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GENERALIZED SUITA CONJECTURES WITH JETS
AND WEIGHTS

by Wang XU & Xiangyu ZHOU (*)

Abstract. — We survey different approaches to Suita’s conjecture and its var-
ious generalizations. We present a new and unified proof for generalized Suita con-
jectures with jets and weights, which is based on the concavity of certain minimal
L2 integrals and the necessary condition for linearity. Additionally, we provide some
examples and counterexamples for the equalities in generalized Suita conjectures.

Résumé. — Nous passons en revue différentes approches de la conjecture de
Suita et de ses diverses généralisations. Nous présentons une nouvelle preuve unifiée
des conjectures généralisées de Suita avec jets et poids, basée sur la concavité
de certaines L2-intégrales minimales et la condition nécessaire de linéarité. De
plus, nous donnons quelques exemples et contre-exemples pour les égalités dans les
conjectures généralisées de Suita.

1. Introduction

In [28], Suita conjectured an inequality between the Bergman kernel
and the logarithmic capacity of a hyperbolic Riemann surface. Later, Oh-
sawa [26] noticed a connection between the L2 extension problem and
Suita’s conjecture, and he was able to prove a weaker inequality. By prov-
ing L2 extension theorems with optimal estimates, Błocki [5] (for planar
domains) and Guan–Zhou [17] (for Riemann surfaces) solved Suita’s con-
jecture. By carefully using the optimal L2 extension theorem with ‘gain’
established in [19], Guan–Zhou [19] also settled the equality part of the
conjecture (i.e. to characterize when the equality holds). Since then, var-
ious approaches (see [4, 6, 10]) and generalizations (see [7, 8, 9, 18]) to
Suita’s conjecture have emerged.

Keywords: Suita conjecture, Bergman kernel, logarithmic capacity, Azukawa indicatrix,
Hartogs domain.
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(*) The second author is partially supported by National Key R&D Program of China
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The first purpose of this article is to survey the progress made in Suita’s
conjecture and its generalizations. We also present a new approach to one
dimensional generalizations with jets (see [8]) or weights (see [18, 19]),
which is based on the concavity of certain minimal L2 integrals (see [13])
and the necessary condition for linearity (see [30]). Actually, we prove a
result unifying [8] and [18, 19] (see Theorem 4.6). We also construct a
family of counterexamples for the equality in higher order Suita conjec-
ture (see Theorem 5.1), which contrasts with the phenomenon observed in
simply/doubly connected planar domains.

Our approach is also applicable to higher dimensional generalizations
(see [7, 9]), and we obtain a necessary condition for the equality case (see
Proposition 6.1). To the authors’ knowledge, the only known example for
the equality case is the biholomorphic image of a balanced domain (with
a possible closed pluripolar set removed). In this article, we provide a new
family of examples (see Theorem 7.1 and 7.2) for the equality in higher
dimensional Suita conjecture.

2. Capacities and kernels on Riemann surfaces

In this section, Ω is a potential-theoretical hyperbolic Riemann surface,
which means that Ω admits a negative non-constant subharmonic func-
tion. Then Ω has non-trivial Green’s functions (see [11]). Recall that the
Bergman kernel of Ω is

κΩ(z) := sup
{√

−1F (z) ∧ F (z) : F ∈ Γ(Ω,KΩ),
∫

Ω

√
−1
2 F ∧ F ⩽ 1

}
,

and the exact Bergman kernel of Ω is

κ̃Ω(z) := sup
{√

−1∂f(z) ∧ ∂f(z) : f ∈ O(Ω),
∫

Ω

√
−1
2 ∂f ∧ ∂f ⩽ 1

}
.

Let (V,w) be a coordinate chart of Ω. We write κΩ
∣∣
V

= BΩ|dw|2, κ̃Ω
∣∣
V

=

B̃Ω|dw|2 and cD(z) :=
√
πB̃Ω(z). By definition, B̃Ω ⩽ BΩ. Recall that the

logarithmic capacity of Ω is locally defined by

cβ(z0) := lim
z→z0

exp
(
GΩ(z, z0) − log

∣∣w(z) − w(z0)
∣∣),

and the analytic capacity of Ω is locally defined by

cB(z0) := sup
{∣∣ ∂f

∂w (z0)
∣∣ : f ∈ O(Ω), f(z0) = 0, supΩ|f | ⩽ 1

}
.

Clearly, cβ |dw| and cB |dw| are globally defined conformal invariants.
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In the following, we collect some results on the comparison between these
conformal invariants.

Theorem 2.1 (see [19]). — cB ⩽ cβ . Moreover, cB(z0) = cβ(z0) for
some z0 ∈ Ω if and only if there exists a holomorphic function g ∈ O(Ω)
such that log|g| = GΩ( · , z0).

Proof. — Let Fz0 :=
{
f ∈ O(Ω) : f(z0) = 0, supΩ|f | ⩽ 1

}
. Since

Fz0 is a normal family, there exists h ∈ Fz0 with
∣∣ ∂h
∂w (z0)

∣∣ = cB(z0). If
cB(z0) = 0, there is nothing to prove. In the following, we assume that
cB(z0) > 0. By the maximum principle, |h| < 1 everywhere. Since log|h| < 0
is subharmonic on Ω and log

∣∣h(z)
∣∣ − log

∣∣w(z) −w(z0)
∣∣ is bounded near z0,

we know log|h| ⩽ GΩ( · , z0), and then

cB(z0) =
∣∣∣∣ ∂h∂w (z0)

∣∣∣∣
= lim
z→z0

exp
(
log

∣∣h(z)
∣∣ − log

∣∣w(z) − w(z0)
∣∣)

⩽ lim
z→z0

exp
(
GΩ(z, z0) − log

∣∣w(z) − w(z0)
∣∣)

= cβ(z0).

Therefore, cB(z0) ⩽ cβ(z0) in general.
If cB(z0) > 0, then φ := log|h|−GΩ( · , z0) ⩽ 0 is a subharmonic function

on Ω and φ(z0) = log cB(z0)
cβ(z0) . If cB(z0) = cβ(z0), then φ(z0) = 0. By the

maximum principle, φ ≡ 0, i.e. log|h| = GΩ( · , z0). Conversely, if there
exists g ∈ O(Ω) such that log|g| = GΩ( · , z0), then g ∈ Fz0 and cβ(z0) =∣∣ ∂g
∂w (z0)

∣∣ ⩽ cB(z0). This implies cB(z0) = cβ(z0). □

Theorem 2.2 (Sakai [27]). — cD ⩽ cB . Moreover, cD(z0) = cB(z0) > 0
for some z0 ∈ Ω if and only if Ω is conformally equivalent to the unit
disc less a possible closed set which is expressed as the union of at most a
countable number of compact sets of class NB .

Theorem 2.3 (Suita [28]). — πBΩ ⩾ c2
B . Moreover, πBΩ(z0) = cB(z0)2

for some z0 ∈ Ω if and only if Ω is conformally equivalent to the unit disc
less a possible closed set of inner capacity zero.

Recall that a compact set E in Ĉ = C∪{∞} is of class NB if all bounded
holomorphic functions on Ĉ\E are constant, and a closed set E in D has
inner capacity zero if and only if E is polar.

In 1972, Suita [28] conjectured that the curvature of cβ |dw| is not greater
than −4, i.e.

− 4
c2
β

∂2 log cβ
∂w∂w

⩽ −4,

TOME 0 (0), FASCICULE 0
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and the equality holds at some point if and only if Ω is conformally equiv-
alent to the unit disc less a possible closed set of inner capacity zero.

According to [28], ∂2

∂w∂w (log cβ) = πBΩ, then the inequality in Suita’s
conjecture is equivalent to

πBΩ(z) ⩾ cβ(z)2.

For a doubly connected planar domain Ω with no degenerate boundary
component, Suita [28] proved that πBΩ > c2

β .
In [26], Ohsawa observed a connection between the L2 extension problem

and the inequality in Suita’s conjecture, and he proved that 750πBΩ(z) ⩾
cβ(z)2. Since then, there are many attempts to sharpen the estimate. In
2012, by proving L2 extension theorems with optimal estimates, Błocki [5]
(for planar domains) and Guan–Zhou [17] (for Riemann surfaces) solved
the inequality part of the conjecture. Later, Guan–Zhou [19] also settled
the equality part of the conjecture through a careful use of the optimal L2

extension theorem with ‘gain’.

Theorem 2.4 (Błocki [5]; Guan–Zhou [17, 19]). — πBΩ ⩾ c2
β . More-

over, πBΩ(z0) = cβ(z0)2 for some z0 ∈ Ω if and only if Ω is conformally
equivalent to the unit disc less a possible closed polar set.

In summary, one has

πB̃Ω ⩽ c2
B ⩽ c2

β ⩽ πBΩ,

and Theorems 2.1 to 2.4 also give the necessary and sufficient conditions
for these inequalities to become equalities.

