[Espace enveloppant des espace-temps globalement hyperboliques conformément plats]
We prove that any simply-connected globally hyperbolic conformally flat spacetime $V$ can be conformally embedded in a bigger conformally flat spacetime, called enveloping space of $V$, containing all the conformally flat Cauchy extensions of $V$, in particular its $\mathcal{C}_0$-maximal extension. As a result, we establish a new proof of the existence and the uniqueness of the $\mathcal{C}_0$-maximal extension of a globally hyperbolic conformally flat spacetime. Furthermore, this approach allows us to prove that $\mathcal{C}_0$-maximal extensions respect inclusion.
Nous prouvons que tout espace-temps conformément plat globalement hyperbolique simplement connexe $V$ peut-être plongé conformément dans un espace-temps conformément plat plus grand, appelé espace enveloppant de $V$, qui contient toutes les extensions de Cauchy conformément plates de $V$, en particulier son extension $\mathcal{C}_0$-maximale. Il en découle une nouvelle preuve de l’existence et de l’unicité de l’extension $\mathcal{C}_0$-maximale d’un espace-temps conformément plat globalement hyperbolique. En outre, cette approche nous permet de montrer que les extensions $\mathcal{C}_0$-maximales respectent l’inclusion.
Révisé le :
Accepté le :
Première publication :
Keywords: spacetimes, global hyperbolicity, conformally flat, Cauchy extensions, maximality, enveloping space
Mots-clés : espace-temps, hyperbolicité globale, conformément plat, extensions de Cauchy, maximalité, espace enveloppant
Smaï, Rym  1
@unpublished{AIF_0__0_0_A46_0,
author = {Sma{\"\i}, Rym},
title = {Enveloping space of globally hyperbolic conformally flat spacetimes},
journal = {Annales de l'Institut Fourier},
year = {2026},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
doi = {10.5802/aif.3758},
language = {en},
note = {Online first},
}
Smaï, Rym. Enveloping space of globally hyperbolic conformally flat spacetimes. Annales de l'Institut Fourier, Online first, 41 p.
[1] Cosmological time versus CMC time in spacetimes of constant curvature, Asian J. Math., Volume 16 (2012) no. 1, pp. 37-88 | DOI | Zbl | MR
[2] On smooth Cauchy hypersurfaces and Geroch’s splitting theorem, Commun. Math. Phys., Volume 243 (2003), pp. 461-470 | DOI | MR | Zbl
[3] Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’, Class. Quant. Grav., Volume 24 (2007) no. 3, pp. 745-749 | Zbl | DOI | MR
[4] Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys., Volume 14 (1969), pp. 329-335 | MR | DOI | Zbl
[5] Une preuve du théorème de Liouville en géométrie conforme dans le cas analytique, Enseign. Math. (2), Volume 49 (2003) no. 1-2, pp. 95-100 | MR | Zbl
[6] Lorentzian Kleinian groups, Comment. Math. Helv., Volume 80 (2005) no. 4, pp. 883-910 | DOI | Zbl | MR
[7] The domain of dependence, J. Math. Phys., Volume 11 (1970), pp. 437-449 | DOI | Zbl | MR
[8] Geometric structures on manifolds (2021) (unpublished manuscript, online at https://www.terpconnect.umd.edu/~wmg/gstom.pdf) | MR
[9] Semi-Riemannian geometry with applications to relativity, Academic Press Inc., 1983 | MR | Zbl
[10] Espace-temps globalement hyperboliques conformément plats, Ph. D. Thesis, Université d’Avignon (France) (2012)
[11] Maximal extension of conformally flat globally hyperbolic spacetimes, Geom. Dedicata, Volume 174 (2013), pp. 235-260 | DOI | Zbl | MR
[12] Anosov representations as holonomies of globally hyperbolic spatially compact conformally flat spacetimes, Geom. Dedicata, Volume 216 (2022) no. 4, 45, 36 pages | Zbl | MR
Cité par Sources :



