

ANNALES DE L'INSTITUT FOURIER

Rym SMAÏ

**Enveloping space of globally hyperbolic conformally flat
spacetimes**

Article à paraître, mis en ligne le 26 janvier 2026, 41 p.

Article mis à disposition par son auteur selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION-NoDERIVS (CC-BY-ND) 3.0
 <http://creativecommons.org/licenses/by-nd/3.0/>

Les *Annales de l'Institut Fourier* sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org e-ISSN : 1777-5310

ENVELOPING SPACE OF GLOBALLY HYPERBOLIC CONFORMALLY FLAT SPACETIMES

by Rym SMAÏ (*)

ABSTRACT. — We prove that any simply-connected globally hyperbolic conformally flat spacetime V can be conformally embedded in a bigger conformally flat spacetime, called *enveloping space* of V , containing all the conformally flat Cauchy extensions of V , in particular its \mathcal{C}_0 -maximal extension. As a result, we establish a new proof of the existence and the uniqueness of the \mathcal{C}_0 -maximal extension of a globally hyperbolic conformally flat spacetime. Furthermore, this approach allows us to prove that \mathcal{C}_0 -maximal extensions respect inclusion.

RÉSUMÉ. — Nous prouvons que tout espace-temps conformément plat globalement hyperbolique simplement connexe V peut-être plongé conformément dans un espace-temps conformément plat plus grand, appelé *espace enveloppant* de V , qui contient toutes les extensions de Cauchy conformément plates de V , en particulier son extension \mathcal{C}_0 -maximale. Il en découle une nouvelle preuve de l'existence et de l'unicité de l'extension \mathcal{C}_0 -maximale d'un espace-temps conformément plat globalement hyperbolique. En outre, cette approche nous permet de montrer que les extensions \mathcal{C}_0 -maximales respectent l'inclusion.

1. Introduction

The notion of maximal extension of a globally hyperbolic spacetime arises from the resolution of Einstein equations in general relativity. This physical theory suggests that our universe is modeled by a Lorentzian manifold (M, g) of dimension 4 where the metric g satisfies some PDEs, the so-called *Einstein equations*. One approach to solving them is to require that M is homeomorphic to $S \times \mathbb{R}$ where S is a Riemannian manifold. This allows the

Keywords: spacetimes, global hyperbolicity, conformally flat, Cauchy extensions, maximality, enveloping space.

2020 Mathematics Subject Classification: 53C50.

(*) This work of the Interdisciplinary Thematic Institute IRMIA++, as part of the ITI 2021–2028 program of the University of Strasbourg, CNRS and Inserm, was supported by IdEx Unistra (ANR-10-IDEX-0002), and by SFRI-STRATUS project (ANR-20-SFRI-0012) under the framework of the French Investments for the Future Program.

definition of a Cauchy problem where the initial data is the Riemannian manifold (S, h) equipped with a $(2, 0)$ -tensor Π . A solution is a Lorentzian metric g on $S \times \mathbb{R}$ such that the restriction of g to $S \times \{0\}$ is h and Π is the shape operator of this hypersurface. It turns out that a necessary condition to have such a solution is that h and Π satisfy *the constraint equations*. Conversely, Choquet-Bruhat and Geroch [4, Section 2] proved that when the constraint equations are satisfied, a local solution exists. Two natural questions arise: is it possible to extend this solution to a maximal one? If yes, is it unique up to isometry? Choquet-Bruhat and Geroch answered positively to both questions (see [4, Theorem 3]).

The solutions of the Cauchy problem for Einstein equations turn out to be *globally hyperbolic* (abbrev. GH; see Definition 2.2). More generally, Geroch [7] proved that any GH spacetime admits an embedded Riemannian hypersurface which intersects every inextensible causal curve exactly once, called *Cauchy hypersurface*. It turns out that all smooth Cauchy hypersurfaces of a GH spacetime are diffeomorphic to one another.

There is a natural partial ordering on GH spacetimes: given two GH spacetimes, M and N , we say that N is a Cauchy extension of M if there exists an isometric embedding from M to N sending every Cauchy hypersurface of M on a Cauchy hypersurface of N . Such an embedding is called *an isometric Cauchy embedding*. In this general setting, we can ask again the questions of the existence and the uniqueness, up to isometry, of a maximal extension. The answer to both questions is yes within a *rigid category* of spacetimes.⁽¹⁾ Actually, the spacetimes which are solution of a Cauchy problem for Einstein equations constitute a rigid category and it turns out that the arguments of Choquet-Bruhat and Geroch could be adapted to any other rigid category.

In this paper, we are interested in the notion of maximality in the setting of *conformally flat* spacetimes of dimension $n \geq 3$. The morphisms preserving these structures are the *conformal* diffeomorphisms. In [11, Section 3.1], C. Rossi adapted to this setting the definition of the ordering relation on GH spacetimes by considering conformal Cauchy embeddings instead of isometric Cauchy embeddings. A GH conformally flat spacetime M is then said to be \mathcal{C}_0 -maximal if any conformal Cauchy embedding from M to any GH conformally flat spacetime is surjective. C. Rossi proved that any GH conformally flat spacetime admits a \mathcal{C}_0 -maximal extension, unique up to conformal diffeomorphism (see [11, Sections 3.2 & 3.3]). Her proof is

⁽¹⁾ See e.g. [11, Definitions 2 and 4]. Spacetimes of constant curvature are examples of rigid categories.

mainly based on Zorn lemma and so does not give any description of the \mathcal{C}_0 -maximal extension. In this paper, we propose a new approach which allows us to give a constructive proof of the existence and the uniqueness of the \mathcal{C}_0 -maximal extension. Indeed, given a simply-connected GH conformally flat spacetime M , we construct a bigger conformally flat spacetime $E(M)$ in which M and all its conformally flat Cauchy extensions embeds conformally. The \mathcal{C}_0 -maximal extension of M turns out to be the Cauchy development of a Cauchy hypersurface of M in $E(M)$. The images in $E(M)$ of the previous embeddings satisfy the nice property of being *causally convex*. A subset U of a spacetime is causally convex if any causal curve joining two points of U is contained in U . While convexity is a metric notion, causal convexity is a conformal notion. Let us add that causal convexity is a strong property in a GH spacetime: it is a classical fact that any causally convex open subset of a GH spacetime is GH.

THEOREM 1.1. — *Let M be a simply-connected globally hyperbolic conformally flat spacetime. There exists a conformally flat spacetime $E(M)$ with the following properties:*

- (1) *$E(M)$ fibers trivially over a conformally flat Riemannian manifold \mathcal{B} diffeomorphic to any Cauchy hypersurface of M ;*
- (2) *M embeds conformally in $E(M)$ as a causally convex open subset;*
- (3) *all the conformally flat Cauchy extensions of M embed conformally in $E(M)$ as causally convex open subsets. In particular, the \mathcal{C}_0 -maximal extension of M is the Cauchy development of a Cauchy hypersurface of M in $E(M)$.*

Such a spacetime $E(M)$ is called an enveloping space of M .

This result still holds for the larger class of *developable* GH conformally flat spacetimes (see Definition 4.3). In Section 4.3, we describe causally convex open subsets of an enveloping space $E(M)$ then, in Section 7, we characterize those which are \mathcal{C}_0 -maximal.

A consequence of Theorem 1.1 is the following result.

COROLLARY 1.2. — *Any globally hyperbolic conformally flat spacetime admits a \mathcal{C}_0 -maximal extension, unique up to conformal diffeomorphism.*

Now we ask the following question. Let V be a globally hyperbolic conformally flat spacetime and let U be a causally convex open subset of V . Does the \mathcal{C}_0 -maximal extension of U embed conformally in the \mathcal{C}_0 -maximal extension of V ?

The \mathcal{C}_0 -maximal extensions of U and V are *a priori* abstract objects which depend on the Cauchy hypersurfaces of U and V , respectively. These last

ones are completely independent so the question above is not tautological. We prove in Section 6 that the answer is yes, in other words, that \mathcal{C}_0 -maximal extensions preserve inclusion.

THEOREM 1.3. — *Let V be a globally hyperbolic conformally flat spacetime and let U be a causally convex open subset of V . Then, the \mathcal{C}_0 -maximal extension of U is conformally equivalent to a causally convex open subset of the \mathcal{C}_0 -maximal extension of V .*

Overview of the paper

In Section 2, we introduce the preliminary material on causality of spacetimes. We focus in particular on *globally hyperbolic* spacetimes and we recall some of their main properties. Section 3 deals with the model space of conformally flat Lorentzian structure, the so-called *Einstein* universe. After a quick description of its geometry, we characterize *causally convex open subsets* of its universal cover (see Sections 3.5 and 3.6). We devote Section 4 to the proof of Theorem 1.1: we construct an enveloping space (see Section 4.2) and we describe its causally convex globally hyperbolic open subsets (see Section 4.3). In Section 5, we propose a new proof of the existence and the uniqueness of the maximal extension of a globally hyperbolic conformally flat spacetime, using the notion of enveloping space. Section 6 is devoted to the proof of Theorem 1.3. Lastly, we establish a link between the notion of \mathcal{C}_0 -maximality and the notion of *eikonal functions* in Section 7.

Acknowledgments

I would like to thank my PhD advisor Thierry Barbot for all the discussions that make this work possible, for his remarks and his valuable help. I am also grateful to Charles Frances for his interest in my work and his relevant comments to improve a first version of this paper.

2. Globally hyperbolic spacetimes

2.1. Preliminaries on spacetimes

The aim of this preliminary section is to introduce the concept of *causality* in a Lorentzian manifold and briefly recall some basic causal notions as

causal curves, future and past of points, lightcones, achronal and acausal subsets, etc.

Throughout this paper, we denote by (p, q) the signature of a non-degenerate quadratic form Q where p and q are respectively the number of negative and positive coefficients in the polar decomposition of Q .

Spacetimes. A *Lorentzian metric* on a manifold of dimension n is a non-degenerate symmetric 2-tensor g of signature $(1, n - 1)$. A manifold equipped with a Lorentzian metric is called *Lorentzian*.

In a Lorentzian manifold (M, g) , we say that a non-zero tangent vector v is *timelike*, *lightlike*, *spacelike* if $g(v, v)$ is respectively negative, zero, positive. The set of timelike vectors is the union of two convex open cones. When it is possible to make a continuous choice of a connected component in each tangent space, the manifold M is said *time-orientable*. The timelike vectors in the chosen component are said *future-directed* while those in the other component are said *past-directed*. A *spacetime* is an oriented and time-oriented Lorentzian manifold.

Future, past. In a spacetime M , a differential curve is *timelike*, *lightlike*, *spacelike* if its tangent vectors are timelike, lightlike, spacelike. It is *causal* if its tangent vectors are either timelike or lightlike.

Given a point p in M , the *future* (resp. *chronological future*) of p , denoted $J^+(p)$ (resp. $I^+(p)$), is the set of endpoints of future-directed causal (resp. timelike) curves starting from p . More generally, the future (resp. chronological future) of a subset A of M , denoted $J^+(A)$ (resp. $I^+(A)$), is the union of $J^+(a)$ (resp. $I^+(a)$) where $a \in A$.

An open subset U of M is a spacetime and the intrinsic causality relations of U imply the corresponding ones in M . We denote $J^+(A, U)$ (resp. $I^+(A, U)$) the future (resp. chronological future) in the manifold U of a set $A \subset U$. Then, $I^+(A, U) \subset I^+(A) \cap U$.

Dual to the preceding definitions are corresponding *past* versions. In general, *past* definitions and proofs follow from future versions (and vice versa) by reversing time-orientation.

Diamonds. We call *diamond* of M any intersection $J^-(p) \cap J^+(q)$, where $p, q \in M$ such that $p \in J^+(q)$. We denote it $J(p, q)$. Given two points $p, q \in M$ such that $p \in I^+(q)$, the interior of the diamond $J(p, q)$ is the intersection $I^-(p) \cap I^+(q)$ and is denoted $I(p, q)$ (see [9, Lemma 6, p. 404]).

Achronal, acausal subsets. A subset A of a spacetime M is called *achronal* (resp. *acausal*) if no timelike (resp. causal) curve intersects A more than once.

Causal convexity. In Riemannian geometry, it is often useful to consider open neighborhoods which are *geodesically convex*. In Lorentzian geometry, there is, in addition, a *causal convexity* notion. A subset U of M is said *causally convex* if for every $p, q \in U$, any causal curve of M joining p to q is contained in U . Equivalently, if every diamond $J(p, q)$ of M with $p, q \in U$ is contained in U . It is easy to check that the intersection of two causally convex subsets is causally convex.

Cauchy developments. Let A be an achronal subset of M . The *future* (resp. *past*) *Cauchy development* of A , denoted $\mathcal{C}^+(A)$ (resp. $\mathcal{C}^-(A)$), is the set of points p of M such that every past-inextensible (resp. future-inextensible) causal curve through p meets A . The *Cauchy development* of A is the union of $\mathcal{C}^+(A)$ and $\mathcal{C}^-(A)$, denoted $\mathcal{C}(A)$.

2.2. Global hyperbolicity

DEFINITION 2.1. — A spacetime M is said *strongly causal* if for every point $p \in M$ and every neighborhood U of p , there exists a neighborhood V of p contained in U , which is causally convex in M .

DEFINITION 2.2. — A spacetime M is said *globally hyperbolic* (abbrev. *GH*) if the two following conditions hold:

- (1) M is strongly causal;
- (2) all diamonds of M are compact.

It was proved by Sanchez in [3] that the first condition can be weakened to M is causal, that is M contains no causal loop.

A classical result of Geroch [7], later improved by Bernal and Sanchez [2], gives a characterization of global hyperbolicity involving the notion of *Cauchy hypersurface*.

DEFINITION 2.3. — A topological (resp. smooth) Cauchy hypersurface is an achronal topological hypersurface (resp. an embedded Riemannian hypersurface) that is met exactly once by every inextensible causal curve of M .

THEOREM 2.4 ([7]). — A spacetime M is globally hyperbolic if and only if it contains a topological Cauchy hypersurface.

Bernal and Sanchez [2] improved this result by proving the existence of a *smooth* Cauchy hypersurface.

Topological (resp. smooth) Cauchy hypersurfaces of a globally hyperbolic spacetime are homeomorphic (resp. diffeomorphic). Therefore, one can set the following definition.

DEFINITION 2.5. — *A globally hyperbolic spacetime is said Cauchy-compact (or spatially compact) if it admits a compact Cauchy hypersurface.*

A remarkable property of globally hyperbolic spacetimes is that causal convexity implies global hyperbolicity.

PROPOSITION 2.6. — *Let M be a globally hyperbolic spacetime. Then, any causally convex open subset of M is globally hyperbolic.*

Proof. — Since M is globally hyperbolic, there is no causal loop in U . Since U is causally convex, the diamonds of U are exactly the diamonds of M contained in U . Thus, they are compact. \square

2.3. Shadows

In this section, we show that the causal structure of globally hyperbolic spacetimes is encoded by compact subsets of a Cauchy hypersurface, called *shadows*.⁽²⁾

Let M be a globally hyperbolic spacetime and let $S \subset M$ be a Riemannian Cauchy hypersurface.