3. Various approaches to the Suita conjecture

After [5, 17, 19], there are several new approaches to the Suita con-
jecture. For the inequality part, Błocki [6] gave a new proof based on
the tensor power trick, and Berndtsson–Lempert [4] presented another
proof based on the log-psh variation of fibrewise Bergman kernels. Re-
cently, Dong [10] proposed a simplified proof for the equality part by using
Maitani–Yamaguchi’s [24] variation formula for fibrewise Bergman kernels.
In [30, Section 5.2], we presented a slightly different proof for the equal-
ity part of Suita’s conjecture, which is based on the concavity of certain
minimal L2 integrals and the necessary condition for linearity.

In the following, we compare these different approaches to the Suita
conjecture. We shall adjust the original notations to ensure consistency. As

ANNALES DE L’INSTITUT FOURIER



GENERALIZED SUITA CONJECTURES 5

before, Ω is a hyperbolic Riemann surface, (V,w) is a connected coordinate
chart around z0 ∈ Ω, κΩ = BΩ|dw|2 is the Bergman kernel, cβ |dw| is the
logarithmic capacity, and G := GΩ( · , z0) is the Green function. Suita [28]
conjectured that πBΩ(z0) ⩾ cβ(z0)2, and the equality holds if and only if
Ω is conformally equivalent to D less a possible closed polar set.

The inequality part of Suita’s conjecture

The approach of Błocki [5] and Guan–Zhou [19]. — As noticed by Oh-
sawa [26], proving the inequality is equivalent to proving an L2 exten-
sion theorem with optimal estimate, i.e. to find a holomorphic 1-form
F ∈ Γ(Ω,KΩ) with F (z0) = dw and∫

Ω

√
−1
2 F ∧ F ⩽

π

cβ(z0)2 .

The existence of such F would imply BΩ(z0) ⩾
(∫

Ω

√
−1
2 F ∧ F

)−1
⩾

π−1cβ(z0)2. By proving certain optimal L2 extension theorems, Błocki and
Guan–Zhou solved the inequality part of the conjecture. □

The approach of Błocki [6]. — Using Donnelly–Fefferman’s L2 estimates
of ∂, together with a tensor power trick, Błocki showed that, for a pseudo-
convex domain D ⋐ Cn,

(3.1) BD(z) ⩾ 1
e2na Vol

({
GD( · , z) < −a

}) , z ∈ D, a ∈ R+.

Here, GD is the pluricomplex Green function of D. In dimension 1, for
a ≫ 1, the sublevel set

{
GD( · , z) < −a

}
is almost a disc with radius

e−acβ(z;D)−1. The right-hand side converges to π−1cβ(z;D)2 as a → +∞,
and then BD(z) ⩾ π−1cβ(z;D)2. □

The approach of Berndtsson–Lempert [4]. — For each t ⩾ 0, define Ωt :={
2G < −t

}
and B(t) := BΩt(z0). Consider the following Stein manifold:

X =
{

(τ, z) ∈ C × Ω : 2G(z) + Re τ < 0
}
.

By the log-psh variation of fibrewise Bergman kernels (see [3, 24]), τ 7→
logB(Re τ) is a psh function, then t 7→ logB(t) is a convex function. By
the local behavior of GΩ( · , z0) near z0, one has B(t) ∼ π−1cβ(z0)2et as t →
+∞. Since the convex function k(t) := logB(t) − t is bounded from above
as t → +∞, k(t) must be decreasing. Therefore, k(0) ⩾ limt→+∞ k(t),
which implies BΩ(z0) ⩾ π−1cβ(z0)2.

There is a slightly different proof due to Guan [12]. Since B(t) is the recip-
rocal of certain minimal L2 integral on Ωt, by a general concavity property
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(see [13, Proposition 4.1]), r 7→ 1
B(− log r) is a concave increasing function

on (0, 1]. Therefore, 1
rB(− log r) is decreasing in r and ek(t) = e−tB(t) is de-

creasing in t. As a consequence, BΩ(z0) ⩾ π−1cβ(z0)2. Notice that, in this
particular case, B(t) ⩽ Cet for some C > 0, then the convexity of logB(t)
implies the concavity of 1

B(− log r) . □

The equality part of Suita’s conjecture

The approach of Guan–Zhou [19]. — After a suitable change of coor-
dinate, we may assume that G(w) ≡ log

∣∣cβ(z0)w
∣∣ on V . Since πBΩ(z0) =

cβ(z0)2, there exists a unique holomorphic 1-form F ∈ Γ(Ω,KΩ) such that
F (z0) = dw and

∫
Ω

√
−1
2 F ∧ F = πcβ(z0)−2. Given r1 < r2 < r3 < 0

such that
{

2G < r3
}

⋐ V , let d1(t) ≡ 1 and let d2(t) be a smooth
function on (−∞, 0) so that d1 ≡ d2 on (−∞, r1) ∪ (r3, 0), d1 > d2
on (r1, r2), d1 < d2 on (r2, r3), d2(t)et is increasing on (−∞, 0), and∫ 0

−∞ d2(t)et dt =
∫ 0

−∞ d1(t)et dt = 1.
According to [19, Theorem 2.2], there exists a holomorphic 1-form F ′ ∈

Γ(Ω,KΩ) with F ′(z0) = dw and
∫

Ω

√
−1
2 d2(2G)F ′ ∧ F ′ ⩽ πcβ(z0)−2. By

careful computations,∫
Ω

√
−1
2 F ′ ∧ F ′ ⩽

∫
Ω

√
−1
2 d2(2G)F ′ ∧ F ′ ⩽ πcβ(z0)−2.

On the other hand,
∫

Ω

√
−1
2 F ′ ∧ F ′ ⩾ BΩ(z0)−1 = πcβ(z0)−2. Since the

minimal element is unique, one has F ≡ F ′, and then∫
Ω

√
−1
2 F ∧ F =

∫
Ω

√
−1
2 d2(2G)F ∧ F .

By careful computations, this equality implies F
∣∣
V

≡ dw (see [19, Lemma
4.21]). In summary:

if πBΩ(z0) = cβ(z0)2 and (V,w) is a connected coordi-
nate chart around z0 such that G

∣∣
V

≡ log
∣∣cβ(z0)w

∣∣, then
there exists a global holomorphic 1-form F ∈ Γ(Ω,KΩ) with
F

∣∣
V

≡ dw.
Using this fact and the theory of Riemann surfaces, Guan–Zhou constructed
a holomorphic function g ∈ O(Ω) such that G = log|g|. By Theorems 2.1
and 2.3, cB(z0)2 = cβ(z0)2 = πBΩ(z0), and Ω is conformally equivalent
to D less a possible closed polar set. □

ANNALES DE L’INSTITUT FOURIER
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The approach of Dong [10]. — For each t ⩾ 0, put Ωt =
{

2G < −t
}

and
B(t) = BΩt

(z0). Let κt( · , · ) be the Bergman kernel of Ωt, i.e. κt(x, y) =√
−1

∑
α ϕ

α
t (x) ∧ ϕαt (y), where {ϕαt }α is a complete orthonormal basis of

A2(Ωt,KΩ). If we write κt( · , z0) = Kt( · ) ∧ dw, then Kt ∈ Γ(Ωt,KΩ) is
the unique holomorphic 1-form with minimal L2-norm such that Kt(z0) =
B(t) dw. Recall from [4] that k(t) := logB(t) − t is a decreasing function.
If πBΩ(z0) = cβ(z0)2, then k(t) is constant and B(t) ≡ BΩ(z0)et.

Using the variation formula of Maitani–Yamaguchi [24], Dong proved
that K0

∣∣
Ωt

≡ Kte
−t for all t ⩾ 0 such that Kt is zero-free. In this proof,

he needed to approximate Ω by smoothly bordered Riemann surfaces while
keeping the equality πBΩ(z0) = cβ(z0)2.

Assume that (V,w) is a connected coordinate chart around z0 such that
G

∣∣
V

≡ log
∣∣cβ(z0)w

∣∣, then Ωt ⋐ V and Kt(w) ≡ B(t) dw for t ≫ 1. Con-
sequently, K0

∣∣
V

≡ BΩ(z0) dw. Set F := K0/BΩ(z0), then F
∣∣
V

≡ dw. By
careful analysis, Dong showed that g := F/(2∂G) is a holomorphic function
on Ω and G = log|g|. By [25, Theorem 1], Ω is conformally equivalent to D
less a possible closed polar set. □

The approach of Xu–Zhou [30]. — For each t ⩾ 0, set Ωt =
{

2G < −t
}

and B(t) = BΩt
(z0). Let Ft ∈ Γ(Ωt,KΩ) be the unique holomorphic 1-form

with minimal L2-norm such that Ft(z0) = dw, then B(t) = ∥Ft∥−2. By the
concavity of minimal L2 integrals (see [13]), r 7→ ∥F− log r∥2 is a concave
function. If πBΩ(z0) = cβ(z0)2, then B(t) ≡ BΩ(z0)et and ∥F− log r∥2 ≡
r/BΩ(z0) is linear in r. By the necessary condition for linearity (see [30,
Remark 5.3]), F0

∣∣
Ωt

≡ Ft for any t ⩾ 0. If (V,w) is a connected coordinate
chart around z0 such that G

∣∣
V

≡ log
∣∣cβ(z0)w

∣∣, then Fs ≡ dw for s ≫ 1
and then F0

∣∣
V

= dw. The other part of the proof is the same as in [19]. □

Remark 3.1. — The first part of all three proofs is to find a holomorphic
1-form F ∈ Γ(Ω,KΩ) such that F

∣∣
V

≡ dw, in which (V,w) is a connected
coordinate chart around z0 with G

∣∣
V

≡ log
∣∣cβ(z0)w

∣∣. But the approaches
are different. Having such an F , one can construct g ∈ O(Ω) such that
log|g| = GΩ( · , z0).

