Generalized Suita conjectures with jets and weights
[Conjectures généralisées de Suita avec jets et poids]
Annales de l'Institut Fourier, Online first, 28 p.

We survey different approaches to Suita’s conjecture and its various generalizations. We present a new and unified proof for generalized Suita conjectures with jets and weights, which is based on the concavity of certain minimal $L^2$ integrals and the necessary condition for linearity. Additionally, we provide some examples and counterexamples for the equalities in generalized Suita conjectures.

Nous passons en revue différentes approches de la conjecture de Suita et de ses diverses généralisations. Nous présentons une nouvelle preuve unifiée des conjectures généralisées de Suita avec jets et poids, basée sur la concavité de certaines $L^2$-intégrales minimales et la condition nécessaire de linéarité. De plus, nous donnons quelques exemples et contre-exemples pour les égalités dans les conjectures généralisées de Suita.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3756
Classification : 32A36, 30C40, 30C85
Keywords: Suita conjecture, Bergman kernel, logarithmic capacity, Azukawa indicatrix, Hartogs domain
Mots-clés : conjecture de Suita, noyau de Bergman, capacité logarithmique, indicatrice d’Azukawa, domaine de Hartogs

Xu, Wang  1 , 2   ; Zhou, Xiangyu  3

1 School of Mathematics, Sun Yat-sen University, Guangzhou 510275 (China)
2 School of Mathematical Sciences, Peking University, Beijing 100871 (China)
3 Institute of Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing 100190 (China)
@unpublished{AIF_0__0_0_A44_0,
     author = {Xu, Wang and Zhou, Xiangyu},
     title = {Generalized {Suita} conjectures with jets and weights},
     journal = {Annales de l'Institut Fourier},
     year = {2026},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     doi = {10.5802/aif.3756},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Xu, Wang
AU  - Zhou, Xiangyu
TI  - Generalized Suita conjectures with jets and weights
JO  - Annales de l'Institut Fourier
PY  - 2026
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3756
LA  - en
ID  - AIF_0__0_0_A44_0
ER  - 
%0 Unpublished Work
%A Xu, Wang
%A Zhou, Xiangyu
%T Generalized Suita conjectures with jets and weights
%J Annales de l'Institut Fourier
%D 2026
%V 0
%N 0
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3756
%G en
%F AIF_0__0_0_A44_0
Xu, Wang; Zhou, Xiangyu. Generalized Suita conjectures with jets and weights. Annales de l'Institut Fourier, Online first, 28 p.

[1] Ahlfors, Lars V. Complex analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1978 | Zbl

[2] Ahlfors, Lars V.; Sario, Leo Riemann surfaces, Princeton Mathematical Series, 26, Princeton University Press, 1960 | DOI | MR | Zbl

[3] Berndtsson, Bo Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Ann. Inst. Fourier, Volume 56 (2006) no. 6, pp. 1633-1662 | Numdam | DOI | MR | Zbl

[4] Berndtsson, Bo; Lempert, László A proof of the Ohsawa–Takegoshi theorem with sharp estimates, J. Math. Soc. Japan, Volume 68 (2016) no. 4, pp. 1461-1472 | DOI | MR | Zbl

[5] Błocki, Zbigniew Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | DOI | MR | Zbl

[6] Błocki, Zbigniew A lower bound for the Bergman kernel and the Bourgain–Milman inequality, Geometric aspects of functional analysis (Klartag, Bo’az; Milman, Emanuel, eds.) (Lecture Notes in Mathematics), Volume 2116, Springer, 2014, pp. 53-63 | DOI | Zbl

[7] Błocki, Zbigniew; Zwonek, Włodzimierz Estimates for the Bergman kernel and the multidimensional Suita conjecture, New York J. Math., Volume 21 (2015), pp. 151-161 | MR | Zbl

[8] Błocki, Zbigniew; Zwonek, Włodzimierz One dimensional estimates for the Bergman kernel and logarithmic capacity, Proc. Am. Math. Soc., Volume 146 (2018) no. 6, pp. 2489-2495 | DOI | Zbl | MR

[9] Błocki, Zbigniew; Zwonek, Włodzimierz Generalizations of the higher dimensional Suita conjecture and its relation with a problem of Wiegerinck, J. Geom. Anal., Volume 30 (2020) no. 2, pp. 1259-1270 | DOI | MR | Zbl

[10] Dong, Xin Equality in Suita’s conjecture and metrics of constant Gaussian curvature (2022) | arXiv