DEFINITION 2.7. — *Let $p \in M$. We call shadow of p on S , denoted by $O(p, S)$, the set of points in S which are causally related to p . When there is no confusion about the Cauchy hypersurface S , we will simply write $O(p)$ instead of $O(p, S)$.*

If $p \in I^\pm(S)$, then $O(p, S) = J^\mp(p) \cap S$; if $p \in S$, $O(p, S)$ is reduced to $\{p\}$. Thus, by [9, Lemma 40, p. 423]), shadows are compact.

The main interest of the notion of *shadows* is given by the following proposition proved by C. Rossi in her thesis (see [10, Proposition 2.6, Chapter 4]).

PROPOSITION 2.8. — *Suppose S is not compact. Then, two points p and q of M in the chronological future of S coincide if and only if their shadows on S are equal.*

⁽²⁾This terminology has been introduced by C. Rossi in her thesis [10, Chapitre 4].

By Proposition 2.8, the shadows on S characterize completely the points of the globally hyperbolic spacetime M . This allows to reduce, in some situations, the study of the spacetime to the study of compact subsets of a Riemannian manifold.

3. Geometry of Einstein universe

In this section, we introduce the model space of conformally flat Lorentzian structures, the so-called *Einstein universe*, and we describe its causal structure.

3.1. The Klein model

Let $\mathbb{R}^{2,n}$ be the vector space \mathbb{R}^{n+2} of dimension $(n+2)$ equipped with the nondegenerate quadratic form $q_{2,n}$ of signature $(2,n)$ given by

$$q_{2,n}(u, v, x_1, \dots, x_n) = -u^2 - v^2 + x_1^2 + \dots + x_n^2$$

in the coordinate system (u, v, x_1, \dots, x_n) associated to the canonical basis of \mathbb{R}^{n+2} .

DEFINITION 3.1. — *The Einstein universe of dimension n , denoted by $\text{Ein}_{1,n-1}$, is the space of isotropic lines of $\mathbb{R}^{2,n}$ with respect to the quadratic form $q_{2,n}$, namely*

$$\text{Ein}_{1,n-1} = \{[x] \in \mathbb{P}(\mathbb{R}^{2,n}) : q_{2,n}(x) = 0\}.$$

In practice, it is more convenient to work with the double cover of the Einstein universe, denoted by $\text{Ein}_{1,n-1}$:

$$\text{Ein}_{1,n-1} = \{[x] \in \mathbb{S}(\mathbb{R}^{2,n}) : q_{2,n}(x) = 0\}$$

where $\mathbb{S}(\mathbb{R}^{2,n})$ is the sphere of rays, namely the quotient of $\mathbb{R}^{2,n} \setminus \{0\}$ by positive homotheties.

3.2. Spatio-temporal decomposition of Einstein universe

The choice of a timelike plane of $\mathbb{R}^{2,n}$, i.e. a plane on which the restriction of $q_{2,n}$ is negative definite, defines a spatio-temporal decomposition of Einstein universe.

LEMMA 3.2. — Any timelike plane $P \subset \mathbb{R}^{2,n}$ defines a diffeomorphism between $\mathbb{S}^{n-1} \times \mathbb{S}^1$ and $\text{Ein}_{1,n-1}$.

Proof. — Consider the orthogonal splitting $\mathbb{R}^{2,n} = P^\perp \oplus P$ and call q_{P^\perp} and q_P the positive definite quadratic form induced by $\pm q_{2,n}$ on P^\perp and P respectively. The restriction of the canonical projection $\mathbb{R}^{2,n} \setminus \{0\}$ on $\mathbb{S}(\mathbb{R}^{2,n})$ to the set of points $(x, y) \in P^\perp \oplus P$ such that $q_{P^\perp}(x) = q_P(y) = 1$ defines a map from $\mathbb{S}^{n-1} \times \mathbb{S}^1$ to $\text{Ein}_{1,n-1}$. It is easy to check that this map is a diffeomorphism. \square

For every timelike plane $P \subset \mathbb{R}^{2,n}$, the quadratic form $q_{2,n}$ induces a Lorentzian metric g_P on $\mathbb{S}^{n-1} \times \mathbb{S}^1$ given by

$$g_P = d\sigma^2(P) - d\theta^2(P)$$

where $d\sigma^2(P)$ is the round metric on $\mathbb{S}^{n-1} \subset (P^\perp, q_{P^\perp})$ induced by q_{P^\perp} and $d\theta^2(P)$ is the round metric on $\mathbb{S}^1 \subset (P, q_P)$ induced by q_P .

An easy computation shows that if $P' \subset \mathbb{R}^{2,n}$ is another timelike plane, the Lorentzian metric $g_{P'}$ is conformally equivalent to g_P , i.e. q_P and $g'_{P'}$ are proportional by a positive smooth function on $\mathbb{S}^{n-1} \times \mathbb{S}^1$. As a result, Einstein universe is naturally equipped with a conformal class of Lorentzian metrics. This Lorentzian conformal structure induces causality on Einstein universe. Indeed, changing the metric in the conformal class consists in multiplying by a positive function and so does not change the sign of the norm of a tangent vector. The causal structure of Einstein universe is trivial: any point is causally related to any other one (see e.g. [10, Corollary 2.10, Chapter 2]).

Let us point out that in general geodesics are not well-defined in a conformal spacetime. Indeed, a computation of the Levi-Civita connection shows that geodesics are not preserved by conformal changes of metrics. Nevertheless, lightlike geodesics are preserved as *non-parametrized* curves (see e.g. [5, Théorème 3]).

3.3. Causal structure of the universal cover

Let $\widetilde{\text{Ein}}_{1,n-1}$ be the universal cover of $\text{Ein}_{1,n-1}$. When $n \geq 3$, every diffeomorphism between $\text{Ein}_{1,n-1}$ and $\mathbb{S}^{n-1} \times \mathbb{S}^1$ lifts to a diffeomorphism between $\widetilde{\text{Ein}}_{1,n-1}$ and $\mathbb{S}^{n-1} \times \mathbb{R}$. The pull-back by the projection $\mathbb{S}^{n-1} \times \mathbb{R} \rightarrow \mathbb{S}^{n-1} \times \mathbb{S}^1$ of the conformal class $[d\sigma^2 - d\theta^2]$ on $\mathbb{S}^{n-1} \times \mathbb{S}^1$ defined previously is the conformal class of the Lorentzian metric $d\sigma^2 - dt^2$ where dt^2 is the usual metric on \mathbb{R} . This induces a natural conformally flat Lorentzian structure on $\widetilde{\text{Ein}}_{1,n-1}$.

DEFINITION 3.3. — We call *spatio-temporal decomposition* of $\widetilde{\text{Ein}}_{1,n-1}$ any conformal diffeomorphism between $\widetilde{\text{Ein}}_{1,n-1}$ and $\mathbb{S}^{n-1} \times \mathbb{R}$.

In what follows, we fix a spatio-temporal decomposition and we identify $\widetilde{\text{Ein}}_{1,n-1}$ to $\mathbb{S}^{n-1} \times \mathbb{R}$.

The fundamental group of $\text{Ein}_{1,n-1}$ is isomorphic to \mathbb{Z} , generated by the transformation $\delta: \widetilde{\text{Ein}}_{1,n-1} \rightarrow \widetilde{\text{Ein}}_{1,n-1}$ defined by $\delta(x, t) = (x, t + 2\pi)$. That of $\text{Ein}_{1,n-1}$ is generated by the transformation $\sigma: \widetilde{\text{Ein}}_{1,n-1} \rightarrow \widetilde{\text{Ein}}_{1,n-1}$ such that $\sigma^2 = \delta$, i.e. the map defined by $\sigma(x, t) = (-x, t + \pi)$.

DEFINITION 3.4. — Two points p and q of $\widetilde{\text{Ein}}_{1,n-1}$ are said to be *conjugate* if one is the image under σ of the other.

While the causal structure of $\text{Ein}_{1,n-1}$ is trivial, the causal structure of $\widetilde{\text{Ein}}_{1,n-1}$ is rich. We give a brief description below. We direct to [10, Chapter 2] for more details.

Lightlike geodesics of $\widetilde{\text{Ein}}_{1,n-1}$ are the curves which can be written, up to reparametrization, as $(x(t), t)$ where $x: I \rightarrow \mathbb{S}^{n-1}$ is a geodesic of \mathbb{S}^{n-1} defined on an interval I of \mathbb{R} . The inextensible ones are those for which x is defined on \mathbb{R} .

It turns out that the photons going through a point (x_0, t_0) have common intersections at the points $\sigma^k(x_0, t_0)$, for $k \in \mathbb{Z}$; and are pairwise disjoint outside these points. The lightcone of a point (x_0, t_0) is the set of points (x, t) such that $d(x, x_0) = |t - t_0|$ where d is the distance on the sphere \mathbb{S}^{n-1} induced by the round metric. It disconnects $\widetilde{\text{Ein}}_{1,n-1}$ in three connected components:

- The *chronological future* of (x_0, t_0) : this is the set of points (x, t) of $\mathbb{S}^{n-1} \times \mathbb{R}$ such that $d(x, x_0) < t - t_0$.
- The *chronological past* of (x_0, t_0) : this is the set of points (x, t) of $\mathbb{S}^{n-1} \times \mathbb{R}$ such that $d(x, x_0) < t_0 - t$.
- The set of points non-causally related to (x_0, t_0) , i.e. the set of points (x, t) of $\mathbb{S}^{n-1} \times \mathbb{R}$ such that $d(x, x_0) > |t - t_0|$. This is exactly the interior of the diamond of vertices $\sigma(x_0, t_0)$ and $\sigma^{-1}(x_0, t_0)$. It is conformally diffeomorphic to Minkowski spacetime (see e.g. [12, Lemma 2.38 and Corollary 2.43]) and is called *affine chart*. We denote it $\text{Mink}_0(x_0, t_0)$.

There are two other affine charts associated to the point (x_0, t_0) , namely:

- the set of points non-causally related to $\sigma(x_0, t_0)$, contained in the chronological future of (x_0, t_0) , denoted $\text{Mink}_+(x_0, t_0)$;
- the set of points non-causally related to $\sigma^{-1}(x_0, t_0)$, contained in the chronological past of (x_0, t_0) , denoted $\text{Mink}_-(x_0, t_0)$.

The universal cover $\widetilde{\text{Ein}}_{1,n-1}$ is globally hyperbolic: any sphere $\mathbb{S}^{n-1} \times \{t\}$, where $t \in \mathbb{R}$, is a Cauchy hypersurface.

3.4. Conformal group

The subgroup $O(2, n) \subset \text{Gl}_{n+2}(\mathbb{R})$ preserving $q_{2,n}$, acts conformally on $\text{Ein}_{1,n-1}$. When $n \geq 3$, the conformal group of $\text{Ein}_{1,n-1}$ is exactly $O(2, n)$. This is a consequence of the following result, which is an extension to Einstein universe of a classical theorem of Liouville in Euclidean conformal geometry (see e.g. [5]).

THEOREM 3.5. — *Let $n \geq 3$. Any conformal transformation between two open subsets of $\text{Ein}_{1,n-1}$ is the restriction of an element of $O(2, n)$.*

It is a classical fact that every conformal diffeomorphism of $\text{Ein}_{1,n-1}$ lifts to a conformal diffeomorphism of $\widetilde{\text{Ein}}_{1,n-1}$. Conversely, by Theorem 3.5, every conformal transformation of $\widetilde{\text{Ein}}_{1,n-1}$ defines a unique conformal transformation of the quotient space $\text{Ein}_{1,n-1} = \widetilde{\text{Ein}}_{1,n-1}/\langle \delta \rangle$.

Let $\text{Conf}(\widetilde{\text{Ein}}_{1,n-1})$ denote the group of conformal transformations of $\widetilde{\text{Ein}}_{1,n-1}$. Let $j: \text{Conf}(\widetilde{\text{Ein}}_{1,n-1}) \rightarrow O(2, n)$ be the natural projection. This is a surjective group morphism whose kernel is generated by δ .

3.5. Causally convex open subsets of Einstein universe

In this section, we characterize causally convex open subsets of $\widetilde{\text{Ein}}_{1,n-1}$ in a spatio-temporal decomposition $\mathbb{S}^{n-1} \times \mathbb{R}$. We denote by d the distance on \mathbb{S}^{n-1} induced by the round metric.

PROPOSITION 3.6. — *Let Ω be a causally convex open subset of $\widetilde{\text{Ein}}_{1,n-1}$. Then, there exist two 1-Lipschitz functions f^+ and f^- from an open subset U of \mathbb{S}^{n-1} to \mathbb{R} such that the following hold:*

- $f^- < f^+$ on U ;
- the extensions of f^+ and f^- to ∂U coincide;
- Ω is the set of points (x, t) of $\widetilde{\text{Ein}}_{1,n-1}$ such that $f^-(x) < t < f^+(x)$.

Remark 3.7. — The functions f^\pm either take value in \mathbb{R} or $f^\pm \equiv \pm\infty$. In this latter case, $U = \mathbb{S}^{n-1}$.

The proof of Proposition 3.6 uses the following lemma.

LEMMA 3.8. — For every points p and q in the closure of Ω such that $p \in I^+(q)$, the intersection $I^-(p) \cap I^+(q)$ is contained in Ω .

Proof. — Let $p, q \in \bar{\Omega}$ such that $p \in I^+(q)$. There exist two sequences $\{p_i\}$ and $\{q_i\}$ of elements of Ω such that $\lim p_i = p$ and $\lim q_i = q$. Let $r \in I(p, q)$. Then, $I^+(r)$ is an open neighborhood of p and $I^-(r)$ is an open neighborhood of q . As a result, there exists an integer i_0 such that $p_{i_0} \in I^+(r)$ and $q_{i_0} \in I^-(r)$. It follows that $r \in I(p_{i_0}, q_{i_0}) \subset \Omega$. \square

Proof of Proposition 3.6. — Let U be the projection of Ω on the sphere \mathbb{S}^{n-1} . Since Ω is causally convex, the intersection of Ω with any timelike line $\{x\} \times \mathbb{R}$, where $x \in U$, is connected, i.e. it is a segment $\{x\} \times]f^-(x), f^+(x)[$. This defines two functions f^+ and f^- from U to $\bar{\mathbb{R}}$ such that Ω is the set of points (x, t) such that $f^-(x) < t < f^+(x)$.

FACT. — If there exists $x \in U$ such that $f^+(x) = +\infty$ then $f^+ \equiv +\infty$.

This is equivalent to proving that Ω is future-complete, i.e. $I^+(\Omega) \subset \Omega$, as soon as it contains a timelike half-line $\alpha = \{x\} \times [t, +\infty[$. Let $p \in \Omega$ and let $q \in I^+(p)$. Since α is future-inextensible, it intersects $I^+(q)$. Let q' be a point in this intersection. Then, $q \in J(q', p')$ where $p' \in \Omega \cap I^-(p)$. Thus, $q \in \Omega$.

FACT. — If f^+ is finite, it is 1-Lipschitz.

This is equivalent to proving that the graph of f^+ is achronal. Suppose there exist two distinct points p, q in the graph of f^+ such that $p \in I^+(q)$. Since $p \in \partial\Omega$, we have $I^+(q) \cap \Omega \neq \emptyset$. Then, $q \in I(p', q')$ where $p' \in I^+(q) \cap \Omega$ and $q' \in \Omega \cap I^-(q)$. Hence, $q \in \Omega$. Contradiction.

FACT. — If f^+ and f^- are finite and ∂U is non-empty, then the extensions of f^+ and f^- to ∂U are equal.