We remark that, without requiring πBΩ(z0) = cβ(z0)2 in advance, the
existence of g ∈ O(Ω) satisfying log|g| = GΩ( · , z0) guarantees the rigid-
ity. This fact is implicitly contained in Suita’s article [28, p. 213]. It also
follows from a theorem of Minda [25]: if f : X → Y is a holomorphic map
between hyperbolic Riemann surfaces, and GY

(
f(a), f(b)

)
= GX(a, b) for

some a ̸= b, then f is injective and Y \f(X) is a closed set of capacity zero.

TOME 0 (0), FASCICULE 0
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4. One dimensional generalizations

In this section, Ω is a hyperbolic Riemann surface, z0 is a distinguished
point of Ω and (V,w) is a coordinate chart around z0. Let p : D → Ω be
a universal covering of Ω. Recall that the group of deck transformations
Deck(D/Ω) is isomorphic to the fundamental group π1(Ω). Therefore, any
σ ∈ π1(Ω) can be identified with an element in Aut(D) which we shall also
denote by σ. Moreover, any such automorphism satisfies p ◦ σ = p.

Lemma 4.1. — If f1 and f2 are holomorphic functions on a connected
complex manifold M such that |f1| ≡ |f2|, then f1 ≡ αf2 for some α ∈ C
with |α| = 1.

Proof. — Apply the Riemann extension theorem and the maximum prin-
ciple to f1/f2. □

Lemma 4.2. — There exists a g ∈ O(D) such that log|g|=p∗GΩ( · , z0).

Proof. — By the Weierstrass theorem for open Riemann surfaces, there
is an h ∈ O(Ω) so that h(z0) = 0, dh(z0) ̸= 0 and h

∣∣
Ω\{z0} ̸= 0. Since

p∗(
GΩ( · , z0) − log|h|

)
is harmonic on D, there exists f ∈ O(D) such that

Re f = p∗(
GΩ( · , z0) − log|h|

)
. Let g := p∗(h) exp(f), then g ∈ O(D) and

log|g| = p∗GΩ( · , z0). □

Let g ∈ O(D) be a holomorphic function such that log|g| = p∗GΩ( · , z0).
For any σ ∈ π1(Ω), we have |g|=exp

(
p∗GΩ( · , z0)

)
=exp

(
σ∗p∗GΩ( · , z0)

)
=

|σ∗g|, which implies σ∗g/g is a constant of modulus one. Clearly,

χz0 : σ ∈ π1(Ω) 7−→ σ∗g/g ∈ S1

is a group homomorphism, which is independent of the choice of g.
Let η be a harmonic function on Ω, then there exists a holomorphic

function ξ ∈ O(D) so that |ξ| = exp(p∗η). For any σ ∈ π1(Ω), we have
|ξ| = exp(p∗η) = exp(σ∗p∗η) = |σ∗ξ|, and then σ∗ξ/ξ is a constant of
modulus one. Clearly,

χη : σ ∈ π1(Ω) 7−→ σ∗ξ/ξ ∈ S1

is also a group homomorphism, which is independent of the choice of ξ.
Given a group homomorphism χ ∈ Hom

(
π1(Ω),S1)

, we define

Oχ(Ω) :=
{
f ∈ O(D) : σ∗f = χ(σ)f for all σ ∈ π1(Ω)

}
,

Γχ(Ω) :=
{
F ∈ Γ(D,KD) : σ∗F = χ(σ)F for all σ ∈ π1(Ω)

}
.

ANNALES DE L’INSTITUT FOURIER



GENERALIZED SUITA CONJECTURES 9

A typical element f ∈ Oχ(Ω) (resp. F ∈ Γχ(Ω)) is called a multiplicative
function (resp. Prym differential). Recall that the multiplicative Bergman
kernel (or χ-Bergman kernel) of Ω is defined by

κχΩ(z) := sup
{√

−1F (z) ∧ F (z) : F ∈ Γχ(Ω),
∫

Ω

√
−1
2 F ∧ F ⩽ 1

}
.

Since p∗(F ∧ F ) is well-defined on Ω, we can simply write F ∧ F on Ω.
The extended Suita conjecture (see Yamada [31]) is the following.

Extended Suita conjecture. — πκχΩ ⩾ c2
β |dw|2 and the equality

holds at z0 ∈ Ω if and only if χ = χz0 .

Notice that, if χ = χz0 , then πκχΩ(z0) = cβ(z0)2|dw|2 (see [31, Theo-
rem 7]).

There is an equivalent formulation in terms of weighted Bergman kernels.
Given a harmonic function η on Ω, we define

κΩ,η(z) = sup
{√

−1F (z) ∧ F (z) : F ∈ Γ(Ω,KΩ),
∫

Ω

√
−1
2 F ∧ Fe−2η ⩽ 1

}
.

Then the extended Suita conjecture is equivalent to the following.

Conjecture. — πκΩ,η ⩾ c2
βe

2η|dw|2 and the equality holds at z0 ∈ Ω
if and only if χηχz0 = 1.

The inequality part of the conjecture was proved in Guan–Zhou [18] and
the equality part was proved in Guan–Zhou [19].

Theorem 4.3 (Guan–Zhou [18, 19]). — πκΩ,η(z0) ⩾ cβ(z0)2e2η(z0)|dw|2
and the equality holds if and only if χηχz0 = 1.

Lemma 4.4. — Let η be a harmonic function on Ω, then χηχ
k
z0

= 1 for
some k ∈ N if and only if there exists a holomorphic function ĝ ∈ O(Ω)
such that log|ĝ| = kGΩ( · , z0) + η.

Proof. — We choose g, ξ ∈ O(D) such that log|g| = p∗GΩ( · , z0) and
|ξ| = exp(p∗η). If χηχkz0

= 1, then

σ∗(ξgk) = χη(σ)ξ ·
(
χz0(σ)g

)k = ξgk

for any σ ∈ π1(Ω). As a consequence, ĝ := p∗(ξgk) is a well-defined holo-
morphic function on Ω. Since

log|ξgk| = kp∗GΩ( · , z0) + p∗η,

it is clear that log|ĝ| = kGΩ( · , z0) + η.
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Conversely, if there is a ĝ ∈ O(Ω) such that log|ĝ| = kGΩ( · , z0)+η, then
|p∗ĝ| = |ξgk|. Hence, ξgk = c · p∗ĝ for some c ∈ S1. For any σ ∈ π1(Ω), we
have p∗ĝ = σ∗(p∗ĝ), this implies

ξgk = σ∗(ξgk) = χη(σ)ξ ·
(
χz0(σ)g

)k
.

Therefore, χη(σ)χz0(σ)k = 1 for all σ ∈ π1(Ω). □

Recall that Ω is a hyperbolic Riemann surface and (V,w) is a coordinate
chart around z0 ∈ Ω. Denote by mz0 the unique maximal ideal of Oz0 .
Given m ∈ N, consider the generalized Bergman kernel

B
(m)
Ω (z0) := sup


∣∣∣∣ ∂mf∂wm

(z0)
∣∣∣∣2

∣∣∣∣∣∣
F ∈ Γ(Ω,KΩ) with F

∣∣
V

= f dw,∫
Ω

√
−1
2 F ∧ F ⩽ 1, [f ]z0 ∈ mmz0

.

Clearly, B(m)
Ω (z0)|dw|2m+2 is independent of the choice of (V,w). For a

planar domain Ω ⊂ Cw, following the method of [5], Błocki–Zwonek [8]
proved that

(4.1) πB
(m)
Ω (z0) ⩾ m! (m+ 1)! cβ(z0)2m+2.

By modifying Guan–Zhou’s proof for the equality part of Suita’s conjecture,
Li [21] obtained an equivalent condition for (4.1) to become an equality
(also see [22]).

Theorem 4.5 (see [8] and [21]). — πB
(m)
Ω (z0) ⩾ m! (m+1)! cβ(z0)2m+2.

Moreover, the equality holds if and only if there exists a holomorphic func-
tion ĝ ∈ O(Ω) such that log|ĝ| = (m+ 1)GΩ( · , z0).

In the following, we illustrate that the method of [30, Section 5.2] is also
applicable to Theorems 4.3 and 4.5. For simplicity, it is better to consider
a unified version.

Theorem 4.6. — Let Ω be a hyperbolic Riemann surface, η be a har-
monic function on Ω and (V,w) be a coordinate chart around z0 ∈ Ω. For
m ∈ N, we define

B
(m)
Ω,η (z0) := sup


∣∣∣∣ ∂mf∂wm

(z0)
∣∣∣∣2

∣∣∣∣∣∣
F ∈ Γ(Ω,KΩ) with F

∣∣
V

= f dw,∫
Ω

√
−1
2 F ∧ Fe−2η ⩽ 1, [f ]z0 ∈ mmz0

.

