Topologies faciales dans les convexes compacts. Calcul fonctionnel et décomposition spectrale dans le centre d’un espace A(X)
Annales de l'Institut Fourier, Tome 22 (1972) no. 1, pp. 1-66.

Cet article étudie, sur l’ensemble 𝒮(X) des points extrémaux d’un convexe compact X, des topologies faciales dont les fermés sont les traces de faces F “parallélisables” (il existe une plus grande face F disjointe de F, et tout x de X s’écrit x=λy+(1-λ)y ,yF,y F , avec λ unique). Les topologies faciales uniformisables sont en bijection avec les sous-espaces réticulés fermés et contenant 1 de l’espace A(X) des fonctions affines continues sur X. Ceci redonne des résultats classiques sur les simplexes, et permet une étude géométrique des sous-espaces réticulés de A(X).

Toute fonction f de A(X) continue pour une topologie faciale admet un calcul fonctionnel utilisant une décomposition spectrale de f (ψ(f)=ψ(λ)de λ pour ψ universellement mesurable sur le “spectre” de f). Toutes les notions classiques de théorie spectrale ont une interprétation géométrique sur le convexe compact X ; en particulier, si u est universellement mesurable sur 𝒮(X) pour la topologie faciale la moins fine rendant f continue, elle possède un prolongement vérifiant le calcul barycentrique et “approchable” au moyen de f.

Enfin, une décomposition spectrale subsiste pour une fonction semi-continue inférieurement pour une topologie faciale, avec interprétation géométrique des notions de théorie spectrale.

In this paper, we study, on the set 𝒮(X) of the extremal points of a compact convex set X, facial topologies for which closed sets are the intersection with 𝒮(X) of “parallel” faces (there exists a greatest face F disjoint of F, and, for every x in X, x=λy+(1-λ)y ,yF,y F , with λ unique). There exists a bijection between the uniformizable facial topologies and the closed sub-lattices containing 1 of the space A(X) of the affine continuous functions on X. This gives classical results on simplexes, and permits a geometrical study of the sub-lattices of A(X).

Every function f of A(X) which is continuous for a facial topology has a functional calculus which uses a spectral decomposition of f (ψ(f)=ψ(λ)de λ for ψ universally measurable on the “spectrum” of f). All the classical concepts of spectral theory have a geometrical interpretation on the compact convex set X; for example, if u has an extension to (X) which verifies the barycenter calculus, and is “approximable” by using the function f.

Such a spectral decomposition exists also for a lower semi-continuous function for a facial topology, with geometrical interpretation of the concepts of spectral theory.

@article{AIF_1972__22_1_1_0,
     author = {Rogalski, Marc},
     title = {Topologies faciales dans les convexes compacts. {Calcul} fonctionnel et d\'ecomposition spectrale dans le centre d{\textquoteright}un espace $A(X)$},
     journal = {Annales de l'Institut Fourier},
     pages = {1--66},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {22},
     number = {1},
     year = {1972},
     doi = {10.5802/aif.401},
     zbl = {0219.52001},
     mrnumber = {48 #12020},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.401/}
}
TY  - JOUR
AU  - Rogalski, Marc
TI  - Topologies faciales dans les convexes compacts. Calcul fonctionnel et décomposition spectrale dans le centre d’un espace $A(X)$
JO  - Annales de l'Institut Fourier
PY  - 1972
SP  - 1
EP  - 66
VL  - 22
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.401/
DO  - 10.5802/aif.401
LA  - fr
ID  - AIF_1972__22_1_1_0
ER  - 
%0 Journal Article
%A Rogalski, Marc
%T Topologies faciales dans les convexes compacts. Calcul fonctionnel et décomposition spectrale dans le centre d’un espace $A(X)$
%J Annales de l'Institut Fourier
%D 1972
%P 1-66
%V 22
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.401/
%R 10.5802/aif.401
%G fr
%F AIF_1972__22_1_1_0
Rogalski, Marc. Topologies faciales dans les convexes compacts. Calcul fonctionnel et décomposition spectrale dans le centre d’un espace $A(X)$. Annales de l'Institut Fourier, Tome 22 (1972) no. 1, pp. 1-66. doi : 10.5802/aif.401. https://aif.centre-mersenne.org/articles/10.5802/aif.401/

[1] Erik Alfsen, On the decomposition of a Choquet simplex into a direct convex sum of complementary faces, Math. Scand., t. 17, (1965), 169-176. | MR | Zbl

[2] Erik Alfsen and Tage Bai Andersen, Split faces of compact convex sets, Aarhus Universitat, Reprint series, (1968/1969), n° 32.

[3] Heinz Bauer, Kennzeichnung kompakter Simplexe mit abgeschlossener Extremalpunktmenge, Archiv der Math., t. 14, (1963), 415-421. | MR | Zbl

[4] Nicolas Bourbaki, Topologie générale, Chapitre 9. 2e édition. - Paris, Hermann, 1958 (Act. scient. et ind., 1045 ; Bourbaki, 8).

[5] Gustave Choquet et Paul-André Meyer, Existence et unicité des représentations intégrales dans les convexes compacts quelconques, Ann. Inst. Fourier, Grenoble, t. 13, (1963), 139-154. | Numdam | MR | Zbl

[6] Edwards Effros, Structure in simplexes, Acta Math., Uppsala, t. 117, (1967), 103-121. | MR | Zbl

[7] Edwards Effros, Structure in simplexes, II, J. of funct. Anal., t. 1, (1967), 379-391. | MR | Zbl

[8] Hachim Fakhoury, Solution d'un problème posé par Effros, C.R. Acad. Sc. Paris, t. 269, (1969), Série A, 77-79. | Zbl

[9] Alain Goullet De Rugy, Géométrie des simplexes. Paris, Centre de Documentation universitaire, (1968). | Zbl

[10] Alain Goullet De Rugy, Faces parallélisables et topologies faciales sur l'espace des états d'une algèbre stellaire, C.R. Acad. Sc., Paris, t. 270, (1970), série A, 376-379. | Zbl

[11] Gabriel Mokobodzki, Quelques propriétés des fonctions numériques convexes (s.c.i. ou s.c.s.) sur un ensemble convexe compact, Séminaire Brelot-Choquet-Deny : Théorie du potentiel, 6e année, (1961/1962), n° 9, 3 p. | Numdam | Zbl

[12] Rainer Nagel, Ideal theorie in geordneten lokalkonvexen Vektorraümen, Dissertation, Eberhard-Karls-Universität, Tübingen, (1969).

[13] Robert Phelps, Lecture on Choquet's theorem - Princeton, D. Van Nostrand mathematical Studies, 7).

[14] Marc Rogalski, Etude du quotient d'un simplexe par une face fermée, et application à un théorème de Alfsen ; quotient par une relation d'équivalence, Séminaire Brelot-Choquet-Deny : Théorie du potentiel, 12e année, 1967/1968, n° 2, 25 p. | Numdam | Zbl

[15] Marc Rogalski, Caractérisation des simplexes par des propriétés portant sur les faces fermées et sur les ensembles compacts de points extrémaux, Math. Scand. 28 (1971), 159-181. | MR | Zbl

[16] Marc Rogalski, Quelques problèmes concernant une caractérisation des simplexes, C.R. Acad. Sc. Paris, t. 269, (1969), Série A, p. 645-647. | MR | Zbl

Cité par Sources :