Let $\overline{f^+}$ (resp. $\overline{f^-}$) be the extension of f^+ (resp. f^-) to \bar{U} . Suppose there exists $x \in U$ such that $\overline{f^-}(x) < \overline{f^+}(x)$. Then, the timelike segment $\{x\} \times]\overline{f^-}(x), \overline{f^+}(x)[$ is contained in the boundary of Ω . This contradicts Lemma 3.8. \square

Conversely, we have the following result.

PROPOSITION 3.9. — Let $f^+, f^-: U \subset \mathbb{S}^{n-1} \rightarrow \bar{\mathbb{R}}$ be two 1-Lipschitz functions defined on an open subset U of \mathbb{S}^{n-1} such that:

- $f^- < f^+$ on U ;
- the extensions of f^+ and f^- to ∂U coincide.

Then, the set of points (x, t) of $\widetilde{\text{Ein}}_{1,n-1}$ such that $f^-(x) < t < f^+(x)$, named Ω , is causally convex in $\widetilde{\text{Ein}}_{1,n-1}$.

The proof of Proposition 3.9 uses the following lemma.

LEMMA 3.10. — Let $\overline{f^+}$ be the extension of f^+ to \overline{U} . Then, for every point p in the graph of $\overline{f^+}$, the future $J^+(p)$ of p is disjoint from Ω .

Proof. — Let $x \in U$ and set $p = (x, f^+(x))$. Suppose there exists $(y, s) \in \Omega \cap J^+(p)$. Then, $d(x, y) \leq s - f^+(x) < f^+(y) - f^+(x) \leq d(x, y)$. Contradiction. Then, $J^+(p) \cap \Omega = \emptyset$.

Now, let $x \in \partial U$ and let $\{x_i\}$ be a sequence of elements of U such that $x = \lim x_i$. Set $p_i = (x_i, f^+(x_i))$. Suppose there exists $q \in J^+(p) \cap \Omega$. Since Ω is open, there exists $q' \in I^+(q) \cap \Omega$. By transitivity, $q' \in I^+(p)$. Then, $I^-(q')$ is an open neighborhood of p . Since $\lim p_i = p$, we deduce that $p_i \in I^-(q')$ for i big enough. Equivalently, $q' \in I^+(p_i)$. Thus, $I^+(p_i) \cap \Omega \neq \emptyset$. Contradiction. \square

There is an analogous statement for the extension of f^- to \overline{U} , denoted $\overline{f^-}$, with the reverse time-orientation.

Proof of Proposition 3.9. — Since f^\pm is 1-Lipschitz, if f^\pm is infinite in a point of U , it is infinite on U . If $f^+ \equiv +\infty$ and $f^- \equiv -\infty$, we have $U = \mathbb{S}^{n-1}$ and $\Omega = \widetilde{\text{Ein}}_{1,n-1}$.

Suppose $f^+ < +\infty$ and $f^- \equiv -\infty$. Let $p, q \in \Omega$ such that $q \in J^+(p)$. Let γ be a future causal curve of $\widetilde{\text{Ein}}_{1,n-1}$ joining p to q . Suppose that $\gamma \not\subseteq \Omega$. Then, γ intersects the boundary of Ω , reduced in this case to the graph of f^+ , in a point $r = (x, f^+(x))$ where $x \in U$. By Lemma 3.10, $J^+(r)$ is disjoint from Ω . Then, the segment of γ joining r to q is contained in $J^+(r)$. Thus, $q \not\subseteq \Omega$. Contradiction.

Suppose now that f^+ and f^- are finite. If ∂U is empty, the proof is similar to the previous case. Otherwise, we call f the common extension of f^+ and f^- to ∂U . In this case, the boundary of Ω is the union of the graphs of f^+, f^- and f . By Lemma 3.10, the points of Ω are not causally related to any point in the graph of f . Therefore, the previous arguments still hold. \square

Now, we describe Cauchy hypersurfaces of causally convex open subsets of $\widetilde{\text{Ein}}_{1,n-1}$. Let

$$\Omega := \{(x, t) \in U \times \mathbb{R} : f^-(x) < t < f^+(x)\}$$

be a causally convex open subset of $\widetilde{\text{Ein}}_{1,n-1}$ where U is an open subset of \mathbb{S}^{n-1} and f^+, f^- are the functions from U to \mathbb{R} given by Proposition 3.6.

PROPOSITION 3.11. — Let h be a 1-Lipschitz real-valued function defined on U such that its extension to ∂U coincides with that of f^+ and

f^- and $f^- < h < f^+$ on U . Then, the graph of h is a topological Cauchy hypersurface of Ω .

Proposition 3.11 is a consequence of the following lemma.

LEMMA 3.12. — Suppose f^+ and f^- are finite. Then, every inextensible timelike curve of $\widetilde{\text{Ein}}_{1,n-1}$ that intersects Ω meets each of the graphs of f^+ and f^- .

Proof. — Let γ be an inextensible timelike curve of $\widetilde{\text{Ein}}_{1,n-1}$ that intersects Ω . Then, γ intersects the boundary of Ω . If ∂U is empty, $\partial\Omega$ is the union of the graphs of f^+ and f^- . Otherwise, $\partial\Omega$ is the union of the graphs of f^+ , f^+ and f where f is the common extension of f^+ and f^- to ∂U . Since the points of Ω are not causally related to any point of the graph of f (see Lemma 3.10), we deduce that in both cases, γ intersects the graph of f^+ or the graph of f^- .

Suppose γ meets the graph of f^+ . Since Ω is not past-complete, γ leaves Ω and so intersects again its boundary. Since the graph of f^+ is achronal, γ could not intersect the graph of f^+ a second time. Thus, γ intersects the graph of f^- . \square

Proof of Proposition 3.11. — Let γ be an inextensible timelike curve of Ω . Since Ω is causally convex, γ is the intersection of Ω with an inextensible timelike curve $\tilde{\gamma}$ of $\widetilde{\text{Ein}}_{1,n-1}$. By Lemma 3.12, $\tilde{\gamma}$ meets the graph of h . Moreover, since the graph of h is achronal, $\tilde{\gamma}$ intersects it exactly once. The proposition follows from [9, Definition 28 and Lemma 29, p. 415]. \square

3.6. Duality

In this section, we highlight a particular class of causally convex open subsets of $\widetilde{\text{Ein}}_{1,n-1}$ involving a notion of *duality* in Einstein universe.

3.6.1. Duality in the Klein model

Recall that a subset of $\mathbb{S}(\mathbb{R}^{2,n})$ is said to be *convex* if it is the projectivization of a convex subset of $\mathbb{R}^{2,n}$. The convex hull of a subset A of $\mathbb{S}(\mathbb{R}^{2,n})$ is the smallest convex containing A .

Let $\Lambda \subset \text{Ein}_{1,n-1}$. Let us denote $\text{Conv}(\Lambda)$ the convex hull of Λ in $\mathbb{S}(\mathbb{R}^{2,n})$. The *dual convex cone* of Λ in $\mathbb{S}(\mathbb{R}^{n+2})$ is

$$\text{Conv}^*(\Lambda) = \{x \in \mathbb{S}(\mathbb{R}^{2,n}) : \langle x, y \rangle_{2,n} < 0 \quad \forall y \in \text{Conv}(\Lambda)\}.$$

DEFINITION 3.13. — We call *dual* of Λ the intersection of $\text{Ein}_{1,n-1}$ with the dual cone $\text{Conv}^*(\Lambda)$.

Notice that

$$\text{Conv}^*(\Lambda) \cap \text{Ein}_{1,n-1} = \{x \in \text{Ein}_{1,n-1} : \langle x, y \rangle_{2,n} < 0 \ \forall y \in \Lambda\}.$$

3.6.2. Duality in the universal cover

Let $\pi: \widetilde{\text{Ein}}_{1,n-1} \rightarrow \text{Ein}_{1,n-1}$ be the universal covering map.

LEMMA 3.14. — Let $\Lambda \subset \widetilde{\text{Ein}}_{1,n-1}$. The restriction of the projection π to the set of points which are non-causally related to any point of Λ is injective. Furthermore, its image is contained in the dual of the projection of Λ in $\text{Ein}_{1,n-1}$. If in addition, Λ is acausal, we have equality.

Proof. — Set $\Omega := \widetilde{\text{Ein}}_{1,n-1} \setminus (J^+(\Lambda) \cup J^-(\Lambda))$. By definition, Ω is the intersection of the affine charts $\text{Mink}_0(p)$ where $p \in \Lambda$. As a result, the restriction of π to Ω is injective and its image is contained in the dual of $\pi(\Lambda)$ (see [12, Corollary 2.43]).

Suppose Λ is acausal. Then, $\pi(\Lambda)$ is negative, i.e. for every $x, y \in \pi(\Lambda)$, we have $\langle x, y \rangle_{2,n} < 0$ for every representatives $x, y \in \mathbb{R}^{2,n}$ of x, y (see [1, Lemma 10.13]).

Let $x \in \text{Ein}_{1,n-1} \cap \text{Conv}^*(\pi(\Lambda))$. Set $\widehat{\Lambda}_0 := \{x\} \cup \pi(\Lambda)$. By definition, $\widehat{\Lambda}_0$ is a negative subset of $\widetilde{\text{Ein}}_{1,n-1}$. By [12, Proposition 2.47], there exists an acausal subset Λ_0 of $\widetilde{\text{Ein}}_{1,n-1}$ which projects on $\widehat{\Lambda}_0$. Furthermore, the proof of [12, Proposition 2.47] shows that we can choose such a Λ_0 such that it contains Λ . As a consequence, Λ_0 is the union of a lift p of x and Λ . Since Λ_0 is acausal, p is non-causally related to any point of Λ . The lemma follows. \square

Lemma 3.14 motivates the following definition.

DEFINITION 3.15. — Let Λ be a subset of $\widetilde{\text{Ein}}_{1,n-1}$. We call *dual* of Λ , denoted by Λ° , the set of points which are non-causally related to any point of Λ .

LEMMA 3.16. — Let Λ be a subset of $\widetilde{\text{Ein}}_{1,n-1}$ such that its dual is non-empty. Then, the dual of Λ is causally convex. If in addition Λ is closed, its dual is open.

Proof. — Let p and q be two points in the dual Λ° , joined by a causal curve $\gamma: I \subset \mathbb{R} \rightarrow M$. Suppose there is $t \in I$ such that $\gamma(t) \notin \Lambda^\circ$, in other

words $\gamma(t)$ is causally related to a point $\lambda \in \Lambda$. By transitivity, it follows that p or q is causally related to λ . Contradiction.

Suppose Λ is closed. If Λ is not compact, it would contain a causal curve inextensible in the future or in the past. Then, $J^+(\Lambda) \cup J^-(\Lambda)$ would be the whole space $\widetilde{\text{Ein}}_{1,n-1}$ and Λ° would be empty. Therefore, Λ is compact. It follows that $J^\pm(\Lambda)$ is closed. Hence, Λ° is open. \square

Now, we characterize duals of achronal closed subsets of $\widetilde{\text{Ein}}_{1,n-1}$ in a spatio-temporal decomposition $\mathbb{S}^{n-1} \times \mathbb{R}$.

Let Λ be a closed achronal subset of $\widetilde{\text{Ein}}_{1,n-1}$. It is the graph of a 1-Lipschitz real-valued function f defined on a closed subset Λ_0 of the sphere \mathbb{S}^{n-1} . Let f^+, f^- be the real-valued functions defined for every $x \in \mathbb{S}^{n-1}$ by:

$$\begin{aligned} f^+(x) &= \inf_{x_0 \in \Lambda_0} \{f(x_0) + d(x, x_0)\}, \\ f^-(x) &= \sup_{x_0 \in \Lambda_0} \{f(x_0) - d(x, x_0)\}. \end{aligned}$$

Notice that $f^-(x) < f^+(x)$ for every $x \in \mathbb{S}^{n-1} \setminus \Lambda_0$ and that f^+ and f^- are equal to f on Λ_0 .

PROPOSITION 3.17. — *The dual of Λ is the set of points (x, t) of $\widetilde{\text{Ein}}_{1,n-1}$ such that $f^-(x) < t < f^+(x)$.*

Proof. — Let $(x, t) \in \mathbb{S}^{n-1} \times \mathbb{R}$ be a point in the dual of Λ . By definition, (x, t) is non-causally related to any point $(x_0, f(x_0))$ where $x_0 \in \Lambda_0$. In other words, for every $x_0 \in \Lambda_0$, we have $d(x, x_0) > |t - f(x_0)|$, i.e. $f(x_0) - t < d(x, x_0) < f(x_0) + t$. Hence,

$$\sup_{x_0 \in \Lambda_0} \{f(x_0) - d(x, x_0)\} \leq t \leq \inf_{x_0 \in \Lambda_0} \{f(x_0) + d(x, x_0)\}.$$

Since Λ_0 is compact, the supremum and infimum above are attained; the previous inequalities are then strict. Thus, we obtain $f^-(x) < t < f^+(x)$. The converse inclusion is clear. \square

4. Enveloping space of a simply connected GH conformally flat spacetime

4.1. Conformally flat spacetimes

A spacetime is called *conformally flat* if it is locally conformal to Minkowski spacetime. Einstein universe is conformally flat since any point of Einstein universe admits a neighborhood conformally equivalent to Minkowski

spacetime (see Section 3.3). It follows that any spacetime locally modeled on Einstein universe, i.e. equipped with a $(O(2, n), \text{Ein}_{1, n-1})$ -structure, is conformally flat. Conversely, by Theorem 3.5, any conformally flat spacetime of dimension $n \geq 3$ admits a $(O(2, n), \text{Ein}_{1, n-1})$ -structure. We deduce the following statement.

PROPOSITION 4.1. — *A conformally flat Lorentzian structure on a manifold M of dimension $n \geq 3$ is equivalent to a $(O(2, n), \text{Ein}_{1, n-1})$ -structure.*

From the causal point of view, it is more relevant to consider as model space the universal cover of Einstein universe with its group of conformal diffeomorphisms. As a result, a conformally flat Lorentzian structure on a manifold M of dimension $n \geq 3$ is encoded by the data of a development pair (D, ρ) where $D: \widetilde{M} \rightarrow \widetilde{\text{Ein}_{1, n-1}}$ is a developing map and $\rho: \pi_1(M) \rightarrow \text{Conf}(\widetilde{\text{Ein}_{1, n-1}})$ is the associated holonomy morphism.⁽³⁾

LEMMA 4.2. — *The restriction of the developing map D to a causal curve of \widetilde{M} is injective.*

Proof. — Let $\gamma: I \subset \mathbb{R} \rightarrow \widetilde{M}$ be a causal curve. Since D is conformal, it follows that $D \circ \gamma: I \rightarrow \widetilde{\text{Ein}_{1, n-1}}$ is a causal curve. Then, if there exist $t_0, t_1 \in I$ such that $t_0 \neq t_1$ and $D(\gamma(t_0)) = D(\gamma(t_1))$, the curve $D \circ \gamma$ would be a causal loop. Contradiction. \square

DEFINITION 4.3. — *A conformally flat spacetime M is said developable if any developing map descends to the quotient, giving a local diffeomorphism from M to $\widetilde{\text{Ein}_{1, n-1}}$, called again developing map.*

LEMMA 4.4. — *Any developable conformally flat spacetime M is strongly causal.*

Proof. — Let $D: M \rightarrow \widetilde{\text{Ein}_{1, n-1}}$ be a developing map. Let $p \in M$ and let U be a neighborhood of p . Without loss of generality, we suppose that the restriction of D to U is a diffeomorphism on its image. Then, $D(U)$ is a neighborhood of $D(p)$. Since $\widetilde{\text{Ein}_{1, n-1}}$ is GH, it is in particular strongly causal. Thus, there exists a neighborhood V' of $D(p)$ contained in $D(U)$ and causally convex in $\widetilde{\text{Ein}_{1, n-1}}$. Let V be the preimage of V' under $D|_U$. By definition, V is a neighborhood of p contained in U . Moreover, V is causally convex in M . Indeed, let γ be a causal curve of M joining two points $q, q' \in V$. By Lemma 4.2, the image under D of γ is a causal curve of $\widetilde{\text{Ein}_{1, n-1}}$ joining $D(q)$ to $D(q')$. Since V' is causally convex, $D(\gamma)$ is contained in V' . If γ is not contained in V , there exists $r \in \gamma \cap (U \setminus V)$. Hence, $D(r) \in D(\gamma) \setminus V'$. Contradiction. \square

⁽³⁾ We direct the reader not familiar with (G, X) -structures to [8, Chapter 5].

