On the behavior of formal neighborhoods in the Nash sets associated with toric valuations: a comparison theorem
[Sur le comportement des voisinages formels dans les ensembles de Nash associés aux valuations toriques : un théorème de comparaison]
Annales de l'Institut Fourier, Online first, 34 p.

We show that there exists a strong connection between the generic formal neighborhood at a rational arc lying in the Nash set associated with a toric divisorial valuation on a toric variety and the formal neighborhood at the generic point of the same Nash set. This may be interpreted as the fact that, analytically along such a Nash set, the arc scheme of a toric variety is a product of a finite dimensional singularity and an infinite dimensional affine space.

Nous montrons qu’il existe un lien étroit entre le voisinage formel générique d’un arc rationnel situé sur l’ensemble de Nash associé à une valuation divisorielle torique et le voisinage formel du point générique de cet ensemble de Nash. Cela peut être interprété comme le fait que, analytiquement le long de cet ensemble de Nash, le schéma des arcs d’une variété torique est le produit d’une singularité de dimension finie et d’un espace affine de dimension infinie.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3757
Classification : 14B20, 14E18, 14M25
Keywords: arc schemes, formal neighborhoods, toric varieties
Mots-clés : schéma des arcs, voisinages formels, variétés toriques

Bourqui, David  1   ; Morán Cañón, Mario  2   ; Sebag, Julien  1

1 Institut de recherche mathématique de Rennes, UMR 6625 du CNRS, Université de Rennes, Campus de Beaulieu, 35042 Rennes cedex (France)
2 Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, and, Instituto de Ciencias Matemáticas, ICMAT, CSIC-UAM-UC3M-UCM, Campus de Cantoblanco, 28049 Madrid (Spain)
@unpublished{AIF_0__0_0_A45_0,
     author = {Bourqui, David and Mor\'an Ca\~n\'on, Mario and Sebag, Julien},
     title = {On the behavior of formal neighborhoods in the {Nash} sets associated with toric valuations: a comparison theorem},
     journal = {Annales de l'Institut Fourier},
     year = {2026},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     doi = {10.5802/aif.3757},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Bourqui, David
AU  - Morán Cañón, Mario
AU  - Sebag, Julien
TI  - On the behavior of formal neighborhoods in the Nash sets associated with toric valuations: a comparison theorem
JO  - Annales de l'Institut Fourier
PY  - 2026
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3757
LA  - en
ID  - AIF_0__0_0_A45_0
ER  - 
%0 Unpublished Work
%A Bourqui, David
%A Morán Cañón, Mario
%A Sebag, Julien
%T On the behavior of formal neighborhoods in the Nash sets associated with toric valuations: a comparison theorem
%J Annales de l'Institut Fourier
%D 2026
%V 0
%N 0
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3757
%G en
%F AIF_0__0_0_A45_0
Bourqui, David; Morán Cañón, Mario; Sebag, Julien. On the behavior of formal neighborhoods in the Nash sets associated with toric valuations: a comparison theorem. Annales de l'Institut Fourier, Online first, 34 p.

[1] Bourqui, David; Morán Cañón, Mario Deformations of arcs and comparison of formal neighborhoods for a curve singularity, Forum Math. Sigma, Volume 11 (2023), e31, 38 pages | DOI | MR | Zbl

[2] Bourqui, David; Nicaise, Johannes; Sebag, Julien Arc schemes in geometry and differential algebra, Arc schemes and singularities (Bourqui, David; Nicaise, Johannes; Sebag, Julien, eds.), World Scientific, 2020, pp. 7-35 | DOI | MR | Zbl

[3] Bourqui, David; Sebag, Julien The Drinfeld–Grinberg–Kazhdan theorem for formal schemes and singularity theory, Confluentes Math., Volume 9 (2017) no. 1, pp. 29-64 | Numdam | DOI | MR | Zbl

[4] Bourqui, David; Sebag, Julien The minimal formal models of curve singularities, Int. J. Math., Volume 28 (2017) no. 11, 1750081, 23 pages | DOI | MR | Zbl

[5] Bourqui, David; Sebag, Julien Smooth arcs on algebraic varieties, J. Singul., Volume 16 (2017), pp. 130-140 | MR | Zbl

[6] Bourqui, David; Sebag, Julien Finite formal model of toric singularities, J. Math. Soc. Japan, Volume 71 (2019) no. 3, pp. 805-829 | DOI | MR | Zbl

