Régularité des solutions d'une équation parabolique non linéaire avec des contraintes unilatérales sur la frontière
Annales de l'Institut Fourier, Tome 22 (1972) no. 4, pp. 161-192.

On démontre des résultats de régularité L et höldérienne pour la solution d’une inéquation parabolique, formulation faible du problème suivant :

ut-i=1NxiBi(x,t,u,u)+B0(x,t,u,u)=0dansΩ×]0,T[;u0,uνB0,uνB=0dansΩ×]0,T[;u(x,0)=u0(x)dansΩ.

Regularity results (L and Hölder) for solutions of a parabolic inequality are given; this parabolic inequality is a weak formulation of the problem

ut-i=1NxiBi(x,t,u,u)+B0(x,t,u,u)=0onΩ×]0,T[;u0,uνB0,uνB=0onΩ×]0,T[;u(x,0)=u0(x)onΩ.

@article{AIF_1972__22_4_161_0,
     author = {Beirao Da Veiga, Hugo and Dias, Joao Paulo},
     title = {R\'egularit\'e des solutions d'une \'equation parabolique non lin\'eaire avec des contraintes unilat\'erales sur la fronti\`ere},
     journal = {Annales de l'Institut Fourier},
     pages = {161--192},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {22},
     number = {4},
     year = {1972},
     doi = {10.5802/aif.437},
     zbl = {0235.35052},
     mrnumber = {50 #771},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.437/}
}
TY  - JOUR
AU  - Beirao Da Veiga, Hugo
AU  - Dias, Joao Paulo
TI  - Régularité des solutions d'une équation parabolique non linéaire avec des contraintes unilatérales sur la frontière
JO  - Annales de l'Institut Fourier
PY  - 1972
SP  - 161
EP  - 192
VL  - 22
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.437/
DO  - 10.5802/aif.437
LA  - fr
ID  - AIF_1972__22_4_161_0
ER  - 
%0 Journal Article
%A Beirao Da Veiga, Hugo
%A Dias, Joao Paulo
%T Régularité des solutions d'une équation parabolique non linéaire avec des contraintes unilatérales sur la frontière
%J Annales de l'Institut Fourier
%D 1972
%P 161-192
%V 22
%N 4
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.437/
%R 10.5802/aif.437
%G fr
%F AIF_1972__22_4_161_0
Beirao Da Veiga, Hugo; Dias, Joao Paulo. Régularité des solutions d'une équation parabolique non linéaire avec des contraintes unilatérales sur la frontière. Annales de l'Institut Fourier, Tome 22 (1972) no. 4, pp. 161-192. doi : 10.5802/aif.437. https://aif.centre-mersenne.org/articles/10.5802/aif.437/

[1] H. Beirão Da Veiga, Sur la régularité des solutions de l'équation div A(x, u, ▽) = B(x, u, ▽u) avec des conditions aux limites unilatérales et mêlées, à paraître dans les Annali Mat. Pura Appl. | Zbl

[2] H. Beirão Da Veiga et J. P. Dias, Continuité des solutions d'une inéquation parabolique, C.R. Acad. Sc. Paris, 274 (1972), 192-193. | MR | Zbl

[3] H. Brézis, Problèmes unilatéraux, à paraître dans le J. Math. Pures Appl. | Zbl

[4] E. De Giorgi, Sulla differenziabilita e l'analiticita delle estremali degli integrali multiple regolari, Mem. Acc. Sci. Torino, 3 (1957), 25-43. | MR | Zbl

[5] J. P. Dias, Une classe de problèmes variationnels non linéaires de type elliptique ou parabolique, à paraître dans les Annali. Mat. Pura Appl. | Zbl

[6] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'Ceva, "Linear and quasi-linear equations of parabolic type", Transl. Math. Monographs, Am. Math. Soc., 1968. | Zbl

[7] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969. | Zbl

[8] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519. | MR | Zbl

[9] J. Nash, Continuity of the solutions of parabolic and elliptic equations, Am. J. Math., 80 (1958), 931-954. | MR | Zbl

Cité par Sources :