4.2. Construction of an enveloping space

Let V be a simply-connected globally hyperbolic conformally flat space-time of dimension $n \geq 3$. In this section, we prove Theorem 1.1. Our proof still hold if we weaken the assumption *simply-connected* by *developable*.

Let (D, φ) be a pair where:

- $D: V \rightarrow \widetilde{\text{Ein}}_{1,n-1}$ is a developing map;
- $\varphi: \widetilde{\text{Ein}}_{1,n-1} \rightarrow \mathbb{S}^{n-1} \times \mathbb{R}$ is a spatio-temporal decomposition of $\widetilde{\text{Ein}}_{1,n-1}$.

Throughout this section, we call π the projection of $\widetilde{\text{Ein}}_{1,n-1}$ on \mathbb{S}^{n-1} defined as $\pi_0 \circ \varphi$ where $\pi_0: \mathbb{S}^{n-1} \times \mathbb{R} \rightarrow \mathbb{S}^{n-1}$ is the projection on the first factor.

4.2.1. Timelike foliation on V

Consider the vector field T on V defined as the pull-back by D of ∂_t . The flow of T defines a foliation of V by smooth timelike curves. Let \mathcal{B} be the leaf space, namely the quotient space of V by the equivalence relation that identifies two points if they are on the same leaf. We denote by $\psi: V \rightarrow \mathcal{B}$ the canonical projection.

FACT 4.5. — *The leaf space \mathcal{B} is homeomorphic to a Cauchy hypersurface S of V .*

Proof. — Every leaf is a timelike curve of V and so meets S in a unique point. Therefore, the restriction of ψ to S is a continuous bijection on \mathcal{B} . The restriction of ψ to S is open. Indeed, any open subset U of S coincides with $\psi|_S^{-1}(\psi|_S(U))$, so $\psi|_S(U)$ is open in \mathcal{B} . Then, the restriction of ψ to S is a homeomorphism on \mathcal{B} . \square

By definition, the map $\pi \circ D$ is constant on each leaf, therefore it induces a map d from \mathcal{B} to \mathbb{S}^{n-1} such that the following diagram commutes:

$$\begin{array}{ccc} V & \xrightarrow{D} & \widetilde{\text{Ein}}_{1,n-1} \\ \psi \downarrow & & \downarrow \pi \\ \mathcal{B} & \xrightarrow{d} & \mathbb{S}^{n-1} \end{array}$$

that is, $d \circ \psi = \pi \circ D$. Since $\pi \circ D$ and ψ are submersions, d is a local homeomorphism.

4.2.2. Fiber bundle over the leaf space

Let $E(V)$ be the fiber bundle over \mathcal{B} defined as the pullback by $d: \mathcal{B} \rightarrow \mathbb{S}^{n-1}$ of the trivial bundle $\pi: \widetilde{\text{Ein}}_{1,n-1} \rightarrow \mathbb{S}^{n-1}$, in other words:

$$E(V) := \{(p, b) \in \widetilde{\text{Ein}}_{1,n-1} \times \mathcal{B} : \pi(p) = d(b)\}.$$

We denote by $\hat{\pi}: E(V) \rightarrow \mathcal{B}$ the projection on the second factor.

FACT 4.6. — *The fiber bundle $E(V)$ is trivial.*

Proof. — Let f be the continuous map from $\mathcal{B} \times \mathbb{R}$ in $E(V)$ that sends (b, t) on (p, b) where p is the point of $\widetilde{\text{Ein}}_{1,n-1}$ with coordinates $(d(b), t)$ in the decomposition $\mathbb{S}^{n-1} \times \mathbb{R}$. It is easy to see that f is bijective. Indeed, the inverse is the continuous map that sends $(p, b) \in E(V)$ on $(b, t) \in \mathcal{B} \times \mathbb{R}$ where t is the projection of $p \in \widetilde{\text{Ein}}_{1,n-1} \simeq \mathbb{S}^{n-1} \times \mathbb{R}$ on \mathbb{R} . Therefore, f is a homeomorphism. Clearly, the following diagram commutes

$$\begin{array}{ccc} \mathbb{R} \times \mathcal{B} & \xrightarrow{f} & E(V) \\ \searrow \hat{\pi}_0 & & \swarrow \hat{\pi} \\ & \mathcal{B} & \end{array}$$

i.e. $\hat{\pi} \circ f = \hat{\pi}_0$. In other words, f is an isomorphism of fiber bundles. The lemma follows. \square

The projection on the first factor $\hat{D}: E(V) \rightarrow \widetilde{\text{Ein}}_{1,n-1}$ is a local homeomorphism inducing a structure of conformally flat spacetime on $E(V)$. In particular, $E(V)$ is strongly causal (see Lemma 4.4).

FACT 4.7. — *The fibers of $E(V)$ are inextensible timelike curves.*

Proof. — The fiber E_b of $E(V)$ over a point $b \in \mathcal{B}$ is the set of points (p, b) such that $\pi(p) = d(b)$. It is then easy to see that the restriction of \hat{D} to E_b is a homeomorphism on the fiber $\pi^{-1}(d(b))$ of $\pi: \widetilde{\text{Ein}}_{1,n-1} \rightarrow \mathbb{S}^{n-1}$. The lemma follows. \square

4.2.3. Conformal embedding of V in $E(V)$

Let i be the map from V to $E(V)$ defined by

$$i(p) := (D(p), \psi(p))$$

for every $p \in V$.

FACT 4.8. — *The map i is a conformal embedding of V into $E(V)$.*

Proof. — Since the maps D and ψ are continuous, open and conformal, so does the map i . All we need to check is that i is injective. Let $p, q \in V$ such that $i(p) = i(q)$. Then, $D(p) = D(q)$ and $\psi(p) = \psi(q)$. This last equality implies that p and q belongs to the same timelike leaf. Since the restriction of D to a leaf is injective (see Lemma 4.2), it follows from $D(p) = D(q)$ that $p = q$. \square

Remark 4.9. — The restriction of \widehat{D} to $i(M)$ coincides with D , more precisely $\widehat{D} \circ i = D$.

Now we prove that the image of i is causally convex in $E(V)$. The proof uses the following lemma.

LEMMA 4.10. — *The image under i of a Cauchy hypersurface S of V is a spacelike hypersurface of $E(V)$ which disconnects $E(V)$.*

Proof. — Since i is a conformal embedding, $i(S)$ is a spacelike embedded hypersurface of $E(V)$. Let $\psi: V \rightarrow \mathcal{B}$ be the canonical projection of V on the leaf space \mathcal{B} . Recall that the restriction of ψ to S is a homeomorphism on \mathcal{B} . Clearly, the map $i|_S \circ \psi|_S^{-1}: \mathcal{B} \rightarrow E(V)$ is a section of $\widehat{\pi}$. Hence, $i(S)$ is a global section of $E(V)$. The lemma follows. \square

FACT 4.11. — *The image $i(V)$ is causally convex in $E(V)$.*

Proof. — Let $p_0, p_1 \in V$ such that there is a causal curve γ of $E(V)$ joining p_0 to p_1 . Let $\widehat{\gamma}$ be an inextensible causal curve of $E(V)$ containing γ . Each connected component of the intersection of $\widehat{\gamma}$ with $i(V)$ is an inextensible causal curve of $i(V)$. We call γ_0 and γ_1 the connected components containing p_0 and p_1 respectively. To prove that γ is contained in $i(V)$ is equivalent to prove that $\gamma_0 = \gamma_1$. Suppose that γ_0 and γ_1 are disjoint. Then, each one of them meets $i(S)$ in a single point, x_0 and x_1 respectively, which are distinct. Therefore, the curve $\widehat{\gamma}$ intersects $i(S)$ in at least two distinct points. But, $i(S)$ is acausal in $E(M)$ (see Lemma 4.10 and [9, Chapter 14, Lemmas 45 and 42]). Contradiction. \square

Remark 4.12. — All the results of this section stated until now are based on the existence of a developing map, and so are still valid if V is not-simply connected but developable.

4.2.4. Embedding of the conformally flat Cauchy extensions of V in $E(V)$

PROPOSITION 4.13. — *Let W be a conformally flat Cauchy extension of V . Then, there is a conformal embedding i' of W into $E(V)$ such that the following assertions hold:*

- The image $i'(W)$ is causally convex in $E(V)$ and contains $i(V)$;
- Every Cauchy hypersurface of $i(V)$ is a Cauchy hypersurface of $i'(W)$.

The proof of Proposition 4.13 uses the following lemma.

LEMMA 4.14. — Let W be a conformally flat Cauchy extension of V . Then, the enveloping spaces $E(V)$ and $E(W)$ are isomorphic.

Proof. — Let $f: V \rightarrow W$ be a Cauchy embedding and let $D': W \rightarrow \widetilde{\text{Ein}}_{1,n-1}$ be a developing map such that $D' \circ f = D$. Consider the foliation of W by inextensible timelike curves induced by the pull-back by D' of the vector field ∂_t on $\widetilde{\text{Ein}}_{1,n-1} \simeq \mathbb{S}^{n-1} \times \mathbb{R}$ and let $\psi': W \rightarrow \mathcal{B}'$ be the canonical projection on the leaf space. Since f is a Cauchy embedding, $f(V)$ is causally convex in W (see [11, Lemma 8]). Then, the image under f of every leaf of V is the intersection of a unique leaf of W with $f(V)$. It follows that the map $\psi' \circ f$ descends to the quotient in a diffeomorphism $\bar{f}: \mathcal{B} \rightarrow \mathcal{B}'$. Let $d': \mathcal{B}' \rightarrow \mathbb{S}^{n-1}$ be the developing map induced by D' . It is clear that $d := d' \circ \bar{f}$ is the developing map induced by D . Therefore, the map $F: E(V) \rightarrow E(W)$ defined by $F(p, b) = (p, \bar{f}(p))$ is a conformal diffeomorphism that sends every fiber of $E(V)$ on a fiber of $E(W)$. The lemma follows. \square

Proof of Proposition 4.13. — Let $j: W \hookrightarrow E(W)$ be the conformal embedding of W into $E(W)$ and let $F: E(V) \rightarrow E(W)$ be the isomorphism defined in the proof of Lemma 4.14. The map $i' := F^{-1} \circ j$ defines a conformal embedding of W into $E(V)$. By Lemma 4.11, $i(V)$ and $i'(W)$ are causally convex in $E(V)$. Moreover, according to the proof of Lemma 4.14, the following diagram commutes:

$$\begin{array}{ccc} V & \xhookrightarrow{i} & E(V) \\ f \downarrow & & \downarrow F \\ W & \xhookrightarrow{j} & E(W) \end{array}$$

that is $F \circ i = j \circ f$, i.e. $i = F^{-1} \circ j \circ f = i' \circ f$. It follows that:

- $i(V) = i'(f(V)) \subset i'(W)$.
- Every Cauchy hypersurface of $i(V)$ is a Cauchy hypersurface of $i'(W)$. Indeed, since f is a Cauchy embedding, if S is a Cauchy hypersurface of V , $f(S)$ is a Cauchy hypersurface of W . Then, $i(S) = i'(f(S))$ is a Cauchy hypersurface of $i'(W)$.

The proposition follows. \square

Remark 4.15. — If V is developable, it is easy to see that any conformally flat Cauchy extension of W is also developable. As a result, Proposition 4.13 is still true in this setting.

4.2.5. The \mathcal{C}_0 -maximal extension of V

From now on, we identify V and the conformally flat Cauchy extensions of V with their images in $E(V)$. Let S be a Cauchy hypersurface of V .

LEMMA 4.16. — *The Cauchy development of S in $E(V)$ contains all the Cauchy extensions of V . In particular, it contains V .*

Proof. — Let W be a Cauchy extension of V . Let $x \in W$ and let $\hat{\gamma}$ be an inextensible causal curve of $E(V)$ going through x . Since W is causally convex in $E(V)$ (see Proposition 4.13), the intersection of $\hat{\gamma}$ with W is an inextensible causal curve γ of W . By Proposition 4.13, S is a Cauchy hypersurface of W , then γ intersects S in a single point. It follows that x belongs to the Cauchy development of S in $E(V)$. \square

PROPOSITION 4.17. — *The Cauchy development $\mathcal{C}(S)$ of S in $E(V)$ is a \mathcal{C}_0 -maximal extension of V .*

Proof. — By [9, Theorem 38, p. 421], $\mathcal{C}(S)$ is a globally hyperbolic space-time for which S is a Cauchy hypersurface. According to Lemma 4.16, it is a Cauchy extension of V . Let W be a conformally flat Cauchy extension of $\mathcal{C}(S)$. In particular, W is a Cauchy extension of V . Then, W embeds conformally in $E(V)$ and the image is a causally convex open subset of $E(V)$ containing $\mathcal{C}(S)$. By Lemma 4.16, $\mathcal{C}(S)$ is exactly W (seen in $E(V)$). Hence, $\mathcal{C}(S)$ is \mathcal{C}_0 -maximal. \square

COROLLARY 4.18. — *The \mathcal{C}_0 -maximal extension $\mathcal{C}(S)$ is unique up to conformal diffeomorphism.*

Proof. — Let \hat{V} another \mathcal{C}_0 -maximal extension of V . By Lemma 4.16, \hat{V} , seen in $E(V)$, is contained in $\mathcal{C}(S)$. If this inclusion is strict, $\mathcal{C}(S)$ would be a Cauchy extension of \hat{V} . This contradicts the \mathcal{C}_0 -maximality of \hat{V} . \square

We proved again the existence and the uniqueness of the \mathcal{C}_0 -maximal extension for *simply-connected* conformally flat globally hyperbolic flat space-times.