Then

(4.2) πB
(m)
Ω,η (z0) ⩾ m! (m+ 1)! cβ(z0)2m+2e2η(z0).
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Moreover, the equality holds if and only if χηχm+1
z0

= 1, if and only if there
is a holomorphic function ĝ ∈ O(Ω) such that log|ĝ| = (m+1)GΩ( · , z0)+η.
In this case,

F := ∂ĝ − 2ĝ∂η ∈ Γ(Ω,KΩ)
is extremal with respect to B(m)

Ω,η (z0).

Here, a holomorphic 1-form F ∈ Γ(Ω,KΩ) (with F
∣∣
V

= f dw) is said
to be extremal with respect to B

(m)
Ω,η (z0), if the following conditions are

satisfied:

[f ]z0 ∈ mmz0
, B

(m)
Ω,η (z0) = 1∫

Ω

√
−1
2 F ∧ Fe−2η

∣∣∣∣ ∂mf∂wm
(z0)

∣∣∣∣2
.

Clearly, an extremal 1-form always exists and it is unique up to non-zero
multiplicative constants.

Remark 4.7. — Obviously, Theorem 2.4 corresponds to the case of m = 0
and η ≡ 0, Theorem 4.3 is the case of m = 0 and Theorem 4.5 is the case
of η ≡ 0. Theorem 4.6 was announced in [29]. We notice that Guan–Mi–
Yuan [15] obtained a result generalizing this theorem: they characterized
the linearity of certain minimal L2 integrals on hyperbolic Riemann sur-
faces by using the solution of the extended Suita conjecture (i.e. Theo-
rem 4.3). But our purpose is different, we give a new and unified proof to
the inequality part and the necessity part of Theorems 2.4, 4.3 and 4.5. For
completeness, we also include a proof for the sufficiency part.

Let us recall the concavity of minimal L2 integrals and the necessary
condition for linearity (see [30, Remark 5.3] and [14, Theorem 1.3]). For
simplicity, we only focus on a special case, which is enough to prove Theo-
rem 4.6.

Proposition 4.8. — Let Ω be a hyperbolic Riemann surface, φ be a
harmonic function on Ω and ψ = 2(m + 1)GΩ( · , z0). For each t ⩾ 0, let
Ωt :=

{
ψ < −t

}
and

At :=
{
F ∈ Γ(Ωt,KΩ) : ∥F∥2

At
=

∫
Ωt

√
−1
2 F ∧ Fe−φ < +∞

}
.

Let F be a holomorphic 1-form defined in a neighbourhood of z0. For each
t ⩾ 0, let Ft ∈ At be the unique element with minimal norm that coincides
with F up to order m at z0.

Set I(t) := ∥Ft∥2
At

. Then r 7→ I(− log r) is a concave increasing function
on (0, 1] and I(0) ⩽ I(t)et ⩽ I(s)es for any 0 ⩽ t ⩽ s. Moreover, if
r 7→ I(− log r) is linear on (0, 1], then Ft ≡ F0

∣∣
Ωt

for any t > 0.
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12 Wang XU & Xiangyu ZHOU

Proof of Theorem 4.6. — Let p : D → Ω be a universal covering, let
ξ ∈ O(D) and g ∈ O(D) be holomorphic functions so that |ξ| = exp(p∗η)
and log|g| = p∗GΩ( · , z0). Shrinking V if necessary, we may assume that
V is connected and p is biholomorphic on any connected component of
p−1(V ). Let U be a component of p−1(V ). We define h := p∗

(
g
∣∣
U

)
and

ζ := p∗
(
ξ
∣∣
U

)
, then GΩ( · , z0) = log|h| and |ζ| = eη on V . After a suitable

change of coordinate, we further assume that w ≡ cβ(z0)−1h on V . We will
keep these notations throughout the proof.

Let ψ = 2(m + 1)GΩ( · , z0) and φ = 2η. For each t ⩾ 0, we define
Ωt :=

{
ψ < −t

}
and At as in Proposition 4.8. Let Ft ∈ At be the unique

element with minimal norm that coincides with wm dw up to order m at z0.
We write B(t) := B

(m)
Ωt,η

(z0), then∫
Ωt

√
−1
2 Ft ∧ Fte

−2η = (m!)2

B(t) .

By Proposition 4.8, r 7→ 1
B(− log r) is a concave function on (0, 1] and

B(s)e−s ⩽ B(t)e−t ⩽ B(0) = B
(m)
Ω,η (z0), 0 ⩽ t ⩽ s.

Inequality part. — We may choose s ≫ 1 so that Ωs ⋐ V . Recall that
GΩ( · , z0) = log

∣∣cβ(z0)w
∣∣ and |ζ| = eη on V . Therefore,

Ωs =
{

|w| < cβ(z0)−1 exp
( −s

2m+2
)}

is an open disc in (V,w). Assume that F ′ := udw ∈ As coincides with
wm dw up to order m at z0. Then v := u/(ζwm) is a holomorphic function
on D(0; r) satisfying v(0) = 1/ζ(z0), where r := cβ(z0)−1 exp

( −s
2m+2

)
. We

may expand v into a power series with normal convergence on D(0; r):

v(w) =
∞∑
k=0

akw
k with a0 = 1

ζ(z0) .

By direct computations,∫
Ωs

√
−1
2 F ′ ∧ F ′e−2η =

∫
D(0;r)

|v(w)|2|w|2m dλw

=
∞∑
k=0

|ak|2
∫
D(0;r)

|w|2m+2k dλw

=
∞∑
k=0

π

m+ k + 1 |ak|2r2m+2k+2.
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Clearly, the above expression is minimized when v is a constant function.
As a consequence, for such s ≫ 1, Fs(w) ≡ ζ(z0)−1ζ(w)wm dw and

(m!)2

B(s) =
∫

Ωs

√
−1
2 Fs ∧ Fse

−2η

= π

m+ 1 |a0|2r2m+2

= π

m+ 1cβ(z0)−2m−2e−2η(z0)e−s.

For any 0 ⩽ t ≪ s, we have

B
(m)
Ω,η (z0) ⩾ B(t)e−t

⩾ B(s)e−s

= π−1m! (m+ 1)! cβ(z0)2m+2e2η(z0).

(4.3)

this proves the inequality part of the theorem.
Equality part: necessity. — In the following, we assume that the equality

in (4.2) holds. According to inequality (4.3),

B(t)e−t ≡ π−1m! (m+ 1)! cβ(z0)2m+2e2η(z0) (∀ t ⩾ 0),

and then 1
B(− log r) is a linear function of r. By Proposition 4.8, Ft ≡ F0

∣∣
Ωt

for any t ⩾ 0. Since Fs(w) ≡ ζ(z0)−1ζ(w)wm dw for s ≫ 1, we conclude
that

F0
∣∣
V

= ζ(z0)−1ζ(w)wm dw.
Multiplying F0 by a constant, we obtain a holomorphic 1-form F ∈Γ(Ω,KΩ)
such that F

∣∣
V

= ζ d(hm+1) and F is extremal with respect to B(m)
Ω,η (z0).

According to the definitions of ζ and h, we know p∗F = ξ d(gm+1) on U .
By the uniqueness of analytic continuation, p∗F ≡ ξ d(gm+1) on D. For
any σ ∈ π1(Ω), we have p∗F = σ∗(p∗F ); this implies

ξ d(gm+1) = σ∗(
ξ d(gm+1)

)
= χη(σ)χz0(σ)m+1 · ξ d(gm+1).

Therefore, χη(σ)χz0(σ)m+1 = 1 for all σ ∈ π1(Ω), which means that
χηχ

m+1
z0

= 1.
In this case, ĝ := p∗(ξgm+1) ∈ O(Ω) and F := p∗

(
ξ d(gm+1)

)
∈ Γ(Ω,KΩ)

are well-defined, log|ĝ| = (m + 1)GΩ( · , z0) + η, and F is extremal with
respect to B

(m)
Ω,η (z0). We want a neat formula for the extremal 1-form.

Notice that

ξ d(gm+1) = ξ∂(ξ−1 · ξgm+1) = ∂(ξgm+1) − (ξgm+1) · ξ−1∂ξ.

Differentiating |ξ|2 = exp(2p∗η), we get

ξ∂ξ = 2∂(p∗η) exp(2p∗η) = 2p∗(∂η)|ξ|2,
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which implies ξ−1∂ξ = 2p∗(∂η). As a consequence,

F = p∗
(
ξ d(gm+1)

)
= p∗

(
∂(ξgm+1) − (ξgm+1) · 2p∗(∂η)

)
= ∂ĝ − 2ĝ∂η

= e2η∂(e−2η ĝ).

Similarly, since |g|2 = exp(2p∗G), where G := GΩ( · , z0), we have

ξ d(gm+1) = (m+ 1)(ξgm+1) · g−1 dg = (m+ 1)(ξgm+1) · 2p∗(∂G),

which implies F = p∗
(
ξ d(gm+1)

)
= 2(m+ 1)ĝ∂G on Ω\{z0}.

