Enveloping space of globally hyperbolic conformally flat spacetimes
[Espace enveloppant des espace-temps globalement hyperboliques conformément plats]
Annales de l'Institut Fourier, Online first, 41 p.

We prove that any simply-connected globally hyperbolic conformally flat spacetime $V$ can be conformally embedded in a bigger conformally flat spacetime, called enveloping space of $V$, containing all the conformally flat Cauchy extensions of $V$, in particular its $\mathcal{C}_0$-maximal extension. As a result, we establish a new proof of the existence and the uniqueness of the $\mathcal{C}_0$-maximal extension of a globally hyperbolic conformally flat spacetime. Furthermore, this approach allows us to prove that $\mathcal{C}_0$-maximal extensions respect inclusion.

Nous prouvons que tout espace-temps conformément plat globalement hyperbolique simplement connexe $V$ peut-être plongé conformément dans un espace-temps conformément plat plus grand, appelé espace enveloppant de $V$, qui contient toutes les extensions de Cauchy conformément plates de $V$, en particulier son extension $\mathcal{C}_0$-maximale. Il en découle une nouvelle preuve de l’existence et de l’unicité de l’extension $\mathcal{C}_0$-maximale d’un espace-temps conformément plat globalement hyperbolique. En outre, cette approche nous permet de montrer que les extensions $\mathcal{C}_0$-maximales respectent l’inclusion.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3758
Classification : 53C50
Keywords: spacetimes, global hyperbolicity, conformally flat, Cauchy extensions, maximality, enveloping space
Mots-clés : espace-temps, hyperbolicité globale, conformément plat, extensions de Cauchy, maximalité, espace enveloppant

Smaï, Rym  1

1 IRMA, 7 Rue René Descartes, 67000 Strasbourg (France)
@unpublished{AIF_0__0_0_A46_0,
     author = {Sma{\"\i}, Rym},
     title = {Enveloping space of globally hyperbolic conformally flat spacetimes},
     journal = {Annales de l'Institut Fourier},
     year = {2026},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     doi = {10.5802/aif.3758},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Smaï, Rym
TI  - Enveloping space of globally hyperbolic conformally flat spacetimes
JO  - Annales de l'Institut Fourier
PY  - 2026
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3758
LA  - en
ID  - AIF_0__0_0_A46_0
ER  - 
%0 Unpublished Work
%A Smaï, Rym
%T Enveloping space of globally hyperbolic conformally flat spacetimes
%J Annales de l'Institut Fourier
%D 2026
%V 0
%N 0
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3758
%G en
%F AIF_0__0_0_A46_0
Smaï, Rym. Enveloping space of globally hyperbolic conformally flat spacetimes. Annales de l'Institut Fourier, Online first, 41 p.

[1] Andersson, Lars; Barbot, Thierry; Béguin, François; Zeghib, Abdelghani Cosmological time versus CMC time in spacetimes of constant curvature, Asian J. Math., Volume 16 (2012) no. 1, pp. 37-88 | DOI | Zbl | MR

[2] Bernal, Antonio N.; Sánchez, Miguel On smooth Cauchy hypersurfaces and Geroch’s splitting theorem, Commun. Math. Phys., Volume 243 (2003), pp. 461-470 | DOI | MR | Zbl

[3] Bernal, Antonio N.; Sánchez, Miguel Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’, Class. Quant. Grav., Volume 24 (2007) no. 3, pp. 745-749 | Zbl | DOI | MR

[4] Choquet-Bruhat, Yvonne; Geroch, Robert Paul Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys., Volume 14 (1969), pp. 329-335 | MR | DOI | Zbl

[5] Frances, Charles Une preuve du théorème de Liouville en géométrie conforme dans le cas analytique, Enseign. Math. (2), Volume 49 (2003) no. 1-2, pp. 95-100 | MR | Zbl

[6] Frances, Charles Lorentzian Kleinian groups, Comment. Math. Helv., Volume 80 (2005) no. 4, pp. 883-910 | DOI | Zbl | MR

[7] Geroch, Robert Paul The domain of dependence, J. Math. Phys., Volume 11 (1970), pp. 437-449 | DOI | Zbl | MR

[8] Goldman, William Geometric structures on manifolds (2021) (unpublished manuscript, online at https://www.terpconnect.umd.edu/~wmg/gstom.pdf) | MR

[9] O’neill, Barrett Semi-Riemannian geometry with applications to relativity, Academic Press Inc., 1983 | MR | Zbl

[10] Salvemini, Clara Rossi Espace-temps globalement hyperboliques conformément plats, Ph. D. Thesis, Université d’Avignon (France) (2012)

[11] Salvemini, Clara Rossi Maximal extension of conformally flat globally hyperbolic spacetimes, Geom. Dedicata, Volume 174 (2013), pp. 235-260 | DOI | Zbl | MR

[12] Smaï, Rym Anosov representations as holonomies of globally hyperbolic spatially compact conformally flat spacetimes, Geom. Dedicata, Volume 216 (2022) no. 4, 45, 36 pages | Zbl | MR

Cité par Sources :