COROLLARY 4.19. — *If V is simply-connected and Cauchy-compact then the \mathcal{C}_0 -maximal extension of V is conformally equivalent to $\widetilde{\text{Ein}}_{1,n-1}$.*

Proof. — By Lemma 4.5, the leaf space \mathcal{B} is compact. Since d is a local homeomorphism, it follows that d is a covering. But \mathbb{S}^{n-1} is simply connected, so d is a homeomorphism. As a result, $\widehat{D}: E(V) \rightarrow \widetilde{\text{Ein}}_{1,n-1}$ is a conformal diffeomorphism. Indeed, let $p \in \widetilde{\text{Ein}}_{1,n-1}$. There exists a unique $b \in \mathcal{B}$ such that $d(b) = \pi(p)$. Thus, (p, b) is the unique point of $E(V)$ such that $\widehat{D}(p, b) = p$. The corollary follows. \square

DEFINITION 4.20. — *The trivial fiber bundle $\widehat{\pi}: E(V) \rightarrow \mathcal{B}$ is called an enveloping space of V .*

The construction of this fiber bundle depends on the choice of a pair (D, φ) where

- $D: V \rightarrow \widetilde{\text{Ein}}_{1,n-1}$ is a developing map;
- $\varphi: \mathbb{S}^{n-1} \times \mathbb{R} \rightarrow \widetilde{\text{Ein}}_{1,n-1}$ is a spatio-temporal decomposition of $\widetilde{\text{Ein}}_{1,n-1}$.

Given two such pairs (D, φ) , (D', φ') , there exists a conformal transformation ϕ of $\widetilde{\text{Ein}}_{1,n-1}$ such that $D' = \phi \circ D$. We say that (D, φ) and (D', φ') are *equivalent* if $\varphi' = \varphi \circ \phi^{-1}$.

LEMMA 4.21. — *If (D, φ) and (D', φ') are equivalent, the enveloping spaces $E(V)$ and $E'(V)$ defined by (D, φ) and (D', φ') are isomorphic, i.e. there exists a conformal diffeomorphism from $E(V)$ to $E'(V)$ which sends fiber on fiber.*

Example 4.22 (Enveloping space of Minkowski spacetime). — Minkowski spacetime $\mathbb{R}^{1,n-1}$ is conformally equivalent to the set of points of $\widetilde{\text{Ein}}_{1,n-1}$ which are not causally related to a point $p \in \widetilde{\text{Ein}}_{1,n-1}$. Given a spatio-temporal decomposition $\varphi: \widetilde{\text{Ein}}_{1,n-1} \rightarrow \mathbb{S}^{n-1} \times \mathbb{R}$, the enveloping space of $\mathbb{R}^{1,n-1}$ is the complement in $\widetilde{\text{Ein}}_{1,n-1}$ of the fiber going through p of the trivial bundle $\pi_0 \circ \varphi: \widetilde{\text{Ein}}_{1,n-1} \rightarrow \mathbb{S}^{n-1}$. This is a trivial fiber bundle over $\mathbb{S}^{n-1} \setminus \{\pi_0 \circ \varphi(p)\} \simeq \mathbb{R}^{n-1}$.

Example 4.23 (Enveloping space of de Sitter spacetime). — Given a spatio-temporal decomposition $\varphi: \widetilde{\text{Ein}}_{1,n-1} \rightarrow \mathbb{S}^{n-1} \times \mathbb{R}$, de Sitter spacetime is conformally equivalent to $\mathbb{S}^{n-1} \times]0, \pi[$. Therefore, the enveloping space of de Sitter spacetime relatively to this decomposition is $\pi_0 \circ \varphi: \widetilde{\text{Ein}}_{1,n-1} \rightarrow \mathbb{S}^{n-1}$ where $\pi_0: \mathbb{S}^{n-1} \times \mathbb{R} \rightarrow \mathbb{S}^{n-1}$ is the projection on the first factor.

4.3. Causally convex GH open subsets of the enveloping space

In this section, we describe causally convex open subsets of the enveloping space $E(V)$ — defined in the previous section — which are globally hyperbolic. Notice that since $E(V)$ is, *a priori*, not globally hyperbolic (see Example 4.22), causal convexity does not imply global hyperbolicity anymore.

By [11, Theorem 10], causally convex GH open subsets of $E(V)$ which contain *conjugate points*, i.e. points whose image under \widehat{D} are conjugate in $\widetilde{\text{Ein}}_{1,n-1}$, are conformally equivalent to causally convex open subsets of $\widetilde{\text{Ein}}_{1,n-1}$. These are described in Section 3.5. This is why we only deal here with causally convex open subsets of $E(V)$ without conjugate points. We basically generalize the description of causally convex open subsets of $\text{Ein}_{1,n-1}$ to causally convex GH open subsets of any enveloping space $E(V)$. As a result, we obtain a description of V and its conformally flat Cauchy extensions within $E(V)$.

The following definition introduces a class of sections of the enveloping space $E(V) \rightarrow \mathcal{B}$, expressed in a global trivialization.

DEFINITION 4.24. — *A real-valued function f defined on an open subset U of \mathcal{B} is said 1-Lipschitz if for every $x \in U$, there exists an open neighborhood U_x of x contained in U such that the following hold:*

- (1) *the restriction of d to U_x is injective;*
- (2) *the map $f \circ d|_{U_x}^{-1} : d(U_x) \subset \mathbb{S}^{n-1} \rightarrow \mathbb{R}$ is 1-Lipschitz.*

This definition generalizes the (local) notion of 1-Lipschitz functions defined on an open subset of the sphere \mathbb{S}^{n-1} .

Remark 4.25. — The function f is 1-Lipschitz if and only if its graph is *locally achronal*.

LEMMA 4.26. — *Any 1-Lipschitz real-valued function f defined on an open subset $U \subsetneq \mathcal{B}$ admits a unique extension to \overline{U} .*

PROPOSITION 4.27. — *Any causally convex GH open subset Ω of $E(V)$ is the domain bounded by the graphs of two 1-Lipschitz real-valued functions f^+ and f^- defined on an open subset U of \mathcal{B} such that:*

- (1) $f^- < f^+$ on U ;
- (2) *the extensions of f^+ and f^- to ∂U coincide.*

Proof. — Let $\widehat{\pi}$ be the natural projection of $E(V)$ on \mathcal{B} . We call U the projection of Ω on \mathcal{B} . Since Ω is causally convex, the intersection of Ω with

any fiber $\widehat{\pi}^{-1}(x)$, where $x \in U$, is connected, i.e. it is a segment $\{x\} \times [f^-(x), f^+(x)]$. Notice that $-\infty < f^-(x) < f^+(x) < +\infty$, otherwise Ω would contain conjugate points. Contradiction. This defines two real-valued functions f^+, f^- defined on U such that:

$$\Omega = \{(x, t) \in U \times \mathbb{R} : f^-(x) < t < f^+(x)\}.$$

Let $x \in U$. Set $p_+ = (x, f^+(x))$. Let $p \in I^-(p_+) \cap \Omega$. Since Ω is GH, the restriction of \widehat{D} to $I^+(p, \Omega)$ is injective and its image is causally convex in $\widetilde{\text{Ein}}_{1,n-1}$ (see [10, Proposition 2.7 and Corollary 2.8, p. 151]). It follows that:

- $\widehat{D}(I^+(p, \Omega))$ is the domain bounded by the graphs of two 1-Lipschitz real-valued functions $g^- < g^+$ defined on an open subset of \mathbb{S}^{n-1} (see Proposition 3.6);
- d is injective on $U_x := \widehat{\pi}(I^+(p, \Omega))$ and $g^+ = f^+ \circ d|_{U_x}^{-1}$.

Thus, f^+ is 1-Lipschitz. The proof is similar for f^- with the reverse time-orientation. Lemma 3.8 is still valid for causally convex open subsets of $E(V)$. Hence, the same arguments used in the proof of Proposition 3.6 show that the extensions of f^+ and f^- to ∂U coincide. \square

COROLLARY 4.28. — *The graphs of f^+ and f^- are achronal.*

Proof. — The proof is similar to that of the second fact in the proof of Proposition 3.6. \square

It follows immediately from Proposition 4.27 that V (resp. any conformally flat Cauchy extension of V) is the domain bounded between the graphs of two real-valued 1-Lipschitz functions f^+ and f^- defined on \mathcal{B} such that $f^- < f^+$.

5. \mathcal{C}_0 -maximal extensions of conformally flat globally hyperbolic spacetimes

In this section, we give a new proof of the existence and the uniqueness of the \mathcal{C}_0 -maximal extension of a globally hyperbolic conformally flat spacetime V of dimension $n \geq 3$, using the notion of enveloping space introduced in Section 4.

When V is simply-connected, the proof is given in Section 4.2 (see Proposition 4.17 and Corollary 4.18). We deal here with the case where V is not simply-connected. The proof consists to extend the action of $\pi_1 V$ on \widetilde{V} to a proper action on the \mathcal{C}_0 -maximal extension of \widetilde{V} . We prove then that the

\mathcal{C}_0 -maximal extension of V is the quotient of the \mathcal{C}_0 -maximal extension of \tilde{V} by $\pi_1 V$.

Notations. Let $D: \tilde{V} \rightarrow \widetilde{\text{Ein}}_{1,n-1}$ be a developing map and let $\rho: \Gamma \rightarrow \text{Conf}(\widetilde{\text{Ein}}_{1,n-1})$ be the associated holonomy representation, where $\Gamma := \pi_1(V)$.

Fix a decomposition $\varphi: \widetilde{\text{Ein}}_{1,n-1} \rightarrow \mathbb{S}^{n-1} \times \mathbb{R}$. Let $E(\tilde{V})$ be the enveloping space related to the pair (D, φ) (see Section 4.2). We denote by $\hat{\pi}: E(\tilde{V}) \rightarrow \mathcal{B}$ the projection on the second factor and by $\hat{D}: E(\tilde{V}) \rightarrow \widetilde{\text{Ein}}_{1,n-1}$ the projection on the first factor.

FACT 5.1. — *If \tilde{V} is Cauchy-compact, the \mathcal{C}_0 -maximal extension of V is a finite quotient of $\widetilde{\text{Ein}}_{1,n-1}$.*

Proof. — By Corollary 4.19, the \mathcal{C}_0 -maximal extension of \tilde{V} is $\widetilde{\text{Ein}}_{1,n-1}$. Moreover, the proof of Corollary 4.19 shows that the developing map

$$D: \tilde{V} \longrightarrow \widetilde{\text{Ein}}_{1,n-1}$$

is injective. Consequently, the holonomy $\rho: \Gamma \rightarrow \text{Conf}(\widetilde{\text{Ein}}_{1,n-1})$ is also injective and V is the quotient of $\widetilde{\text{Ein}}_{1,n-1}/\rho(\Gamma)$. Since $\rho(\Gamma)$ preserves a compact Cauchy hypersurface of $\widetilde{\text{Ein}}_{1,n-1}$, we deduce that it is finite. The fact follows. \square

Suppose now that \tilde{V} is not Cauchy-compact. Let \tilde{S} be a non-compact Cauchy hypersurface of \tilde{V} . The \mathcal{C}_0 -maximal extension of \tilde{V} is the Cauchy development $\mathcal{C}(\tilde{S})$ of \tilde{S} in $E(\tilde{V})$ (see Proposition 4.17). In what follows, we extend the action of Γ to $\mathcal{C}(\tilde{S})$.

5.1. Action of Γ on $\mathcal{C}(\tilde{S})$

The points of $\mathcal{C}(\tilde{S})$ are characterized by their shadows on \tilde{S} (see Proposition 2.8). As a result, we show that the action of Γ on \tilde{S} induces naturally an action of Γ on $\mathcal{C}(\tilde{S})$.

PROPOSITION 5.2. — *Let $p \in \mathcal{C}(\tilde{S})$ and let $\gamma \in \Gamma$. There exists a unique point $\gamma.p$ in $\mathcal{C}(\tilde{S})$ such that its shadow on \tilde{S} is exactly the image under γ of the shadow of p on \tilde{S} . This defines an action of Γ on $\mathcal{C}(\tilde{S})$ which satisfies the following properties:*

- the restriction of the action of Γ on $\mathcal{C}(\tilde{S})$ to \tilde{V} coincides with the usual action of Γ on \tilde{V} ;

- the action of Γ on $\mathcal{C}(\tilde{S})$ preserves the causality relations, i.e. for every $p \in \mathcal{C}(\tilde{S})$ and for every $\gamma \in \Gamma$, we have:

$$\begin{aligned} p \in J^-(q) &\iff \gamma.p \in J^-(\gamma.q), \\ p \in I^-(q) &\iff \gamma.p \in I^-(\gamma.q); \end{aligned}$$

- the restriction of \hat{D} to $\mathcal{C}(\tilde{S})$ is ρ -equivariant, i.e. for every $p \in \mathcal{C}(\tilde{S})$ and for every $\gamma \in \Gamma$, we have:

$$\hat{D}(\gamma.p) = \rho(\gamma)\hat{D}(p).$$

We prove Proposition 5.2 by an analysis-synthesis reasoning. In the analysis, we suppose that $\gamma.p$ exists and is unique, and we look for properties satisfied by $\gamma.p$ that will characterize it. In the synthesis, we use the criteria found in the analysis to determine the point $\gamma.p$. In what follows, the shadow of a point $p \in \mathcal{C}(\tilde{S})$ on \tilde{S} is denoted by $O(p)$.

ANALYSIS. Suppose that for every $\gamma \in \Gamma$ and every $p \in \mathcal{C}(\tilde{S})$, the point $\gamma.p$ exists and is unique. For every $\gamma \in \Gamma$ and every $p \in \tilde{V}$, we denote by γp (without the dot between γ and p) the usual action of the deck transformation γ on p . Let us start with this easy remark.

Remark 5.3. — Let $p \in \mathcal{C}(\tilde{S})$ and let $\gamma \in \Gamma$. If $p \in \tilde{V}$, then $\gamma.p = \gamma p$. Indeed, since the action of Γ on \tilde{V} respect the causality relations, we have $J^-(\gamma p) = \gamma J^-(p)$. Therefore,

$$O(\gamma p) := J^-(\gamma p) \cap \tilde{S} = \gamma J^-(p) \cap \tilde{S} = \gamma(J^-(p) \cap \gamma^{-1}\tilde{S}).$$

Since \tilde{S} is Γ -invariant, we deduce that $\gamma(J^-(p) \cap \gamma^{-1}\tilde{S}) = \gamma O(p)$. Hence, $O(\gamma p) = \gamma O(p)$, i.e. $\gamma.p = \gamma p$.

LEMMA 5.4. — *The map which associates to every $(\gamma, p) \in \Gamma \times \mathcal{C}(\tilde{S})$ the point $\gamma.p \in \mathcal{C}(\tilde{S})$ is a group action. Moreover, this action respects causality relations.*

Proof. — The fact that the map $(\gamma, p) \in \Gamma \times \mathcal{C}(\tilde{S}) \mapsto \gamma.p$ is a group action follows easily from the fact that the restriction to $\Gamma \times \tilde{S}$ is the usual group action of Γ on \tilde{S} .