Equality part: sufficiency. — Finally, we assume that χηχm+1
z0

= 1, then

ĝ := p∗(ξgm+1) ∈ O(Ω) and F := p∗
(
ξ d(gm+1)

)
∈ Γ(Ω,KΩ)

are well-defined objects on Ω. The above proof suggests that F is extremal
with respect to B(m)

Ω,η (z0). Clearly, to verify this guess, we only need to prove∫
Ω F ∧F ′e−2η = 0 for any holomorphic 1-form F ′ ∈ A0 (with F ′

∣∣
V

= f dw)
satisfying [f ]z0 ∈ mm+1

z0
.

Since [ĝ]z0 ∈ mm+1
z0

and ĝ ̸= 0 elsewhere, we know that F ′′ := F ′/ĝ is a
holomorphic 1-form on Ω. Since F = e2η∂(e−2η ĝ) and |ĝ|2 = e2(m+1)G+2η,
we have ∫

Ω
F ∧ F ′e−2η =

∫
Ω
∂(e−2η ĝ) ∧ ĝF ′′

=
∫

Ω
∂

(
e−2η|ĝ|2

)
∧ F ′′

=
∫

Ω
∂

(
e2(m+1)G)

∧ F ′′.

We take a sequence of subdomains Dj ∋ z0 such that Dj ⊂ Dj+1, Ω =⋃
j Dj and each Dj is bounded by analytic curves (see [2, p. 144]). Then

Gj := GDj
( · , z0) is continuous up to Dj and Gj ≡ 0 on ∂Dj . By the

reflection principle, Gj has a harmonic extension in some neighbourhood
of ∂Dj . By Stokes’ formula,∫

Dj

∂
(
e2(m+1)Gj

)
∧ F ′′ =

∫
∂Dj

e2(m+1)GjF ′′ =
∫
∂Dj

F ′′ =
∫
Dj

dF ′′ = 0.

Notice that e2(m+1)Gj and e2(m+1)G have no singularity at z0, and Gj −G

is a harmonic function on Dj . Since Dj ↗ Ω, it is clear that Gj ↘ G. By
Harnack’s theorem, Gj−G decreases to 0 uniformly on any compact subset
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of Ω. Using the estimates on derivatives, ∂(Gj −G) → 0 uniformly on any
compact subset of Ω. Let αj := ∂

(
e2(m+1)Gj

)
and α := ∂

(
e2(m+1)G)

. Since

∂
(
e2(m+1)Gj

)
− ∂

(
e2(m+1)G)

= ∂
[(
e2(m+1)(Gj−G) − 1

)
e2(m+1)G

]
=

(
e2(m+1)(Gj−G) − 1

)
∂

(
e2(m+1)G)

+ 2(m+ 1)e2(m+1)Gj∂(Gj −G),

we conclude that αj → α uniformly on any compact subset of Ω.
We recall a useful formula for Green’s function G = GΩ( · , z0):∫

Ω

√
−1∂G ∧ ∂GeaG = π

a
(∀ a > 0).

In particular,∫
Ω

√
−1α ∧ α = 4(m+ 1)2

∫
Ω

√
−1∂G ∧ ∂Ge4(m+1)G = (m+ 1)π.

Similarly,
∫
Dj

√
−1αj ∧ αj = (m+ 1)π. Recall that F ′ = ĝF ′′ ∈ A0, then

∥F ′∥2
A0

:=
∫

Ω

√
−1F ′ ∧ F ′e−2η =

∫
Ω

√
−1F ′′ ∧ F ′′e2(m+1)G < +∞.

We may assume that
{

2(m+ 1)G < −t0
}
⋐ D1 for some t0 ≫ 1, then∫

Ω\D1

√
−1F ′′ ∧ F ′′ ⩽ et0∥F ′∥2

A0
< +∞.

Recall that
∫
Dj
αj ∧ F ′′ = 0. For any integers j ⩾ k ⩾ 1, we have∣∣∣∣∫

Ω
α ∧ F ′′

∣∣∣∣
=

∣∣∣∣∫
Ω
α ∧ F ′′ −

∫
Dj

αj ∧ F ′′
∣∣∣∣

⩽

∣∣∣∣∫
Ω\Dk

α ∧ F ′′
∣∣∣∣ +

∣∣∣∣∫
Dj\Dk

αj ∧ F ′′
∣∣∣∣ +

∣∣∣∣∫
Dk

(αj − α) ∧ F ′′
∣∣∣∣

⩽
(
∥α∥L2(Ω) + ∥αj∥L2(Dj)

)
∥F ′′∥L2(Ω\Dk) +

∣∣∣∣∫
Dk

(αj − α) ∧ F ′′
∣∣∣∣.

Since ∥F ′′∥L2(Ω\D1) < +∞ and Dk ↗ Ω, the first term converges to 0 as
k → +∞. For fixed k, since αj → α uniformly on Dk, the second term
converges to 0 as j → +∞. Let j → +∞ and then k → +∞, we conclude
that

∫
Ω α ∧ F ′′ = 0.
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In summary, provided χηχ
m+1
z0

= 1, we prove that F := p∗
(
ξ d(gm+1)

)
is extremal with respect to B

(m)
Ω,η (z0). Recall that F

∣∣
V

= ζ d(hm+1) and
h ≡ cβ(z0)w on V . Therefore,

F
∣∣
V

= (m+ 1)cβ(z0)m+1ζ(w)wm dw.

If we write F
∣∣
V

= f(w) dw, then [f ]z0 ∈ mmz0
and∣∣∣∣ ∂mf∂wm

(z0)
∣∣∣∣2

=
(
(m+ 1)!

)2
cβ(z0)2m+2e2η(z0).

On the other hand, since F = 2(m+ 1)ĝ∂G on Ω \ {z0}, we have∫
Ω

√
−1
2 F ∧ Fe−2η = 4(m+ 1)2

∫
Ω

√
−1
2 ∂G ∧ ∂Ge2(m+1)G = (m+ 1)π.

Since F is extremal with respect to B(m)
Ω,η (z0), we conclude that

B
(m)
Ω,η (z0) =

(
(m+ 1)!

)2
cβ(z0)2m+2e2η(z0)

(m+ 1)π .

This completes the proof. □

5. The equality in higher order Suita conjecture

In this section, we restrict ourselves to the case of planar domains.
By the Riemann mapping theorem, any simply connected domain Ω ⊊ C

is conformally equivalent to the unit disk, then it is clear that πB(m)
Ω (z0) =

m! (m+ 1)! cβ(z0)2m+2 for all z0 ∈ Ω and m ∈ N.
Next, we consider a domain Ω ⊂ C of finite connectivity n ⩾ 2. Since

isolated points are removable singularities for L2 holomorphic functions and
upper bounded subharmonic functions, we may assume that no connected
component of Ĉ \ Ω reduces to a point. After a conformal transformation,
we assume that Ω is bounded by n analytic curves Γ1, . . . ,Γn. Let ωj be the
harmonic measure of Γj with respect to Ω. By the reflection principle, ωj
and GΩ( · , z0) (∀ z0 ∈ Ω) have harmonic extensions in some neighbourhood
of ∂Ω = Γ1 ∪· · ·∪Γn. It is known that the period

∫
Γj

∗dGΩ( · , z0) equals to
2πωj(z0), where ∗du = −

√
−1(∂u− ∂u) denotes the conjugate differential

of du. (See [1] for details.)
If n = 2, then such Ω is conformally equivalent to some annulus AR ={
z ∈ C : 1 < |z| < R

}
. In a joint work [22] with Li, by studying the

multi-valued harmonic conjugate of GAR
( · , z0), we showed that, if |z0| =

exp
(

k
m+1 logR

)
for some integer k ∈ [1,m], then there exists a holomorphic
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function g ∈ O(AR) such that log|g| = (m + 1)GAR
( · , z0). According to

Theorem 4.5, for any integers 1 ⩽ k ⩽ m, we have

(5.1) πB
(m)
AR

(z0) = m! (m+ 1)! cβ(z0;AR)2m+2, |z0| = R
k

m+1 .

This also follows from an explicit formula for the Green’s function of AR
(see [20]):

GAR
(z, a) = log

∣∣(1 − a−1z)Π(a, z)
∣∣

|z|s(a) , 1 < a < R,

where

Π(a, z) :=
∏∞
ν=1

(
1 − z

aR
−2ν)(

1 − a
zR

−2ν)∏∞
ν=1(1 − azR−2ν)

(
1 − 1

azR
−2ν+2

)
and

s(a) := 1 − log a
logR.

If a = exp
(

k
m+1 logR

)
for some integer k ∈ [1,m], then s(a) = 1 − k

m+1
and

ga(z) :=
(
(1 − a−1z)Π(a, z)

)m+1

zm+1−k

is a holomorphic function on AR such that log|ga| = (m+ 1)GAR
( · , a).