[11] Farkas, H. M.; Kra, I. Riemann surfaces, Graduate Texts in Mathematics, 71, Springer, 1992 | DOI | Zbl | MR

[12] Guan, Qi’an A proof of Saitoh’s conjecture for conjugate Hardy H 2 kernels, J. Math. Soc. Japan, Volume 71 (2019) no. 4, pp. 1173-1179 | DOI | Zbl | MR

[13] Guan, Qi’an A sharp effectiveness result of Demailly’s strong openness conjecture, Adv. Math., Volume 348 (2019), pp. 51-80 | DOI | Zbl | MR

[14] Guan, Qi’an; Mi, Zhitong Concavity of minimal L 2 integrals related to multiplier ideal sheaves, Peking Math. J., Volume 6 (2023) no. 2, pp. 393-457 | Zbl | MR | DOI

[15] Guan, Qi’an; Mi, Zhitong; Yuan, Zheng Concavity property of minimal L 2 integrals with Lebesgue measurable gain II, Adv. Math., Volume 450 (2024), 109766, 61 pages | DOI | MR | Zbl

[16] Guan, Qi’an; Sun, Xun; Yuan, Zheng A remark on a weighted version of Suita conjecture for higher derivatives, Math. Z., Volume 307 (2024) no. 1, 17, 23 pages | DOI | MR | Zbl

[17] Guan, Qi’an; Zhou, Xiangyu Optimal constant problem in the L 2 extension theorem, Comptes Rendus. Mathématique, Volume 350 (2012) no. 15–16, pp. 753-756 | DOI | Numdam | Zbl

[18] Guan, Qi’an; Zhou, Xiangyu Optimal constant in an L 2 extension problem and a proof of a conjecture of Ohsawa, Sci. China, Math., Volume 58 (2015) no. 1, pp. 35-59 | DOI | Zbl | MR

[19] Guan, Qi’an; Zhou, Xiangyu A solution of an L 2 extension problem with an optimalestimate and applications, Ann. Math. (2), Volume 181 (2015) no. 3, pp. 1139-1208 | DOI | Zbl

[20] Jarnicki, Marek; Pflug, Peter Invariant distances and metrics in complex analysis, Walter de Gruyter, 2013 | DOI | Zbl | MR

[21] Li, Zhi L 2 extension theorem and the approximation of Bergman spaces, Ph. D. Thesis, Institute of Mathematics, Chinese Academy of Sciences (China) (2019)

[22] Li, Zhi; Xu, Wang; Zhou, Xiangyu On Demailly’s L 2 extension theorem from non-reduced subvarieties, Math. Z., Volume 305 (2023) no. 2, 23 | DOI | Zbl | MR

[23] Ligocka, Ewa On the Forelli–Rudin construction and weighted Bergman projections, Stud. Math., Volume 94 (1989) no. 3, pp. 257-272 | DOI | Zbl | MR

[24] Maitani, Fumio; Yamaguchi, Hiroshi Variation of Bergman metrics on Riemann surfaces, Math. Ann., Volume 330 (2004) no. 3, pp. 477-489 | DOI | Zbl | MR

[25] Minda, C. David The capacity metric on Riemann surfaces, Ann. Acad. Sci. Fenn., Ser. A I, Math., Volume 12 (1987) no. 1, pp. 25-32 | DOI | MR | Zbl

[26] Ohsawa, Takeo Addendum to: On the Bergman kernel of hyperconvex domains, Nagoya Math. J., Volume 137 (1995), pp. 145-148 | Zbl | MR | DOI

[27] Sakai, Makoto On constants in extremal problems of analytic functions, Kōdai Math. Semin. Rep., Volume 21 (1969), pp. 223-225 | Zbl | MR

[28] Suita, Nobuyuki Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217 | DOI | Zbl | MR

[29] Xu, Wang; Zhou, Xiangyu Optimal L 2 extensions of openness type and related topics, Comptes Rendus. Mathématique, Volume 361 (2023), pp. 679-683 | DOI | Numdam | Zbl

[30] Xu, Wang; Zhou, Xiangyu Optimal L 2 extensions of openness type, Math. Ann., Volume 390 (2024), pp. 1249-1307 | DOI | MR | Zbl

[31] Yamada, Akira Topics related to reproducing kernels, theta functions and the Suita conjecture, RIMS Kokyuroku, Volume 1067 (1998), pp. 39-47 | Zbl

[32] Zwonek, Włodzimierz Regularity properties of the Azukawa metric, J. Math. Soc. Japan, Volume 52 (2000) no. 4, pp. 899-914 | DOI | MR | Zbl

Cité par Sources :