Let $\gamma \in \Gamma$ and let $p, q \in \mathcal{C}(\tilde{S})$. Suppose that $p, q \in J^+(S)$. Then,

$$\begin{aligned} p \in J^-(q) &\iff O(p) \subset O(q) \\ &\iff O(\gamma.p) := \gamma O(p) \subset \gamma O(q) =: O(\gamma.q) \\ &\iff \gamma.p \in J^-(\gamma.q). \end{aligned}$$

By symmetry, the same arguments still hold if $p, q \in J^-(\tilde{S})$. It remains the case where $q \in I^+(\tilde{S})$ and $p \in I^-(\tilde{S})$. In this case, we have

$$\begin{aligned} p \in J^-(q) &\iff O(p) \cap O(q) \neq \emptyset \\ &\iff \gamma O(p) \cap \gamma O(q) \neq \emptyset \\ &\iff O(\gamma.p) \cap O(\gamma.q) \neq \emptyset. \end{aligned}$$

Since Γ preserves \tilde{S} , it preserves the chronological future/past of \tilde{S} in $\mathcal{C}(\tilde{S})$. Thus, $O(\gamma.p) \cap O(\gamma.q) \neq \emptyset \Leftrightarrow \gamma.p \in J^-(\gamma.q)$. The lemma follows. \square

LEMMA 5.5. — *The restriction of the developing map $\widehat{D}: E(\tilde{V}) \rightarrow \widetilde{\text{Ein}}_{1,n-1}$ to $\mathcal{C}(\tilde{S})$ is ρ -equivariant, i.e. for every $p \in \mathcal{C}(\tilde{S})$ and for every $\gamma \in \Gamma$, we have $\widehat{D}(\gamma.p) = \rho(\gamma)\widehat{D}(p)$.*

Proof. — Let $\gamma \in \Gamma$ and let $p \in \mathcal{C}(\tilde{S})$. Suppose that $p \in I^+(\tilde{S})$. Let $q \in \mathcal{C}(\tilde{S}) \cap I^+(p)$. Since $\mathcal{C}(\tilde{S})$ is globally hyperbolic, the restriction of \widehat{D} to $I^-(q, \mathcal{C}(\tilde{S}))$ is injective and its image is causally convex in $\widetilde{\text{Ein}}_{1,n-1}$ (see [10, Proposition 2.7 and Corollary 2.8, p. 151]). It follows that $D(I^-(q) \cap \tilde{S})$ is an achronal hypersurface of $\widehat{D}(I^-(q, \mathcal{C}(\tilde{S})))$.

Set $\Sigma := D(I^-(q) \cap \tilde{S})$. Since $O(p) \subset I^-(q, \mathcal{C}(\tilde{S}))$, the restriction of D to $O(p)$ is injective and its image is exactly $O(\widehat{D}(p), \Sigma)$. Thus

$$\begin{aligned} (5.1) \quad D(\gamma O(p)) &= \rho(\gamma)D(O(p)) \\ &= \rho(\gamma)O(\widehat{D}(p), \Sigma) \\ &= O(\rho(\gamma)\widehat{D}(p), \rho(\gamma)\Sigma). \end{aligned}$$

By definition, $\gamma O(p) = O(\gamma.p)$. From Lemma 5.4, we get $O(\gamma.p) \subset I^-(\gamma.q, \mathcal{C}(\tilde{S}))$. As above, we deduce that the restriction of D to $O(\gamma.p)$ is injective and its image is exactly $O(\widehat{D}(\gamma.p), D(I^-(\gamma.p) \cap \tilde{S}))$. But, $D(I^-(\gamma.p) \cap \tilde{S}) = \rho(\gamma)\Sigma$. Indeed, since $O(\gamma.q) = \gamma O(q)$ we have $I^-(\gamma.q) \cap \tilde{S} = \gamma(I^-(q) \cap \tilde{S})$. Thus, $D(I^-(\gamma.q) \cap \tilde{S}) = \rho(\gamma)\Sigma$. Hence,

$$(5.2) \quad D(\gamma O(p)) = D(O(\gamma.p)) = O(\widehat{D}(\gamma.p), \rho(\gamma)\Sigma).$$

It follows from (5.1) and (5.2) that

$$O(\rho(\gamma)\widehat{D}(p), \rho(\gamma)\Sigma) = O(\widehat{D}(\gamma.p), \rho(\gamma)\Sigma).$$

By Proposition 2.8, we deduce that $\widehat{D}(\gamma.p) = \rho(\gamma)\widehat{D}(p)$.

If $p \in I^-(\tilde{S})$, the same arguments hold with the reverse time-orientation. Lastly, if $p \in \tilde{S}$, the lemma follows from Remark 5.3. \square

Remark 5.6. — In the proof of Lemma 5.5, we can replace $I^-(q, \mathcal{C}(\tilde{S}))$ by any other causally convex open neighborhood U of p in $\mathcal{C}(\tilde{S})$ such that:

- U intersects \tilde{S} ;
- the restriction of \hat{D} to U is injective;
- the image $\hat{D}(U)$ is causally convex in $\widetilde{\text{Ein}}_{1,n-1}$.

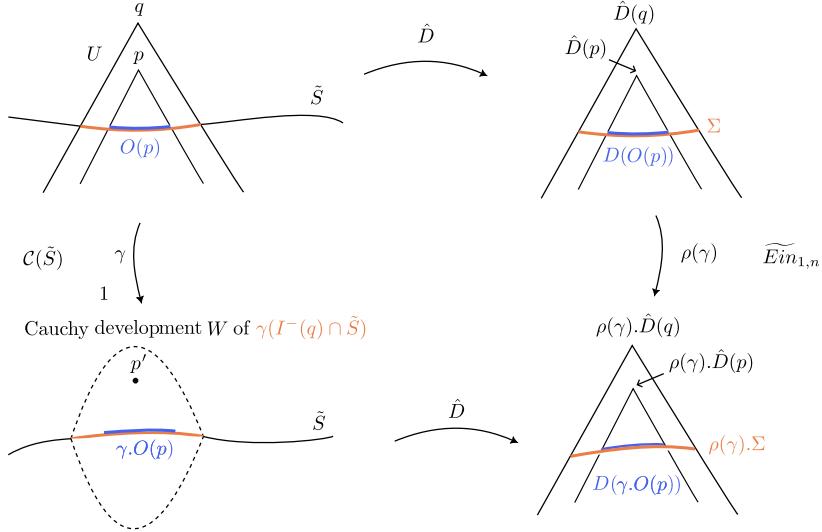


Figure 5.1. Action of Γ on the Cauchy development of \tilde{S} in the enveloping space $E(\tilde{S})$.

SYNTHESIS. Let $p \in \mathcal{C}(\tilde{S})$ and let $\gamma \in \Gamma$. Without loss of generality, we suppose that $p \in I^+(\tilde{S})$. The idea is to reconstruct the proof of Lemma 5.5 to determine $\gamma.p$. More precisely, we choose a relevant causally convex open neighborhood U of p in $\mathcal{C}(\tilde{S})$ satisfying the properties stated in Remark 5.6 and we construct the open subset that will turn out to be $\gamma.U$ and will therefore contain $\gamma.p$ (see Figure 5.1).

Fix $q \in \mathcal{C}(\tilde{S}) \cap I^+(p)$. Let U be the Cauchy development of $I^-(q) \cap \tilde{S}$ in $E(\tilde{V})$.

LEMMA 5.7. — *The image under D of $I^-(q) \cap \tilde{S}$ is achronal in $\widetilde{\text{Ein}}_{1,n-1}$.*

Proof. — We have $I^-(q) \cap \tilde{S} \subset I^-(q, \mathcal{C}(\tilde{S}))$. Since $\mathcal{C}(\tilde{S})$ is GH, the restriction of \hat{D} to $I^-(q, \mathcal{C}(\tilde{S}))$ is injective (see [10, Proposition 2.7, p. 151]). Then, $D(I^-(p) \cap \tilde{S})$ is achronal in $\hat{D}(I^-(q, \mathcal{C}(\tilde{S})))$. This last one being causally convex in $\widetilde{\text{Ein}}_{1,n-1}$ (see [10, Corollary 2.8, p. 151]), we deduce easily that $D(I^-(p) \cap \tilde{S})$ is achronal in $\widetilde{\text{Ein}}_{1,n-1}$. \square

FACT 5.8. — *The restriction of \widehat{D} to U is injective. Moreover, the image under \widehat{D} of U is equal to the Cauchy development of $D(I^-(q) \cap \widetilde{S})$ in $\widetilde{\text{Ein}}_{1,n-1}$.*

Proof. — Clearly, $U \subset \mathcal{C}(\widetilde{S}) \cap I^-(q)$. Since $\mathcal{C}(\widetilde{S})$ is causally convex in $E(\widetilde{V})$, we have $\mathcal{C}(\widetilde{S}) \cap I^-(q) = I^-(q, \mathcal{C}(\widetilde{S}))$. Since the restriction of \widehat{D} to $I^-(q, \mathcal{C}(\widetilde{S}))$ is injective and its image is causally convex in $\widetilde{\text{Ein}}_{1,n-1}$ (see [10, Proposition 2.7 and Corollary 2.8, p. 151]), the lemma follows. \square

Let W be the Cauchy development of $\gamma(I^-(q) \cap \widetilde{S})$ in $E(\widetilde{V})$.

REMARK 5.9. — The image under D of $\gamma(I^-(q) \cap \widetilde{S})$ is achronal in $\widetilde{\text{Ein}}_{1,n-1}$. Indeed, $D(\gamma(I^-(q) \cap \widetilde{S})) = \rho(\gamma)D(I^-(q) \cap \widetilde{S})$. The assertion follows then from Lemma 5.7.

FACT 5.10. — *The restriction of \widehat{D} to W is injective. Moreover, the image under \widehat{D} of W is equal to the Cauchy development of $D(\gamma(I^-(q) \cap \widetilde{S}))$ in $\widetilde{\text{Ein}}_{1,n-1}$.*

Proof. — Let $r, r' \in W$ such that $\widehat{D}(r) = \widehat{D}(r')$. Let $E_{\hat{\pi}(r)}$ and $E_{\hat{\pi}(r')}$ be the fibers going through r and r' . By definition, their images under \widehat{D} are the fibers of the trivial bundle $\widetilde{\text{Ein}}_{1,n-1} \rightarrow \mathbb{S}^{n-1}$ going through $\widehat{D}(r)$ and $\widehat{D}(r')$. Since $\widehat{D}(r) = \widehat{D}(r')$, these fibers coincide. We call this fiber Δ . Since $E_{\hat{\pi}(r)}$ and $E_{\hat{\pi}(r')}$ are inextensible timelike curves, they intersect $\gamma(I^-(q) \cap \widetilde{S})$ in two points r_0 and r'_0 . Hence, $D(r_0), D(r'_0) \in \Delta \cap D(\gamma(I^-(q) \cap \widetilde{S}))$. But, $D(\gamma(I^-(q) \cap \widetilde{S}))$ is achronal in $\widetilde{\text{Ein}}_{1,n-1}$ (see Remark 5.9). Thus, the timelike line Δ intersects $D(\gamma(I^-(q) \cap \widetilde{S}))$ at most once. Hence, $D(r_0) = D(r'_0)$. The restriction of D to $\gamma(I^-(q) \cap \widetilde{S})$ being injective, we deduce that $r_0 = r'_0$. Thus, $E_{\hat{\pi}(r)} = E_{\hat{\pi}(r')}$. Since the restriction of \widehat{D} to any causal curve is injective (see Lemma 4.2), we get $r = r'$.

We deduce easily from the injectivity of \widehat{D} on W that $\widehat{D}(W)$ is contained in the Cauchy development of $D(\gamma(I^-(q) \cap \widetilde{S}))$ in $\widetilde{\text{Ein}}_{1,n-1}$. This inclusion is clearly a Cauchy embedding. Since W is \mathcal{C}_0 -maximal (see Proposition 4.17), we deduce equality. \square

Proof of Proposition 5.2. — Set $\Sigma := D(I^-(q) \cap \widetilde{S})$. Since $O(p) \subset U$, it follows from Fact 5.8 that $D(O(p))$ is equal to the shadow $O(\widehat{D}(p), \Sigma)$ of $\widehat{D}(p)$ on Σ . Hence

$$D(\gamma O(p)) = \rho(\gamma)D(O(p)) = \rho(\gamma)O(\widehat{D}(p), \Sigma) = O(\rho(\gamma)\widehat{D}(p), \rho(\gamma)\Sigma).$$

Hence, $O(\rho(\gamma)\widehat{D}(p), \rho(\gamma)\Sigma) \subset \widehat{D}(W)$. Since $\widehat{D}(W)$ is the Cauchy development of $\rho(\gamma)\Sigma$ (see Fact 5.10), it follows that $\rho(\gamma)\widehat{D}(p) \in \widehat{D}(W)$. Thus,

there exists a unique point $p' \in U$ such that $\widehat{D}(p') = \rho(\gamma)\widehat{D}(p)$. It is clear that $O(p') = \gamma O(p)$. If there is another point $p'' \in \mathcal{C}(\widetilde{S})$ such that $O(p'') = \gamma O(p)$, by Proposition 2.8, we get $p' = p''$. Then, we set $\gamma.p := p'$. \square

5.1.1. Dynamical properties of the action of Γ on $\mathcal{C}(\widetilde{S})$

In this section, we prove that the action of Γ on $\mathcal{C}(\widetilde{S})$ is free and properly discontinuous.

LEMMA 5.11. — *Let p be a point in the complement of \widetilde{S} in $\mathcal{C}(\widetilde{S})$. Then, the shadow of p on \widetilde{S} is a topological disk of dimension $n - 1$.*

Proof. — We can suppose without loss of generality that $p \in I^+(\widetilde{S})$. Let $q \in I^+(p)$ and set $\Sigma := D(I^-(q) \cap \widetilde{S})$. We prove that $\widehat{D}(I^-(q, \mathcal{C}(\widetilde{S})))$ is contained in the affine chart $\text{Mink}_-(\widehat{D}(q))$ (see Section 3.3). Suppose there exists $r \in I^-(q, \mathcal{C}(\widetilde{S}))$ such that $\widehat{D}(r) \notin \text{Mink}_-(\widehat{D}(q))$. Then, $I(\widehat{D}(q), \widehat{D}(r))$ contains conjugate points. Since the image under \widehat{D} of $I^-(q, \mathcal{C}(\widetilde{S}))$ is causally convex in $\widetilde{\text{Ein}}_{1,n-1}$ (see [10, Corollary 2.8, p. 151]), we deduce that $I^-(q, \mathcal{C}(\widetilde{S}))$ admits a photon whose image under \widehat{D} contains conjugate points. Therefore, by [11, Theorem 10], $\mathcal{C}(\widetilde{S})$ is conformally equivalent to $\widetilde{\text{Ein}}_{1,n-1}$. Contradiction. Then, $\widehat{D}(p)$ and Σ are contained in $\text{Mink}_-(\widehat{D}(q))$. As a result, the shadow $O(\widehat{D}(p), \Sigma)$ is the intersection in Minkowski spacetime of the past causal cone of $\widehat{D}(p)$ with Σ . Thus, the map which associates to every past causal direction at $\widehat{D}(p)$, the intersection of the straight line tangent to this direction with Σ , is a homeomorphism. Hence, $O(\widehat{D}(p), \Sigma)$ is a topological $(n - 1)$ -disk. Since the restriction of \widehat{D} to $O(p)$ is a diffeomorphism on $O(\widehat{D}(p), \Sigma)$ (see [10, Proposition 2.7, p. 151]), the lemma follows. \square

PROPOSITION 5.12. — *The action of Γ on $\mathcal{C}(\widetilde{S})$ is free and properly discontinuous.*

Proof. — Let $p \in \mathcal{C}(\widetilde{S})$ and let $\gamma \in \Gamma$ such that $\gamma.p = p$. Thus, γ preserves $O(p)$. Since $O(p)$ is a topological disk (see Lemma 5.11), by Brouwer's theorem, γ admits a fixed point in $O(p)$. Since the action of Γ on \widetilde{S} is free, we deduce that $\gamma = \text{id}$. This proves that the action of Γ on $\mathcal{C}(\widetilde{S})$ is free.