As pointed out by Guan–Sun–Yuan [16], given z0 ∈ Ω and m ∈ N, there
exists a holomorphic function g ∈ O(Ω) satisfying log|g| = (m+1)GΩ( · , z0)
if and only if (m + 1)ωj(z0) ∈ Z for all 1 ⩽ j ⩽ n. By Theorem 4.5, these
conditions are equivalent to πB

(m)
Ω (z0) = m! (m + 1)! cβ(z0)2m+2. Since

0 < ωj < 1 on Ω and ω1 + · · · + ωn ≡ 1, in this case, one has

1 = ω1(z0) + · · · + ωn(z0) ⩾ n
m+1 .

Consequently, if the equality in m-order Suita conjecture holds somewhere
in an n-connected domain, then it is necessary that m ⩾ n − 1. (Every
domain considered here is bounded by analytic curves!) Moreover, Guan–
Sun–Yuan [16] showed that, in any 3-connected domain Ω, there exist some
z0 ∈ Ω and large m ∈ N such that πB(m)

Ω (z0) = m! (m+ 1)! cβ(z0)2m+2.
In summary, if Ω ⊊ C is simply connected, then for any m ⩾ 0, the equal-

ity in m-order Suita conjecture holds for every point of Ω; if Ω is doubly
connected, then for any m ⩾ 1, the equality in m-order Suita conjecture
holds for all points on m analytic curves.

It is natural to ask, if Ω is 3-connected, can we find a point z0 ∈ Ω such
that the equality in 2-order Suita conjecture holds? However, the following
counterexample shows that this is impossible in general.
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Theorem 5.1. — Given any integers n ⩾ 3 and M ≫ 1, there exists
a family of smoothly bounded n-connected domain Ω ⊂ C such that no
point of Ω can satisfy the equality in m-order Suita conjecture, where m =
0, 1, . . . ,M .

Proof. — Let a, ε ∈ (0, 1) be positive constants to be specified later.
Define

φ1(z) = z + a

1 + az
and φ2(z) = z − a

1 − az
,

they are automorphisms of the unit disk D. Let

D1 =
{
z ∈ D :

∣∣φ1(z)
∣∣ ⩽ ε

}
and D2 =

{
z ∈ D :

∣∣φ2(z)
∣∣ ⩽ ε

}
.

By the property of linear fractional transformations, D1 and D2 are closed
disks in D:

D1, D2 =
{
z ∈ C :

∣∣∣∣z ± a(1 − ε2)
1 − a2ε2

∣∣∣∣ ⩽ ε(1 − a2)
1 − a2ε2

}
.

If ε < a, then D1 and D2 are disjoint. Let D3, . . . , Dn−1 be arbitrary
disjoint closed disks in D \ (D1 ∪ D2). Denote Γj = ∂Dj and Γn = ∂D.
Then

Ω := D \
(⋃n−1

j=1 Dj

)
is an n-connected domain bounded by circles Γ1, . . . ,Γn.

Let ωj be the harmonic measure of Γj with respect to Ω, i.e. ωj is a
harmonic function on Ω, taking boundary values 1 on Γj and 0 on the
other contours. Notice that log

∣∣φ1(z)
∣∣/ log ε is a harmonic function on Ω,

taking boundary values 1 on Γ1 and is nonnegative on the other contours.
By the maximum principle,

ω1(z) ⩽
log

∣∣φ1(z)
∣∣

log ε , z ∈ Ω.

Let c := inf
{∣∣φ1(z)

∣∣ : z ∈ D,Re z ⩾ 0
}

. Since φ1 ∈ Aut(D) and φ1(−a) = 0,
it clear that 0 < c < 1. Therefore,

ω1(z) ⩽ log c
log ε , z ∈ Ω ∩

{
z : Re z ⩾ 0

}
.

Similarly, ω2 ⩽ log c
log ε on Ω ∩

{
z : Re z ⩽ 0

}
. Notice that the constant c

depends only on a. Indeed, we can show that c =
∣∣φ1(0)

∣∣ = a.
Let a ∈ (0, 1) be arbitrarily given, we choose ε ≪ 1 so that log c

log ε <
1

M+1 ,
i.e. 0 < ε < cM+1. Since ω1 <

1
M+1 on Ω ∩

{
z : Re z ⩾ 0

}
, all the curves

ω1 = q, with q ∈
( 1

2Z ∪ · · · ∪ 1
M+1Z

)
∩ Q+, completely lie in the left half-

plane. Similarly, all the curves ω2 = q′, with q′ ∈
( 1

2Z∪ · · · ∪ 1
M+1Z

)
∩Q+,

completely lie in the right half-plane. Since these curves are disjoint, for
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any integer m = 0, 1, . . . ,M , we cannot find a point z0 ∈ Ω such that
ω1(z0), ω2(z0) ∈ 1

m+1Z. Therefore, no point of Ω can satisfy the equality in
m-order Suita conjecture, where m = 0, 1, . . . ,M . □

6. Higher dimensional generalizations

In this section, D is a bounded domain in Cn. Given a measurable func-
tion φ on D which is locally bounded from above, the weighted Bergman
space is defined by

A2(D; e−φ) :=
{
f ∈ O(D) : ∥f∥2 =

∫
D

|f |2e−φ dλ < +∞
}
,

and the weighted Bergman kernel is

BD(z; e−φ) := sup
{

|f(z)|2 : f ∈ A2(D; e−φ), ∥f∥2 ⩽ 1
}
.

If φ ≡ 0, we shall simplify these notations as A2(D) and BD(z).
Denote by GD( · , z) the pluricomplex Green function of D with a pole

at z ∈ D, then the Azukawa pseudometric of D is defined by

AD(z;X) := lim
λ→0

(
GD(z + λX, z) − log|λ|

)
, z ∈ D, X ∈ Cn.

Clearly, AD(z; · ) ∈ psh(Cn) and AD(z; τX) = AD(z;X) + log|τ | for any
τ ∈ C. Therefore, the Azukawa indicatrix

ID(z) :=
{
X ∈ Cn : AD(z;X) < 0

}
is a balanced pseudoconvex domain in Cn. (Recall that a set U ⊂ Cn is
said to be balanced, if τz ∈ U for every z ∈ U and τ ∈ C with |τ | ⩽ 1.)

For simplicity, we assume that z0 = 0 and Bn(0; r) ⊂ D ⊂ Bn(0;R). For
each a ⩾ 0, let Da :=

{
GD( · , 0) < −a

}
. Since log

(
|z|/R

)
⩽ GD(z, 0) ⩽

log
(
|z|/r

)
, it is easy to see that Bn(0; r) ⊂ eaDa ⊂ Bn(0;R) and Bn(0; r) ⊂

ID(0) ⊂ Bn(0;R). Here we use the standard convention: given U ⊂ Cn and
c > 0, then cU is a set defined by

{
cz : z ∈ U

}
.

In the following, we assume that D ⊂ Cn is hyperconvex, which means
that there exists a negative continuous psh exhaustion function on D. In
this case, Zwonek [32] proved that AD is continuous on D × Cn and

AD(z;X) = lim
w→z, w ̸=z

(w−z)/|w−z|→X/|X|

(
GD(w, z) − log |w−z|

|X|

)
(X ̸= 0).

For any 0 < ε ≪ 1, we can find an aε > 0 such that eaDa ⊂ (1 + ε)ID(0)
for all a > aε. Otherwise, there exist ε > 0, aj → +∞ and Xj ∈ Cn such
that Xj ∈ eajDaj (⇔ G(e−ajXj , 0) < −aj) and Xj /∈ (1 + ε)ID(0) (⇔
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A(0;Xj) ⩾ log(1 + ε)). Since (1 + ε)r ⩽ |Xj | ⩽ R, we may assume that
Xj → X∗ as j → +∞. Using the regularity of AD, we reach a contradiction:

AD(0;X∗) = lim
j→+∞

AD(0;Xj) ⩾ log(1 + ε),

AD(0;X∗) = lim
j→+∞

(
GD(e−ajXj , 0) − log |e−ajXj |

|X∗|

)
⩽ 0.

Similarly, for any 0 < ε ≪ 1, we can find an a′
ε > 0 such that eaDa ⊃

(1 − ε)ID(0) for all a > a′
ε. In summary, for any 0 < ε ≪ 1, we have

(6.1) (1 − ε)ID(0) ⊂ eaDa ⊂ (1 + ε)ID(0) for all a ≫ 1.

As a consequence, lima→+∞ e2na Vol(Da) = Vol
(
ID(0)

)
. Using (3.1), Bło-

cki–Zwonek [7] obtained the following generalization to Suita’s conjecture:

(6.2) BD(z0) ⩾ 1
Vol

(
ID(z0)

) .
Via approximation, (6.2) holds for general pseudoconvex domains in Cn.

Let H(z) =
∑

|α|=m cαz
α be a homogeneous polynomial of degree m

on Cn, for any holomorphic function f(z), we define

∂Hz f :=
∑

|α|=m

cα∂
α
z f =

∑
|α|=m

cα
∂|α|f

∂zα1
1 · · · ∂zαn

n
.

Błocki–Zwonek [9] introduced the following generalized Bergman kernel:

BHD (w) := sup
{∣∣∂Hz f(w)

∣∣2 : f ∈ A2(D),
∫
D

|f |2 dλ ⩽ 1, [f ]w ∈ mmw

}
.