[7] Bourqui, David; Sebag, Julien The local structure of arc schemes, Arc schemes and singularities (Bourqui, David; Nicaise, Johannes; Sebag, Julien, eds.), World Scientific, 2020, pp. 69-97 | DOI | MR | Zbl

[8] Bouvier, Catherine Diviseurs essentiels, composantes essentielles des variétés toriques singulières, Duke Math. J., Volume 91 (1998) no. 3, pp. 609-620 | DOI | MR | Zbl

[9] Bouvier, Catherine; Gonzalez-Sprinberg, Gérard Système générateur minimal, diviseurs essentiels et G-désingularisations de variétés toriques, Tôhoku Math. J. (2), Volume 47 (1995) no. 1, pp. 125-149 | DOI | MR | Zbl

[10] Chambert-Loir, Antoine; Nicaise, Johannes; Sebag, Julien Motivic integration, Progress in Mathematics, 325, Birkhäuser, 2018 | DOI | MR | Zbl

[11] Cox, David A.; Little, John B.; Schenck, Henry K. Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011 | DOI | MR | Zbl

[12] Drinfeld, Vladimir On the Grinberg–Kazhdan formal arc theorem (2002) | arXiv | Zbl

[13] Drinfeld, Vladimir The Grinberg–Kazhdan formal arc theorem and the Newton groupoids, Arc schemes and singularities (Bourqui, David; Nicaise, Johannes; Sebag, Julien, eds.), World Scientific, 2020, pp. 37-56 | DOI | MR | Zbl

[14] Ein, Lawrence; Lazarsfeld, Robert; Mustaţǎ, Mircea Contact loci in arc spaces, Compos. Math., Volume 140 (2004) no. 5, pp. 1229-1244 | DOI | MR | Zbl

[15] de Fernex, Tommaso The space of arcs of an algebraic variety, Algebraic geometry: Salt Lake City 2015 (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society, 2018, pp. 169-197 | MR | Zbl

[16] de Fernex, Tommaso; Docampo, Roi Terminal valuations and the Nash problem, Invent. Math., Volume 203 (2016) no. 1, pp. 303-331 | DOI | MR | Zbl

[17] de Fernex, Tommaso; Docampo, Roi Differentials on the arc space, Duke Math. J., Volume 169 (2020) no. 2, pp. 353-396 | DOI | MR | Zbl

[18] Grinberg, M.; Kazhdan, D. Versal deformations of formal arcs, Geom. Funct. Anal., Volume 10 (2000) no. 3, pp. 543-555 | DOI | Zbl | MR

[19] Ishii, Shihoko Arcs, valuations and the Nash map, J. Reine Angew. Math., Volume 588 (2005), pp. 71-92 | DOI | MR | Zbl

[20] Ishii, Shihoko Maximal divisorial sets in arc spaces, Algebraic geometry in East Asia — Hanoi 2005 (Advanced Studies in Pure Mathematics), Volume 50, Mathematical Society of Japan, 2008, pp. 237-249 | MR | DOI | Zbl

[21] Lang, Serge Algebra, Graduate Texts in Mathematics, 211, Springer, 2002 | DOI | MR

[22] Morán Cañón, Mario Study of the scheme structure of arc scheme, Ph. D. Thesis, Université de Rennes 1 (France) (2020)

[23] Mourtada, Hussein; Reguera, Ana J. Mather discrepancy as an embedding dimension in the space of arcs, Publ. Res. Inst. Math. Sci., Volume 54 (2018) no. 1, pp. 105-139 | Zbl | DOI | MR

[24] Nash, John F. Jr. Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, pp. 31-38 | MR | Zbl

[25] Reguera, Ana J. A curve selection lemma in spaces of arcs and the image of the Nash map, Compos. Math., Volume 142 (2006) no. 1, pp. 119-130 | DOI | MR | Zbl

[26] Reguera, Ana J. Towards the singular locus of the space of arcs, Am. J. Math., Volume 131 (2009) no. 2, pp. 313-350 | DOI | Zbl | MR

[27] Reguera, Ana J. Arc spaces and wedge spaces for toric varieties, Ann. Inst. Fourier, Volume 73 (2023) no. 5, pp. 2135-2183 | DOI | MR | Numdam | Zbl

[28] Sturmfels, Bernd Gröbner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, 1996 | MR | Zbl

Cité par Sources :