Suppose the action of Γ on $\mathcal{C}(\widetilde{S})$ is not properly discontinuous. Then, by [6, Proposition 1], there exists a sequence $\{p_i\}$ of points of $\mathcal{C}(\widetilde{S})$ converging to some point $p_\infty \in \mathcal{C}(\widetilde{S})$ and a divergent sequence $\{\gamma_i\}$ of elements of Γ such that $\{\gamma_i.p_i\}$ converges to some point $q_\infty \in \mathcal{C}(\widetilde{S})$. Without loss of generality, we can suppose that $p_\infty, q_\infty \in J^+(\widetilde{S})$.

Let $p \in I^+(p_\infty)$. Since $\lim p_i = p_\infty$, all the p_i belong to $I^-(p)$ except a finite number. Hence, $O(p_i) \subset O(p)$ for every $i \geq i_0$ where i_0 is a natural integer. Let $x_i \in O(p_i)$. Up to extracting, $\{x_i\}$ converges to some $x_\infty \in O(p)$. Similarly, let $q \in I^+(q_\infty)$; all the $\gamma_i p_i$ belong to $O(q)$ except a finite number. Hence, $\gamma_i O(p_i) = O(\gamma_i p_i) \subset O(q)$. Therefore, up to extracting, $\{\gamma_i x_i\}$ converges to some point $y_\infty \in O(q)$. This contradicts the properness of the action of Γ on \tilde{S} (see [6, Proposition 1]). \square

5.1.2. The \mathcal{C}_0 -maximal extension of V

PROPOSITION 5.13. — *The quotient space $\Gamma \backslash \mathcal{C}(\tilde{S})$ is a \mathcal{C}_0 -maximal extension of V .*

Proof. — Let $i: \tilde{V} \rightarrow E(\tilde{V})$ the embedding of \tilde{V} in $E(\tilde{V})$ defined in Section 4. The co-restriction of i to $\mathcal{C}(\tilde{S})$ is a Cauchy embedding, denoted by \tilde{f} . Let $\pi': \mathcal{C}(\tilde{S}) \rightarrow \Gamma \backslash \mathcal{C}(\tilde{S})$ be the canonical projection. Since the action of Γ on $i(\tilde{V})$ coincide with the usual action of Γ on \tilde{V} , the map \tilde{f} descends to quotient in a Cauchy embedding $f: V \rightarrow \Gamma \backslash \mathcal{C}(\tilde{S})$. It is easy to see that since $\mathcal{C}(\tilde{S})$ is \mathcal{C}_0 -maximal (see Proposition 4.17), the quotient $\Gamma \backslash \mathcal{C}(\tilde{S})$ is also \mathcal{C}_0 -maximal. The proposition follows. \square

COROLLARY 5.14. — *The \mathcal{C}_0 -maximal extension $\Gamma \backslash \mathcal{C}(\tilde{S})$ is unique up to conformal diffeomorphism.*

Proof. — Let $f: V \rightarrow W$ be a Cauchy embedding of V in a \mathcal{C}_0 -maximal globally hyperbolic conformally flat spacetime W . It lifts to a Cauchy embedding $\tilde{f}: \tilde{V} \rightarrow \tilde{W}$. By Proposition 4.13, \tilde{W} admits a conformal copy in $E(\tilde{V})$ contained in $\mathcal{C}(\tilde{S})$, where \tilde{S} is a Cauchy hypersurface of \tilde{V} (seen in $E(\tilde{V})$). The inclusion of \tilde{W} in $\mathcal{C}(\tilde{S})$ is a Cauchy embedding which descends to the quotient in a Cauchy embedding from W to $\Gamma \backslash \mathcal{C}(\tilde{S})$. By Proposition 5.13, this last one is surjective. The corollary follows. \square

The proof of Proposition 5.13 is based on the fact that if the universal covering of a globally hyperbolic spacetime is maximal then this spacetime is maximal. *A priori*, the converse assertion is not true in general. However, Proposition 5.13 allows to prove that it is true in the conformally flat setting.

COROLLARY 5.15. — *Let V be a \mathcal{C}_0 -maximal spacetime. Then, the universal covering of V is \mathcal{C}_0 -maximal.*

Proof. — Let \tilde{S} be a Cauchy hypersurface of \tilde{V} . By Proposition 5.13, there is a Cauchy embedding f from V to $\Gamma \backslash \mathcal{C}(\tilde{S})$. This last one lifts to

a Cauchy embedding $\tilde{f}: \tilde{V} \rightarrow \mathcal{C}(\tilde{S})$. Since V is maximal, f is surjective. Therefore, \tilde{f} is surjective. Since $\mathcal{C}(\tilde{S})$ is \mathcal{C}_0 -maximal (see Proposition 4.17), \tilde{V} is \mathcal{C}_0 -maximal. \square

6. \mathcal{C}_0 -maximal extensions respect inclusion

In this section, we show that the *maximal extension* respects inclusion in the setting of conformally flat spacetimes. More precisely, we establish the following result.

THEOREM 6.1. — *Let V be a conformally flat globally hyperbolic spacetime and let U be a causally convex open subset of V . Then, there is a conformal embedding from the \mathcal{C}_0 -maximal extension \hat{U} of U into the \mathcal{C}_0 -maximal extension \hat{V} of V . Moreover, the image of this embedding is causally convex in \hat{V} .*

We first prove this result in the case where V is simply-connected in Section 6.1 before dealing with the general case in Section 6.2.

6.1. The simply-connected case

We prove Theorem 6.1 in the case where V is simply-connected.

PROPOSITION 6.2. — *Let V be a simply-connected conformally flat globally hyperbolic spacetime and let U be a causally convex open subset of V . Then, there is a conformal embedding from the \mathcal{C}_0 -maximal extension \hat{U} of U into the \mathcal{C}_0 -maximal extension \hat{V} of V . Moreover, the image is causally convex in \hat{V} .*

The key idea is to realize the \mathcal{C}_0 -maximal extensions of U and V in the enveloping space $E(V)$ so we can compare them. The proof of Proposition 6.2 uses the following lemma.

Let $D: V \rightarrow \underline{\text{Ein}}_{1,n-1}$ be a developing map.

LEMMA 6.3. — *The inclusion map $i: U \hookrightarrow V$ induces a conformal embedding of $E(U)$ into $E(V)$ that sends every fiber of $E(U)$ on a fiber of $E(V)$ and such that the restriction to every fiber of $E(U)$ is surjective.*

Proof. — Consider the foliation of V by inextensible timelike curves induced by the pull-back by the developing map D of the vector field ∂_t on $\text{Ein}_{1,n} \simeq \mathbb{S}^{n-1} \times \mathbb{R}$. Since U is causally convex in V , the intersection of every

leaf of V with U is an inextensible timelike curve of U . Therefore, the foliation of V induces a foliation of U by inextensible timelike curves. Notice that this foliation coincides with that induced by the pull-back of ∂_t by the restriction of D to U . Let $\psi: V \rightarrow \mathcal{B}$ and $\psi_U: U \rightarrow \mathcal{B}_U$ be the canonical projections on the leaf spaces. Then, the map $\psi \circ i$ descends to the quotient in an embedding $\bar{i}: \mathcal{B}_U \rightarrow \mathcal{B}$. Let $d: \mathcal{B} \rightarrow \mathbb{S}^{n-1}$ (resp. $d_U: \mathcal{B}_U \rightarrow \mathcal{S}^{n-1}$) be the developing map induced by the developing map D (resp. the restriction of D to U). It is clear that $d \circ \bar{i} = d_U$. It follows that the map from $E(U)$ to $E(V)$ that sends (p, b) on $(p, \bar{i}(b))$ is a conformal embedding that sends every fiber of $E(U)$ on a fiber of $E(V)$. Moreover, the restriction to every fiber of $E(U)$ is clearly surjective. \square

In other words, Lemma 6.3 says that $E(U)$ can be seen as the union of the fibers of $E(V)$ over some open subset of \mathcal{B} .

Proof of Proposition 6.2. — We identify V (resp. U) with its image in $E(V)$ (resp. $E(U)$), then we identify $E(U)$ with its image in $E(V)$. Let \hat{V} (resp. \hat{U}) be the \mathcal{C}_0 -maximal extension of V (resp. U). By Proposition 4.17, \hat{V} (resp. \hat{U}) is the Cauchy development $\mathcal{C}(S)$ of a Cauchy hypersurface S of V (resp. Σ of U) in $E(V)$ (resp. $E(U)$).

We prove that the Cauchy development $\mathcal{C}(\Sigma)$ of Σ in $E(V)$ is exactly \hat{U} , then we prove that $\mathcal{C}(\Sigma) \subset \mathcal{C}(S)$.

Let $x \in \hat{U}$ and let $\hat{\gamma}$ be an inextensible causal curve of $E(V)$ going through x . The intersection of $\hat{\gamma}$ with $E(U)$ is a union of connected components. The component containing x is an inextensible causal curve of $E(U)$, then it intersects Σ in a single point. Hence, $x \in \mathcal{C}(\Sigma)$. This proves that $\hat{U} \subset \mathcal{C}(\Sigma)$. Actually, this inclusion is a Cauchy embedding. Since U is \mathcal{C}_0 -maximal, we deduce that $\hat{U} = \mathcal{C}(\Sigma)$.

Let $x \in \mathcal{C}(\Sigma)$ and let $\hat{\gamma}$ be an inextensible causal curve of $E(V)$ going through x . By definition, the curve $\hat{\gamma}$ meets Σ , hence V . Since V is causally convex in $E(V)$, the intersection of $\hat{\gamma}$ with V is an inextensible causal curve of V , thus it intersects S in a single point. It follows that $x \in \mathcal{C}(S)$. Hence, $\mathcal{C}(\Sigma) \subset \mathcal{C}(S)$. The proposition follows. \square

6.2. The general case

In the previous section, we proved Theorem 6.1 in the case where V is simply-connected. In this section, we prove it for any conformally flat globally hyperbolic spacetime V . Without loss of generality, we suppose that V is \mathcal{C}_0 -maximal. Let $\pi: \tilde{V} \rightarrow V$ be the universal cover of V . Set

$\Gamma := \pi_1(V)$. Let U' be a connected component of $\pi^{-1}(U)$ and let Γ' be the stabilizer of U' in Γ .

LEMMA 6.4. — *The open set U' is causally convex in \tilde{V} .*

Proof. — Let $p, q \in U'$ and let γ be a causal curve in \tilde{V} joining p to q . The projection $\pi(\gamma)$ of γ in V is a causal curve joining the points $\pi(p)$ and $\pi(q)$ of U . Since U is causally convex in V , the curve $\pi(\gamma)$ is contained in U . Hence, γ is contained in U' . The lemma follows. \square

Let \widehat{U}' be the \mathcal{C}_0 -maximal extension of U' . By Proposition 6.2, \widehat{U}' can be conformally identified to a causally convex open subset of \tilde{V} .

LEMMA 6.5. — *The stabilizer of \widehat{U}' in Γ is equal to Γ' .*

Proof. — Since $U' \subset \widehat{U}'$, the stabilizer of U' is contained in the stabilizer of \widehat{U}' . Conversely, let γ be an element of Γ stabilizing \widehat{U}' . Let $p \in U'$. Consider a Cauchy hypersurface Σ of U' going through p . Let φ be an inextensible causal curve of \widehat{U}' going through p . Then, $\gamma\varphi$ is an inextensible causal curve of \widehat{U}' . Therefore, $\gamma\varphi$ intersects Σ in a unique point q . We prove that $q = \gamma p$.

Since \widehat{U}' is causally convex in \tilde{V} , the projection $\pi(\widehat{U}')$ is causally convex in V and $\pi(\Sigma)$ is a Cauchy hypersurface of $\pi(\widehat{U}')$. Moreover, $\pi(\varphi)$ is an inextensible causal curve of $\pi(\widehat{U}')$, then it meets $\pi(\Sigma)$ in a single point. Since $\pi(p), \pi(q) \in \pi(\varphi) \cap \pi(\Sigma)$, we deduce that $\pi(p) = \pi(q)$. Then, $q = \gamma'p$ with $\gamma' \in \Gamma$. Since $\gamma p, \gamma'p \in \gamma\varphi$, if $\gamma \neq \gamma'$, the causal curve $\pi(\varphi)$ would be closed. Contradiction. Hence, $\gamma = \gamma'$, so $q = \gamma p$. This shows that $\gamma p \in U'$. Thus, $\gamma \in \Gamma'$. \square

The inclusion $\widehat{U}' \subset \tilde{V}$ descends to the quotient in a conformal embedding from $\Gamma' \setminus \widehat{U}'$ to V . Since \widehat{U}' is causally convex in \tilde{V} , the image of this embedding is causally convex in V . It remains to prove the following assertion to conclude.

LEMMA 6.6. — *The quotient space $\Gamma' \setminus \widehat{U}'$ is the \mathcal{C}_0 -maximal extension of U .*

Proof. — The inclusion $U' \subset \widehat{U}'$ is a Cauchy embedding which descends to the quotient in a Cauchy embedding from U to $\Gamma' \setminus \widehat{U}'$. We have to prove that $\Gamma' \setminus \widehat{U}'$ is \mathcal{C}_0 -maximal.

Let f be a Cauchy embedding from $\Gamma' \setminus \widehat{U}'$ in a globally hyperbolic conformally flat spacetime W . Then, the morphism $f_*: \pi_1(\Gamma' \setminus \widehat{U}') \rightarrow \pi_1(W)$ induced by f is an isomorphism. Let $\pi': \widehat{U}' \rightarrow \Gamma' \setminus \widehat{U}'$ be the canonical projection. It induces an injective morphism $\pi'_*: \pi_1(\widehat{U}') \rightarrow \pi_1(\Gamma' \setminus \widehat{U}')$. Hence,

the morphism $(f \circ \pi')_*: \pi_1(\widehat{U'}) \rightarrow \pi_1(W)$ is injective. Let $p: W' \rightarrow W$ the cover such that $p_*(\pi_1(W')) = (f \circ \pi')_*(\pi_1(\widehat{U'}))$. Then, f lifts to a Cauchy embedding $f': \widehat{U'} \rightarrow W'$. Since $\widehat{U'}$ is \mathcal{C}_0 -maximal, f' is surjective. Hence, f is surjective. The lemma follows. \square

7. Eikonal functions and \mathcal{C}_0 -maximality

7.1. Eikonal functions on the sphere

In this section, we characterize causally convex open subsets of $\widetilde{\text{Ein}}_{1,n-1}$ which are \mathcal{C}_0 -maximal in a spatio-temporal decomposition $\mathbb{S}^{n-1} \times \mathbb{R}$. We denote by d the distance on \mathbb{S}^{n-1} induced by the round metric. By [11, Theorem 10], causally convex open subsets of $\widetilde{\text{Ein}}_{1,n-1}$ with conjugate points are conformally equivalent to $\widetilde{\text{Ein}}_{1,n-1}$. For this reason, we consider a causally convex open subset Ω without conjugate points.