At first, we assume that D ∋ z0 is a bounded hyperconvex domain.
Assume that z0 = 0 and let Da :=

{
GD( · , 0) < −a

}
. By the monotonicity

property of Bergman kernels and (6.1),

lim
a→+∞

e−2(n+m)aBHDa
(0) = lim

a→+∞
BHeaDa

(0) = BHID(0)(0).

Using a tensor power trick, Błocki–Zwonek [9] proved that

a 7−→ e−2(n+m)aBHDa
(0)

is a decreasing function on [0,+∞), and then

(6.3) BHD (z0) ⩾ BHID(z0)(0).

Via approximation, (6.3) is true for general pseudoconvex domains. Clearly,
if H ≡ 1, then BH• are the usual Bergman kernels and (6.3) reduces to (6.2).

If D ⊂ C is a planar domain, then ID(z0) = D
(
0; cβ(z0)−1)

, where cβ(z0)
is the logarithmic capacity of D at z0. In this case, (6.2) reduces to Suita’s
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conjecture. Let H(z) = zm, then BHD = B
(m)
D . By direct computations,

BHID(z0)(0) = π−1m! (m+ 1)! cβ(z0)2m+2 and then (6.3) reduces to (4.1).
In the following, we apply the approach of Section 4 to prove (6.3).
Recall that D ∋ z0 is a bounded pseudoconvex domain in Cn and H(z) is

a homogeneous polynomial of degree m. There exists some f ∈ A2(D) such
that [f ]z0 ∈ mmz0

and ∂Hz f(z0) = 1. We obtain such an f by solving certain
∂-equation with L2 estimate. Alternatively, we can apply [30, Corollary 1.4]
directly. Let ψ := 2(n + m)GD( · , z0). For each t ⩾ 0, let Dt :=

{
ψ < −t

}
and let ft ∈ A2(Dt) be the unique holomorphic function with minimal L2

norm such that

[ft]z0 ∈ mmz0
and ∂Hz ft(z0) = 1.

Let I(t) := ∥ft∥2
A2(Dt), then it is clear that BHDt

(z0) = I(t)−1.
Notice that, if f̃ is a holomorphic function such that |f̃ − f |2e−ψ is

locally integrable near z0, then [f̃ ]z0 ∈ mmz0
and ∂Hz f̃(z0) = 1. Therefore,

the arguments of [30, Section 5.1] can be applied without any change, and
we conclude that (see also [14]):

(i) r 7→ I(− log r) is a concave increasing function on (0, 1];
(ii) if r 7→ I(− log r) is linear, then f0

∣∣
Dt

≡ ft for any t ⩾ 0.
By concavity, r 7→ I(− log r)/r is decreasing on (0, 1], then t 7→ e−tBHDt

(z0)
is also decreasing on [0,+∞). This monotonicity was proved in [9] by using
a tensor power trick. (Recall that Da :=

{
GD( · , z0) < −a

}
= D2(n+m)a.)

The remaining part of the proof is the same as [9]: if D is hyperconvex,
then

lim
t→+∞

e−tBHDt
(z0) = lim

a→+∞
e−2(n+m)aBHDa

(z0) = BHID(z0)(0),

and the monotonicity implies the inequality (6.3); via approximation, (6.3)
is true for general pseudoconvex domains. Actually, we have something
more.

Proposition 6.1. — Let D ∋ z0 be a bounded pseudoconvex domain
in Cn and H(z) be a holomorphic homogeneous polynomial of degree m
on Cn. For each t ⩾ 0, let Dt :=

{
2(n + m)GD( · , z0) < −t

}
and B(t) :=

BHDt
(z0).

(1) For any N ∈ N+, r 7→ B
(
− 1
N log r

)−N is a concave function on
(0, 1].

(2) If BHD (z0) = BHID(z0)(0), then f0
∣∣
Dt

≡ ft for any t ⩾ 0, where
ft ∈ A2(Dt) is the unique holomorphic function with minimal L2

norm such that [ft]z0 ∈ mmz0
and ∂Hz ft(z0) = 1.
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Proof. — We assume the same notations as above. By conclusion (i), r 7→
B(− log r)−1 is a concave function on (0, 1]. Given N ∈ N+, we consider
the product domain D̃ := D × · · · × D ⊂ CnN and z̃0 := (z0, . . . , z0) ∈ D̃.
By the same reason,

r ∈ (0, 1] 7−→
(
BH×···×H

{Ψ<log r}(z̃0)
)−1

is a concave function, where Ψ := 2(n + m)NG
D̃

( · , z̃0). By the prod-
uct properties of pluricomplex Green functions (see [20]) and generalized
Bergman kernels (see [9]),{

Ψ < log r
}

=
{
ψ < log r

N

}
× · · · ×

{
ψ < log r

N

}
,

BH×···×H
{Ψ<log r}(z̃0) =

(
BH{ψ<log r/N}(z0)

)N
= B

(
− 1
N log r

)N
.

Therefore, r 7→ B
(
− 1
N log r

)−N is a concave function on (0, 1].
If D is hyperconvex, we know

BHD (z0) ⩾ e−tBHDt
(z0) ⩾ BHID(z0)(0), t > 0.

Via approximation, this is true for general pseudoconvex domains. Hence,
if BHD (z0) = BHID(z0)(0), then BHDt

(z0) = etBHD (z0) for all t. In this case,
r 7→ I(− log r) = r/BHD (z0) is linear, then it follows from conclusion (ii)
that f0

∣∣
Dt

≡ ft for any t ⩾ 0. □

If D ⊂ C is a planar domain, then (6.3) reduces to (4.1), and Theorem 4.5
gives a full characterization for the equality case of (4.1). However, in higher
dimensions, such a characterization is unknown yet. Nevertheless, the above
proposition gives a necessary condition for the equality of (6.3).

7. The equality in higher dimension Suita conjecture

In this section, we study the equality case of higher order Suita conjec-
ture. The first example is well-known; the second example is one dimen-
sional, it was included for completeness. As an application of Theorem 4.6,
we also give a new family of examples for which (6.3) becomes an equality.
(1) Let D =

{
z ∈ Cn : h(z) < 1

}
be a bounded balanced pseudoconvex

domain, where h : Cn → [0,∞) is homogeneous (which means that
h(τz) = |τ |h(z) for any τ ∈ C) and log h is psh. As GD( · , 0) ≡ log h,
we know Da =

{
GD( · , 0) < −a

}
= e−aD and ID(0) = D. Let H(z)

be a homogeneous polynomial of degree m on Cn, then

BHD (0) = e−2(n+m)aBHDa
(0) = BHID(0)(0) (∀ a ⩾ 0).

ANNALES DE L’INSTITUT FOURIER



GENERALIZED SUITA CONJECTURES 23

(2) Let Ω =
{
z ∈ C : 1 < |z| < R

}
be an annulus and H(z) = zm. We

choose a point z0 ∈ Ω with |z0| = exp
(

k
m+1 logR

)
, where k ∈ [1,m] is

an integer. According to equation (5.1),

BHΩ (z0) = π−1m! (m+ 1)! cβ(z0; Ω)2m+2 = BHIΩ(z0)(0).

(3) Let Ω be a bounded domain in C and η be a harmonic function on Ω.
Let D =

{
w ∈ Cn : h(w) < 1

}
be a bounded balanced pseudoconvex

domain in Cn, where h : Cn → [0,∞) is homogeneous and log h is psh.
We consider the following generalized Hartogs domain:

Ω̃ =
{

(z, w) ∈ Ω × Cn : h(w) < e−η(z)}.
Let ϕ be a subharmonic exhaustion function of Ω, then

max
{
ϕ(z),− 1

log h(w) + η(z)

}
is a psh exhaustion function of Ω̃. Hence, Ω̃ ⊂ Cn+1 is pseudoconvex.

For any z0 ∈ Ω, ψ(z, w) := max
{
GΩ(z, z0), log h(w) + η(z)

}
is a

negative psh function on Ω̃. Clearly, ψ(z, w) has a logarithmic pole at
(z0, 0). By the definition of pluricomplex Green functions,

GΩ̃

(
(z, w), (z0, 0)

)
⩾ max

{
GΩ(z, z0), log h(w) + η(z)

}
.

Now we estimate the Azukawa pseudometric of Ω̃ at (z0, 0). For any
non-zero (X,Y ) ∈ C × Cn,

AΩ̃

(
(z0, 0); (X,Y )

)
:= lim

λ→0

(
GΩ̃

(
(z0 + λX, λY ), (z0, 0)

)
− log|λ|

)
⩾ lim
λ→0

(
max

{
GΩ(z0 + λX, z0), log h(λY ) + η(z0 + λX)

}
− log|λ|

)
= lim
λ→0

max
{
GΩ(z0 + λX, z0) − log|λ|, log h(Y ) + η(z0 + λX)

}
.

Notice that, if X ̸= 0, then limλ→0 exp
(
GΩ(z0 + λX, z0) − log|λX|

)
=

cβ(z0), where cβ(z0) is the logarithmic capacity of Ω at z0. Therefore,

AΩ̃

(
(z0, 0); (X,Y )

)
⩾ max

{
lim
λ→0

(
GΩ(z0 + λX, z0) − log|λ|

)
, log h(Y ) + lim

λ→0
η(z0 + λX)

}
= max

{
log

∣∣cβ(z0)X
∣∣, log h(Y ) + η(z0)

}
.

