' .

The Baire class of complex functions on D' is defined as usual
as the smallest class of functions containing the continuous functions
and closed under pointwise sequential convergence.

THEOREM. — Let A be a Fatou set and let u be a Baire function
on D\ Then the restriction of u to wA is a constant function, for
almost every w on C.

The class of functions on D' with the stated property is an algebra
containing the constant functions and closed under conjugation and
sequential pointwise limits. Moreover this class includes the restrictions
to D' of the extensions to D of the members of H°°, and these restric-
tions separate D'. The class therefore includes the Baire class.
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