Let f^+ and f^- be the two 1-Lipschitz real-valued functions defined on the projection U of Ω in \mathbb{S}^{n-1} such that:

$$\Omega = \{(x, t) \in U \times \mathbb{R}, f^-(x) < t < f^+(x)\}.$$

We call f the common extension of f^+ and f^- to ∂U . Let g^+, g^- be the real-valued functions defined for every $x \in U$ by:

$$(7.1) \quad g^+(x) = \inf_{x_0 \in \partial U} \{f(x_0) + d(x, x_0)\},$$

$$(7.2) \quad g^-(x) = \sup_{x_0 \in \partial U} \{f(x_0) - d(x, x_0)\}.$$

PROPOSITION 7.1. — *The causally convex open subset Ω of $\widetilde{\text{Ein}}_{1,n-1}$ is \mathcal{C}_0 -maximal if and only if f^+ equals g^+ and f^- equals g^- .*

The proof of Proposition 7.1 uses the following lemma.

LEMMA 7.2. — *Any 1-Lipschitz real-valued function g defined on U , whose extension to ∂U equals f , is bounded by g^- and g^+ .*

Proof. — Let $x \in U$ and let $x_0 \in \partial U$. We denote by \bar{g} the extension of g to ∂U . Since \bar{g} is 1-Lipschitz, we have $\bar{g}(x) - \bar{g}(x_0) \leq d(x, x_0)$, i.e. $g(x) - f(x_0) \leq d(x, x_0)$. Hence, $g(x) \leq f(x_0) + d(x, x_0)$. Therefore, $g(x) \leq f^+(x)$. From $-d(x, x_0) \leq \bar{g}(x) - \bar{g}(x_0)$, we deduce similarly that $f^-(x) \leq g(x)$. The lemma follows. \square

Proof of Proposition 7.1. — Let us denote Ω' the set of points (x, t) of $\widetilde{\text{Ein}}_{1,n-1}$ such that $g^-(x) < t < g^+(x)$. By Lemma 7.2 and Proposition 3.11, Ω' is a Cauchy extension of Ω . According to Theorem 6.1, the \mathcal{C}_0 -maximal extension of Ω is conformally equivalent to a causally convex open subset $\widehat{\Omega}$ of $\widetilde{\text{Ein}}_{1,n-1}$ such that $\Omega \subset \Omega' \subset \widehat{\Omega}$ where each inclusion is a Cauchy embedding. Thus, there exist two 1-Lipschitz real-valued functions h^-, h^+ defined on U , whose extensions to ∂U equal f , such that $\widehat{\Omega}$ is the set of points (x, t) such that $h^-(x) < t < h^+(x)$. Hence, $g^-(x) \leq h^-(x) < h^+(x) \leq g^+(x)$ for every $x \in U$ (see 7.2). In other words, $\widehat{\Omega} \subset \Omega'$. The proposition follows. \square

The domain $\widehat{\Omega}$ in the proof of Proposition 7.1 is a union of connected components of the dual of the graph of f (see Proposition 3.17). Therefore, Proposition 7.1 can be reformulated as: *\mathcal{C}_0 -maximal causally convex open subsets of $\widetilde{\text{Ein}}_{1,n-1}$ are exactly unions of connected components of duals of closed achronal subsets of $\widetilde{\text{Ein}}_{1,n-1}$.*

DEFINITION 7.3. — *The function g^+ (resp. g^-) is called future eikonal (resp. past eikonal).*

Remark 7.4. — This definition is motivated by the classical notion of eikonal function in analysis: a real-valued function f defined on an open subset U of \mathbb{R}^n is called eikonal if f is differentiable almost everywhere and satisfies the eikonal equation $\|\nabla f\| = 1$. It turns out that if U has a piecewise smooth boundary, then the function $f(x) := d(x, \partial U)$, where d is the usual distance on \mathbb{R}^n , is eikonal in this sense.

The following proposition gives a geometrical characterization of eikonal functions.

PROPOSITION 7.5 (Geometrical criterion of eikonal). — *A real-valued function f^+ defined on an open subset U of the sphere \mathbb{S}^{n-1} is future eikonal if and only if for every $x \in U$, there exists a past-directed lightlike geodesic starting from $(x, f^+(x))$, entirely contained in the graph of f^+ and with no past endpoint in the graph of f^+ .*

Proof. — Suppose f^+ is eikonal. We call f the extension of f^+ to ∂U . Let $x \in U$. There exists $x_0 \in \partial U$ such that $f^+(x) = f(x_0) + d(x, x_0)$. Hence, $f^+(x) - f(x_0) = d(x, x_0)$, i.e. the points $(x, f^+(x))$ and $(x_0, f(x_0))$ are joined by a past lightlike geodesic φ . This last one is contained in the graph of f^+ . Conversely, let us prove that f^+ equals the function g^+ defined by (7.1). By Lemma 7.2, we have $f^+ \leq g^+$. Let $x \in U$. There exists a past-directed lightlike geodesic φ starting from $(x, f^+(x))$, entirely contained in the graph of f^+ and with no past endpoint in the graph of f^+ . In $\widetilde{\text{Ein}}_{1,n-1}$,

the geodesic φ admits a past endpoint $(x_0, f(x_0))$ with $x_0 \in \partial U$. Thus, $d(x, x_0) = f^+(x) - f(x_0)$. Hence, $f^+(x) = f(x_0) + d(x, x_0) \geq g^+(x)$. Then, $f^+ = g^+$. \square

Now, we show that eikonal is a *local* property.

DEFINITION 7.6. — *A real-valued function f^+ defined on an open subset U of the sphere \mathbb{S}^{n-1} is locally future eikonal if every point x of U admits an arbitrarily small neighborhood V_x such that the restriction of f^+ to V_x is future eikonal.*

Remark 7.7. — A locally future eikonal function is locally 1-Lipschitz, thus 1-Lipschitz.

Let f^+ be a 1-Lipschitz real-valued function defined on an open subset U of \mathbb{S}^{n-1} . We call f its extension to ∂U .

LEMMA 7.8. — *If f^+ is future eikonal then f^+ is locally future eikonal.*

Proof. — Let V be an open subset of U . We call g the extension of $f^+|_V$ to ∂V . Let g^+ (resp. g^-) be the function defined by the expression (7.1) (resp. (7.2)) after replacing U by V . By Lemma 7.2, we have $f^+|_V \leq g$. Let us prove that $f^+|_V \geq g$ so we get the equality. Let Ω (resp. W) be the \mathcal{C}_0 -maximal causally convex open subset of $\widetilde{\text{Ein}}_{1,n-1}$ bounded by the graphs of f^+ and f^- (resp. g^+ and g^-). The intersection $W \cap \Omega$ is a causally convex open subset of Ω ; its \mathcal{C}_0 -maximal extension is W . By Theorem 6.1, we get $W \subset \Omega$. Hence, $g^+ \leq f^+|_V$. Thus, $g^+ = f^+|_V$, then $f^+|_V$ is future eikonal. \square

LEMMA 7.9. — *If f^+ is locally future eikonal then f^+ is future eikonal.*

Proof. — We use the criterion given by Proposition 7.5 to prove that f^+ is eikonal. Let $x \in U$ and let $V \subset U$ be a neighborhood of x such that $f^+|_V$ is future eikonal. Then, there is a past-directed lightlike geodesic φ starting from $(x, f^+(x))$ with the properties of Proposition 7.5. In $\widetilde{\text{Ein}}_{1,n-1}$, the geodesic φ admits a past endpoint $(x_0, f^+(x_0))$ where $x_0 \in \partial V$ (we still denote by f^+ its extension to \overline{U}). If $x_0 \in \partial U$, the lemma is proved. Otherwise, we choose a neighborhood $V_0 \subset U$ of x_0 such that $f^+|_{V_0}$ is future eikonal. Again, there is a past-directed lightlike geodesic φ_0 starting from $(x_0, f(x_0))$, entirely contained in the graph of $f^+|_{V_0}$, with past endpoint $(x_1, f^+(x_1))$ where $x_1 \in \partial V_0$. The geodesic φ_0 extends φ ; indeed, otherwise $(x_1, f^+(x_1))$ would be in the chronological past of $(x, f^+(x))$, i.e. we would have $d(x, x_1) < f^+(x) - f^+(x_1)$. This contradicts the fact that f^+ is 1-Lipschitz. Consequently, we extend φ in a lightlike geodesic, entirely

contained in the graph of f^+ , with no past endpoint in the graph of f^+ . The lemma follows. \square

We proved the following statement.

PROPOSITION 7.10. — *A real-valued function defined on an open subset of the sphere \mathbb{S}^{n-1} is future eikonal if and only if it is locally future eikonal.*

7.2. Eikonal functions on a conformally flat Riemannian manifold

Let \mathcal{B} be a conformally flat Riemannian manifold of dimension $(n-1) \geq 2$ and let $d: \mathcal{B} \rightarrow \mathbb{S}^{n-1}$ be a developing map. The notion of eikonal function on an open subset of the sphere \mathbb{S}^{n-1} being *local*, it naturally generalizes to functions on an open subset of \mathcal{B} .

DEFINITION 7.11. — *A real-valued function f^+ defined on an open subset U of \mathcal{B} is said future eikonal if for every $x \in U$, there exists an open neighborhood U_x of x contained in U such that the following hold:*

- (1) *the restriction of d to U_x is injective;*
- (2) *the map $f^+ \circ d|_{U_x}^{-1}: d(U_x) \subset \mathbb{S}^{n-1} \rightarrow \mathbb{R}$ is future eikonal.*

Past eikonal functions on U are defined similarly with the reverse time orientation. The geometrical criterion of eikonal given in Proposition 7.5 is still valid in this setting.

Eikonal is closely related to \mathcal{C}_0 -maximality. Indeed, let E be the pull-back of the trivial fiber bundle $\pi: \widetilde{\text{Ein}}_{1,n-1} \rightarrow \mathbb{S}^{n-1}$ by d :

$$E := \{(p, b) \in \widetilde{\text{Ein}}_{1,n-1} \times \mathcal{B} : \pi(p) = d(b)\}.$$

We denote by $\pi: E \rightarrow \mathcal{B}$ the projection on the second factor. The construction of this fiber bundle is exactly the same as that of the enveloping space in Section 4.2. Then, E is a conformally flat spacetime of dimension $n \geq 3$ sharing the same properties as that of the enveloping space. Let $\widehat{D}: E \rightarrow \widetilde{\text{Ein}}_{1,n-1}$ be the developing map defined as the projection on the first factor. A causally convex GH open subset Ω of E is given by

$$\Omega = \{(x, t) \in U \times \mathbb{R} : f^-(x) < t < f^+(x)\}$$

where f^+ and f^- are 1-Lipschitz functions defined on an open subset U of \mathcal{B} such that their extensions to ∂U coincide (see Section 4.3).

PROPOSITION 7.12. — *The GH conformally flat spacetime Ω is \mathcal{C}_0 -maximal if and only if f^+ is future-eikonal and f^- past-eikonal.*

Proof. — Suppose Ω is \mathcal{C}_0 -maximal. Let $x \in U$. Set $p_+ = (x, f^+(x))$. Let $p \in I^-(p_+) \cap \Omega$. Since Ω is GH, the restriction of \widehat{D} to $I^+(p, \Omega)$ is injective and its image is causally convex in $\widehat{\text{Ein}}_{1, n-1}$ (see [10, Proposition 2.7 and Corollary 2.8, p. 151]). The \mathcal{C}_0 -maximality of Ω implies that $\widehat{D}(I^+(p, \Omega))$ is also \mathcal{C}_0 -maximal (see [10, Proposition 3.6, p. 156]). It follows that:

- $\widehat{D}(I^+(p, \Omega))$ is the domain bounded by the graph of a future-eikonal function g^+ and the graph of a past-eikonal function g^- defined on an open subset of \mathbb{S}^{n-1} (see Proposition 7.1);
- d is injective on $U_x := \widehat{\pi}(I^+(p, \Omega))$ and $g^+ = f^+ \circ d|_{U_x}^{-1}$.

Thus, f^+ is future-eikonal. The proof is similar for f^- with the reverse time-orientation.

Conversely, suppose that f^+ is future-eikonal and f^- past-eikonal. Let S be a Cauchy hypersurface in Ω . By Proposition 4.17, the \mathcal{C}_0 -maximal extension of Ω is conformally equivalent to a causally convex open subset $\widehat{\Omega}$ of E , containing Ω and for which S is a Cauchy hypersurface. Suppose that Ω is strictly contained in $\widehat{\Omega}$. Then, there exists $x \in U$ such that $(x, f^+(x)) \in \widehat{\Omega}$ or $(x, f^-(x)) \in \widehat{\Omega}$. Suppose that $(x, f^+(x)) \in \widehat{\Omega}$. The proof is symmetric if $(x, f^-(x)) \in \widehat{\Omega}$. Since f^+ is future-eikonal, there exists a past-directed lightlike geodesic φ starting from $(x, f^+(x))$, entirely contained in the graph of f^+ and with no endpoint in the graph of f^+ . Then, φ does not intersect S . Contradiction. Hence, $\Omega = \widehat{\Omega}$, in other words Ω is \mathcal{C}_0 -maximal. \square

BIBLIOGRAPHY

- [1] L. ANDERSSON, T. BARBOT, F. BÉGUIN & A. ZEGHIB, “Cosmological time versus CMC time in spacetimes of constant curvature”, *Asian J. Math.* **16** (2012), no. 1, p. 37-88.
- [2] A. N. BERNAL & M. SÁNCHEZ, “On smooth Cauchy hypersurfaces and Geroch’s splitting theorem”, *Commun. Math. Phys.* **243** (2003), p. 461-470.
- [3] ———, “Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’”, *Class. Quant. Grav.* **24** (2007), no. 3, p. 745-749.
- [4] Y. CHOQUET-BRUHAT & R. P. GEROCH, “Global aspects of the Cauchy problem in general relativity”, *Commun. Math. Phys.* **14** (1969), p. 329-335.
- [5] C. FRANCES, “Une preuve du théorème de Liouville en géométrie conforme dans le cas analytique”, *Enseign. Math. (2)* **49** (2003), no. 1-2, p. 95-100.
- [6] ———, “Lorentzian Kleinian groups”, *Comment. Math. Helv.* **80** (2005), no. 4, p. 883-910.
- [7] R. P. GEROCH, “The domain of dependence”, *J. Math. Phys.* **11** (1970), p. 437-449.
- [8] W. GOLDMAN, “Geometric structures on manifolds”, unpublished manuscript, online at <https://www.terpconnect.umd.edu/~wmg/gstom.pdf>, 2021.
- [9] B. O’NEILL, *Semi-Riemannian geometry with applications to relativity*, Academic Press Inc., 1983.

- [10] C. R. SALVEMINI, “Espace-temps globalement hyperboliques conformément plats”, PhD Thesis, Université d’Avignon (France), 2012.
- [11] ———, “Maximal extension of conformally flat globally hyperbolic spacetimes”, *Geom. Dedicata* **174** (2013), p. 235-260.
- [12] R. SMAÏ, “Anosov representations as holonomies of globally hyperbolic spatially compact conformally flat spacetimes”, *Geom. Dedicata* **216** (2022), no. 4, article no. 45 (36 pages).

Manuscrit reçu le 9 janvier 2024,
révisé le 29 juillet 2024,
accepté le 7 octobre 2024.

Rym SMAÏ
IRMA,
7 Rue René Descartes,
67000 Strasbourg (France)
rym.smai@math.unistra.fr