[Conjectures généralisées de Suita avec jets et poids]
We survey different approaches to Suita’s conjecture and its various generalizations. We present a new and unified proof for generalized Suita conjectures with jets and weights, which is based on the concavity of certain minimal $L^2$ integrals and the necessary condition for linearity. Additionally, we provide some examples and counterexamples for the equalities in generalized Suita conjectures.
Nous passons en revue différentes approches de la conjecture de Suita et de ses diverses généralisations. Nous présentons une nouvelle preuve unifiée des conjectures généralisées de Suita avec jets et poids, basée sur la concavité de certaines $L^2$-intégrales minimales et la condition nécessaire de linéarité. De plus, nous donnons quelques exemples et contre-exemples pour les égalités dans les conjectures généralisées de Suita.
Révisé le :
Accepté le :
Première publication :
Keywords: Suita conjecture, Bergman kernel, logarithmic capacity, Azukawa indicatrix, Hartogs domain
Mots-clés : conjecture de Suita, noyau de Bergman, capacité logarithmique, indicatrice d’Azukawa, domaine de Hartogs
Xu, Wang  1 , 2 ; Zhou, Xiangyu  3
@unpublished{AIF_0__0_0_A44_0,
author = {Xu, Wang and Zhou, Xiangyu},
title = {Generalized {Suita} conjectures with jets and weights},
journal = {Annales de l'Institut Fourier},
year = {2026},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
doi = {10.5802/aif.3756},
language = {en},
note = {Online first},
}
Xu, Wang; Zhou, Xiangyu. Generalized Suita conjectures with jets and weights. Annales de l'Institut Fourier, Online first, 28 p.
[1] Complex analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1978 | Zbl
[2] Riemann surfaces, Princeton Mathematical Series, 26, Princeton University Press, 1960 | DOI | MR | Zbl
[3] Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Ann. Inst. Fourier, Volume 56 (2006) no. 6, pp. 1633-1662 | Numdam | DOI | MR | Zbl
[4] A proof of the Ohsawa–Takegoshi theorem with sharp estimates, J. Math. Soc. Japan, Volume 68 (2016) no. 4, pp. 1461-1472 | DOI | MR | Zbl
[5] Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | DOI | MR | Zbl
[6] A lower bound for the Bergman kernel and the Bourgain–Milman inequality, Geometric aspects of functional analysis (Klartag, Bo’az; Milman, Emanuel, eds.) (Lecture Notes in Mathematics), Volume 2116, Springer, 2014, pp. 53-63 | DOI | Zbl
[7] Estimates for the Bergman kernel and the multidimensional Suita conjecture, New York J. Math., Volume 21 (2015), pp. 151-161 | MR | Zbl
[8] One dimensional estimates for the Bergman kernel and logarithmic capacity, Proc. Am. Math. Soc., Volume 146 (2018) no. 6, pp. 2489-2495 | DOI | Zbl | MR
[9] Generalizations of the higher dimensional Suita conjecture and its relation with a problem of Wiegerinck, J. Geom. Anal., Volume 30 (2020) no. 2, pp. 1259-1270 | DOI | MR | Zbl
[10] Equality in Suita’s conjecture and metrics of constant Gaussian curvature (2022) | arXiv
[11] Riemann surfaces, Graduate Texts in Mathematics, 71, Springer, 1992 | DOI | Zbl | MR
[12] A proof of Saitoh’s conjecture for conjugate Hardy kernels, J. Math. Soc. Japan, Volume 71 (2019) no. 4, pp. 1173-1179 | DOI | Zbl | MR
[13] A sharp effectiveness result of Demailly’s strong openness conjecture, Adv. Math., Volume 348 (2019), pp. 51-80 | DOI | Zbl | MR
[14] Concavity of minimal integrals related to multiplier ideal sheaves, Peking Math. J., Volume 6 (2023) no. 2, pp. 393-457 | Zbl | MR | DOI
[15] Concavity property of minimal integrals with Lebesgue measurable gain II, Adv. Math., Volume 450 (2024), 109766, 61 pages | DOI | MR | Zbl
[16] A remark on a weighted version of Suita conjecture for higher derivatives, Math. Z., Volume 307 (2024) no. 1, 17, 23 pages | DOI | MR | Zbl
[17] Optimal constant problem in the extension theorem, Comptes Rendus. Mathématique, Volume 350 (2012) no. 15–16, pp. 753-756 | DOI | Numdam | Zbl
[18] Optimal constant in an extension problem and a proof of a conjecture of Ohsawa, Sci. China, Math., Volume 58 (2015) no. 1, pp. 35-59 | DOI | Zbl | MR
[19] A solution of an extension problem with an optimalestimate and applications, Ann. Math. (2), Volume 181 (2015) no. 3, pp. 1139-1208 | DOI | Zbl
[20] Invariant distances and metrics in complex analysis, Walter de Gruyter, 2013 | DOI | Zbl | MR
[21] extension theorem and the approximation of Bergman spaces, Ph. D. Thesis, Institute of Mathematics, Chinese Academy of Sciences (China) (2019)
[22] On Demailly’s extension theorem from non-reduced subvarieties, Math. Z., Volume 305 (2023) no. 2, 23 | DOI | Zbl | MR
[23] On the Forelli–Rudin construction and weighted Bergman projections, Stud. Math., Volume 94 (1989) no. 3, pp. 257-272 | DOI | Zbl | MR
[24] Variation of Bergman metrics on Riemann surfaces, Math. Ann., Volume 330 (2004) no. 3, pp. 477-489 | DOI | Zbl | MR
[25] The capacity metric on Riemann surfaces, Ann. Acad. Sci. Fenn., Ser. A I, Math., Volume 12 (1987) no. 1, pp. 25-32 | DOI | MR | Zbl
[26] Addendum to: On the Bergman kernel of hyperconvex domains, Nagoya Math. J., Volume 137 (1995), pp. 145-148 | Zbl | MR | DOI
[27] On constants in extremal problems of analytic functions, Kōdai Math. Semin. Rep., Volume 21 (1969), pp. 223-225 | Zbl | MR
[28] Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217 | DOI | Zbl | MR
[29] Optimal extensions of openness type and related topics, Comptes Rendus. Mathématique, Volume 361 (2023), pp. 679-683 | DOI | Numdam | Zbl
[30] Optimal extensions of openness type, Math. Ann., Volume 390 (2024), pp. 1249-1307 | DOI | MR | Zbl
[31] Topics related to reproducing kernels, theta functions and the Suita conjecture, RIMS Kokyuroku, Volume 1067 (1998), pp. 39-47 | Zbl
[32] Regularity properties of the Azukawa metric, J. Math. Soc. Japan, Volume 52 (2000) no. 4, pp. 899-914 | DOI | MR | Zbl
Cité par Sources :



