[Sur le comportement des voisinages formels dans les ensembles de Nash associés aux valuations toriques : un théorème de comparaison]
We show that there exists a strong connection between the generic formal neighborhood at a rational arc lying in the Nash set associated with a toric divisorial valuation on a toric variety and the formal neighborhood at the generic point of the same Nash set. This may be interpreted as the fact that, analytically along such a Nash set, the arc scheme of a toric variety is a product of a finite dimensional singularity and an infinite dimensional affine space.
Nous montrons qu’il existe un lien étroit entre le voisinage formel générique d’un arc rationnel situé sur l’ensemble de Nash associé à une valuation divisorielle torique et le voisinage formel du point générique de cet ensemble de Nash. Cela peut être interprété comme le fait que, analytiquement le long de cet ensemble de Nash, le schéma des arcs d’une variété torique est le produit d’une singularité de dimension finie et d’un espace affine de dimension infinie.
Révisé le :
Accepté le :
Première publication :
Keywords: arc schemes, formal neighborhoods, toric varieties
Mots-clés : schéma des arcs, voisinages formels, variétés toriques
Bourqui, David  1 ; Morán Cañón, Mario  2 ; Sebag, Julien  1
@unpublished{AIF_0__0_0_A45_0,
author = {Bourqui, David and Mor\'an Ca\~n\'on, Mario and Sebag, Julien},
title = {On the behavior of formal neighborhoods in the {Nash} sets associated with toric valuations: a comparison theorem},
journal = {Annales de l'Institut Fourier},
year = {2026},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
doi = {10.5802/aif.3757},
language = {en},
note = {Online first},
}
TY - UNPB AU - Bourqui, David AU - Morán Cañón, Mario AU - Sebag, Julien TI - On the behavior of formal neighborhoods in the Nash sets associated with toric valuations: a comparison theorem JO - Annales de l'Institut Fourier PY - 2026 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3757 LA - en ID - AIF_0__0_0_A45_0 ER -
%0 Unpublished Work %A Bourqui, David %A Morán Cañón, Mario %A Sebag, Julien %T On the behavior of formal neighborhoods in the Nash sets associated with toric valuations: a comparison theorem %J Annales de l'Institut Fourier %D 2026 %V 0 %N 0 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3757 %G en %F AIF_0__0_0_A45_0
Bourqui, David; Morán Cañón, Mario; Sebag, Julien. On the behavior of formal neighborhoods in the Nash sets associated with toric valuations: a comparison theorem. Annales de l'Institut Fourier, Online first, 34 p.
[1] Deformations of arcs and comparison of formal neighborhoods for a curve singularity, Forum Math. Sigma, Volume 11 (2023), e31, 38 pages | DOI | MR | Zbl
[2] Arc schemes in geometry and differential algebra, Arc schemes and singularities (Bourqui, David; Nicaise, Johannes; Sebag, Julien, eds.), World Scientific, 2020, pp. 7-35 | DOI | MR | Zbl
[3] The Drinfeld–Grinberg–Kazhdan theorem for formal schemes and singularity theory, Confluentes Math., Volume 9 (2017) no. 1, pp. 29-64 | Numdam | DOI | MR | Zbl
[4] The minimal formal models of curve singularities, Int. J. Math., Volume 28 (2017) no. 11, 1750081, 23 pages | DOI | MR | Zbl
[5] Smooth arcs on algebraic varieties, J. Singul., Volume 16 (2017), pp. 130-140 | MR | Zbl
[6] Finite formal model of toric singularities, J. Math. Soc. Japan, Volume 71 (2019) no. 3, pp. 805-829 | DOI | MR | Zbl
[7] The local structure of arc schemes, Arc schemes and singularities (Bourqui, David; Nicaise, Johannes; Sebag, Julien, eds.), World Scientific, 2020, pp. 69-97 | DOI | MR | Zbl
[8] Diviseurs essentiels, composantes essentielles des variétés toriques singulières, Duke Math. J., Volume 91 (1998) no. 3, pp. 609-620 | DOI | MR | Zbl
[9] Système générateur minimal, diviseurs essentiels et -désingularisations de variétés toriques, Tôhoku Math. J. (2), Volume 47 (1995) no. 1, pp. 125-149 | DOI | MR | Zbl
[10] Motivic integration, Progress in Mathematics, 325, Birkhäuser, 2018 | DOI | MR | Zbl
[11] Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011 | DOI | MR | Zbl
[12] On the Grinberg–Kazhdan formal arc theorem (2002) | arXiv | Zbl
[13] The Grinberg–Kazhdan formal arc theorem and the Newton groupoids, Arc schemes and singularities (Bourqui, David; Nicaise, Johannes; Sebag, Julien, eds.), World Scientific, 2020, pp. 37-56 | DOI | MR | Zbl
[14] Contact loci in arc spaces, Compos. Math., Volume 140 (2004) no. 5, pp. 1229-1244 | DOI | MR | Zbl
[15] The space of arcs of an algebraic variety, Algebraic geometry: Salt Lake City 2015 (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society, 2018, pp. 169-197 | MR | Zbl
[16] Terminal valuations and the Nash problem, Invent. Math., Volume 203 (2016) no. 1, pp. 303-331 | DOI | MR | Zbl
[17] Differentials on the arc space, Duke Math. J., Volume 169 (2020) no. 2, pp. 353-396 | DOI | MR | Zbl
[18] Versal deformations of formal arcs, Geom. Funct. Anal., Volume 10 (2000) no. 3, pp. 543-555 | DOI | Zbl | MR
[19] Arcs, valuations and the Nash map, J. Reine Angew. Math., Volume 588 (2005), pp. 71-92 | DOI | MR | Zbl
[20] Maximal divisorial sets in arc spaces, Algebraic geometry in East Asia — Hanoi 2005 (Advanced Studies in Pure Mathematics), Volume 50, Mathematical Society of Japan, 2008, pp. 237-249 | MR | DOI | Zbl
[21] Algebra, Graduate Texts in Mathematics, 211, Springer, 2002 | DOI | MR
[22] Study of the scheme structure of arc scheme, Ph. D. Thesis, Université de Rennes 1 (France) (2020)
[23] Mather discrepancy as an embedding dimension in the space of arcs, Publ. Res. Inst. Math. Sci., Volume 54 (2018) no. 1, pp. 105-139 | Zbl | DOI | MR
[24] Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, pp. 31-38 | MR | Zbl
[25] A curve selection lemma in spaces of arcs and the image of the Nash map, Compos. Math., Volume 142 (2006) no. 1, pp. 119-130 | DOI | MR | Zbl
[26] Towards the singular locus of the space of arcs, Am. J. Math., Volume 131 (2009) no. 2, pp. 313-350 | DOI | Zbl | MR
[27] Arc spaces and wedge spaces for toric varieties, Ann. Inst. Fourier, Volume 73 (2023) no. 5, pp. 2135-2183 | DOI | MR | Numdam | Zbl
[28] Gröbner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, 1996 | MR | Zbl
Cité par Sources :