Consequently,

(7.1) IΩ̃

(
(z0, 0)

)
⊂

{
(X,Y ) ∈ C × Cn : |X| < cβ(z0)−1, h(Y ) < e−η(z0)

}
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and

(7.2) Vol
(
IΩ̃

(
(z0, 0)

))
⩽ πcβ(z0)−2 × Vol(D)e−2nη(z0).

Then we compute the Bergman kernel of Ω̃ at (z0, 0). For any r > 0,
since rD =

{
w ∈ Cn : h(w) < r

}
is a balanced domain, it is clear that∫

rD

∣∣f(w)
∣∣2 dλw ⩾ Vol(D)

∣∣f(0)
∣∣2
r2n, f ∈ O(rD).

Notice that the integral on the left-hand side may be infinite. For any
f̃ ∈ A2(Ω̃), we have∫

Ω̃
|f̃ |2 dλ =

∫
Ω

(∫
e−η(z)D

∣∣f̃(z, w)
∣∣2 dλw

)
dλz

⩾ Vol(D)
∫

Ω

∣∣f̃(z, 0)
∣∣2
e−2nη(z) dλz.

It follows that f̃( · , 0) ∈ A2(Ω; e−2nη) and

BΩ̃

(
(z0, 0)

)
= sup

{∣∣f̃(z0, 0)
∣∣2∫

Ω̃|f̃ |2 dλ
: f̃ ∈ A2(Ω̃)

}

⩽ sup
{ ∣∣g(z0)

∣∣2

Vol(D)
∫

Ω|g|2e−2nη dλ
: g ∈ A2(Ω; e−2nη)

}

= BΩ,nη(z0)
Vol(D) .

On the other hand, for any g ∈ A2(Ω; e−2nη), we define g̃(z, w) :=
g(z); then

g̃ ∈ A2(Ω̃) and
∫

Ω̃
|g̃|2 dλ = Vol(D)

∫
Ω

|g|2e−2nη dλ.

Then it is clear that

(7.3) BΩ̃

(
(z0, 0)

)
= BΩ,nη(z0)

Vol(D) .

If D is the unit ball in Cn, (7.3) is also known as Ligocka’s formula [23].
Combining (7.3), (6.2) and (7.2), we get

BΩ,nη(z0)
Vol(D) = BΩ̃

(
(z0, 0)

)
⩾

1
Vol

(
IΩ̃

(
(z0, 0)

)) ⩾
cβ(z0)2e2nη(z0)

πVol(D) .

By Theorem 4.3, if χz0χ
n
η = 1 (equivalently, there exists some ĝ ∈ O(Ω)

such that log|ĝ| = GΩ( · , z0) +nη), then the above inequalities become
equalities.
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Theorem 7.1. — Let Ω be a bounded domain in C and η be a harmonic
function on Ω. Let D be a bounded balanced pseudoconvex domain in Cn
and Ω̃ =

{
(z, w) ∈ Ω × Cn : w ∈ e−η(z)D

}
. If χz0χ

n
η = 1 for some z0 ∈ Ω,

then
BΩ̃

(
(z0, 0)

)
= 1

Vol
(
IΩ̃

(
(z0, 0)

)) .
It is not hard to generalize the above example to the case of (6.3).

Theorem 7.2. — Let Ω be a bounded domain in C and η be a harmonic
function on Ω. Let D be a bounded balanced pseudoconvex domain in Cn
and

Ω̃ =
{

(z, w) ∈ Ω × Cn : w ∈ e−η(z)D
}
.

Let H2(w) be a homogeneous polynomial of degree k on Cn and H(z, w) :=
zmH2(w). If χm+1

z0
χn+k
η = 1 for some z0 ∈ Ω, then

BH
Ω̃

(
(z0, 0)

)
= BHW

(
(0, 0)

)
, where W := IΩ̃

(
(z0, 0)

)
.

Proof. — Since rD is a balanced domain, any f ∈ O(rD) can be written
as a compactly convergent series f =

∑∞
l=0 fl, where each fl is a homo-

geneous polynomial of degree l. It is clear that [fk]0 ∈ mk0 , ∂H2
w fk(0) =

∂H2
w f(0) and ∫

rD

|f |2 dλ =
∑
l

∫
rD

|fl|2 dλ ⩾
∫
rD

|fk|2 dλ.

Notice that these integrals may be infinite. By the definition of generalized
Bergman kernels,∫

rD

|f |2 dλ ⩾
∫
rD

|fk|2 dλ ⩾

∣∣∂H2
w fk(0)

∣∣2

BH2
rD(0)

=
∣∣∂H2
w f(0)

∣∣2

BH2
D (0)r−2(n+k)

.

For any f̃ ∈ A2(Ω̃) with [f̃ ](z0,0) ∈ mm+k
(z0,0), we have∫

Ω̃
|f̃ |2 dλ =

∫
Ω

(∫
e−η(z)D

∣∣f̃(z, w)
∣∣2 dλw

)
dλz

⩾
1

BH2
D (0)

∫
Ω

∣∣∂H2
w f̃(z, 0)

∣∣2
e−2(n+k)η(z) dλz.

Therefore, ∂H2
w f̃( · , 0) ∈ A2(

Ω; e−2(n+k)η)
. Since

[
∂H2
w f̃( · , 0)

]
z0

∈ mmz0
, we

know

BH
Ω̃

(
(z0, 0)

)
⩽ sup

f̃

∣∣∂mz ∂H2
w f̃(z0, 0)

∣∣2∫
Ω

∣∣∂H2
w f̃(z, 0)

∣∣2
e−2(n+k)η(z) dλz/BH2

D (0)

⩽ B
(m)
Ω,(n+k)η(z0) ×BH2

D (0).
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Here, the supremum is taken over all f̃ ∈ A2(Ω̃) with [f̃ ](z0,0) ∈ mm+k
(z0,0).

It is easy to find a homogeneous polynomial u of degree k on Cn such that∫
D

|u|2 dλ = 1 and BH2
D (0) = |∂H2

w u(0)|2. For any g ∈ A2(
Ω; e−2(n+k)η)

with
[g]z0 ∈ mmz0

, let g̃(z, w) := g(z)u(w), then g̃ ∈ A2(Ω̃) and [g̃](z0,0) ∈ mm+k
(z0,0).

Therefore,

B
(m)
Ω,(n+k)η(z0) = sup

g

∣∣∂mz g(z0)
∣∣2∫

Ω|g|2e−2(n+k)η dλ

= sup
g

∣∣∂H g̃(z0, 0)
∣∣2
/
∣∣∂H2
w u(0)

∣∣2∫
Ω̃|g̃|2 dλ

⩽
BH

Ω̃

(
(z0, 0)

)
BH2
D (0)

.

Here, the supremum is taken over all g ∈ A2(
Ω; e−2(n+k)η)

with [g]z0 ∈ mmz0
.

Denote by W the Azukawa indicatrix of Ω̃ at (z0, 0). According to (7.1),
W ⊂ U × V , where U := D

(
0; cβ(z0)−1)

and V := e−η(z0)D. By the mono-
tonicity property and the product property of generalized Bergman kernels,

BHW
(
(0, 0)

)
⩾ BHU×V

(
(0, 0)

)
= B

(m)
U (0) ×BH2

V (0)

= m! (m+1)!
π cβ(z0)2m+2 × e2(n+k)η(z0)BH2

D (0).

Combining these results with (6.3), we get

B
(m)
Ω,(n+k)η(z0) ×BH2

D (0) = BH
Ω̃

(
(z0, 0)

)
⩾ BHW

(
(0, 0)

)
⩾ m! (m+1)!

π cβ(z0)2m+2e2(n+k)η(z0) ×BH2
D (0).

According to Theorem 4.6, if χm+1
z0

χn+k
η = 1 (equivalently, there exists

ĝ ∈ O(Ω) such that log|ĝ| = (m+ 1)GΩ( · , z0) + (n+ k)η), then the above
inequalities become equalities. □

Remark 7.3. — It is easy to find (Ω, η) satisfying the requirements of
Theorem 7.2. Let Ω′ be an arbitrary bounded domain in C, we choose
a holomorphic function 0 ̸≡ f ∈ O(Ω′) having at least a zero z0 ∈ Ω′.
Define Ω :=

(
Ω′ \ f−1(0)

)
∪ {z0}; then z0 is the only zero of f ∈ O(Ω). Let

m := ordz0(f) − 1 and

η := 1
n+k

(
log|f | − (m+ 1)GΩ( · , z0)

)
,

then η is a harmonic function on Ω and χm+1
z0

χn+k
η = 1.
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Clearly, all balanced domains are contractible. In contrast, the Ω̃ defined
in Theorem 7.2 has the same homotopy type as Ω, which could be very
complicated.

Using the transformation rule under biholomorphism and the product
property of generalized Bergman kernels (see [9]), one can construct more
and more examples from (1), (2) and (3). It would be interesting to find a
full characterization for the equality of (6.3).
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