Université Grenoble Alpes

ANNALES DE
LINSTITUT FOURIER

Wang Xu & Xiangyu ZHOU
Generalized Suita conjectures with jets and weights

Article a paraitre, mis en ligne le 26 janvier 2026, 28 p.

Article mis a disposition par ses auteurs selon les termes de la licence
CREATIVE CoMMONS ATTRIBUTION-NODERIVS (CC-BY-ND) 3.0
[@)sv-no |

.4 Les Annales de [Institut Fourier sont membres du
» Centre Mersenne pour I'édition scientifique ouverte

>

e-ISSN : 1777-5310
MERSENNE


http://creativecommons.org/licenses/by-nd/3.0/
https://www.centre-mersenne.org/

Ann. Inst. Fourier, Grenoble
Article & paraitre
Mis en ligne le 26 janvier 2026.

GENERALIZED SUITA CONJECTURES WITH JETS
AND WEIGHTS

by Wang XU & Xiangyu ZHOU (*)

ABSTRACT. — We survey different approaches to Suita’s conjecture and its var-
ious generalizations. We present a new and unified proof for generalized Suita con-
jectures with jets and weights, which is based on the concavity of certain minimal
L? integrals and the necessary condition for linearity. Additionally, we provide some
examples and counterexamples for the equalities in generalized Suita conjectures.

REsuME. — Nous passons en revue différentes approches de la conjecture de
Suita et de ses diverses généralisations. Nous présentons une nouvelle preuve unifiée
des conjectures généralisées de Suita avec jets et poids, basée sur la concavité
de certaines L2-intégrales minimales et la condition nécessaire de linéarité. De
plus, nous donnons quelques exemples et contre-exemples pour les égalités dans les
conjectures généralisées de Suita.

1. Introduction

In [28], Suita conjectured an inequality between the Bergman kernel
and the logarithmic capacity of a hyperbolic Riemann surface. Later, Oh-
sawa [26] noticed a connection between the L? extension problem and
Suita’s conjecture, and he was able to prove a weaker inequality. By prov-
ing L? extension theorems with optimal estimates, Blocki [5] (for planar
domains) and Guan—Zhou [17] (for Riemann surfaces) solved Suita’s con-
jecture. By carefully using the optimal L? extension theorem with ‘gain’
established in [19], Guan—Zhou [19] also settled the equality part of the
conjecture (i.e. to characterize when the equality holds). Since then, var-
ious approaches (see [4, 6, 10]) and generalizations (see [7, 8, 9, 18]) to
Suita’s conjecture have emerged.

Keywords: Suita conjecture, Bergman kernel, logarithmic capacity, Azukawa indicatrix,
Hartogs domain.
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The first purpose of this article is to survey the progress made in Suita’s
conjecture and its generalizations. We also present a new approach to one
dimensional generalizations with jets (see [8]) or weights (see [18, 19]),
which is based on the concavity of certain minimal L? integrals (see [13])
and the necessary condition for linearity (see [30]). Actually, we prove a
result unifying [8] and [18, 19] (see Theorem 4.6). We also construct a
family of counterexamples for the equality in higher order Suita conjec-
ture (see Theorem 5.1), which contrasts with the phenomenon observed in
simply/doubly connected planar domains.

Our approach is also applicable to higher dimensional generalizations
(see [7, 9]), and we obtain a necessary condition for the equality case (see
Proposition 6.1). To the authors’ knowledge, the only known example for
the equality case is the biholomorphic image of a balanced domain (with
a possible closed pluripolar set removed). In this article, we provide a new
family of examples (see Theorem 7.1 and 7.2) for the equality in higher
dimensional Suita conjecture.

2. Capacities and kernels on Riemann surfaces

In this section, €2 is a potential-theoretical hyperbolic Riemann surface,
which means that ) admits a negative non-constant subharmonic func-
tion. Then € has non-trivial Green’s functions (see [11]). Recall that the
Bergman kernel of € is

ka(z) = sup{\/le(z) ANF(z): F eT(Q,Kq), / @F/\Fg 1},
Q
and the exact Bergman kernel of () is
ka(z) = Sup{ﬁﬁf(z) NOf(z): feOQ), / @af/\aif < 1}.
Q

Let (V,w) be a coordinate chart of 2. We write KZQ’V = Bql|dw|?, %Q’V =

Bg|dw|? and ¢p(2) := \/7Bq(z). By definition, B < Bg. Recall that the
logarithmic capacity of €2 is locally defined by

cg(z0) = zllrglo exp(Gal(z, 20) — loglw(z) — w(zo)|),
and the analytic capacity of 2 is locally defined by
cp(z0) = sup{| 8 (20)] : f € O@), f(20) =0, supqlf| <1},

Clearly, cg|dw| and cg|dw]| are globally defined conformal invariants.
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GENERALIZED SUITA CONJECTURES 3

In the following, we collect some results on the comparison between these
conformal invariants.

THEOREM 2.1 (see [19]). — cp < cg. Moreover, cg(z9) = cg(zo) for
some zg € Q) if and only if there exists a holomorphic function g € O(2)
such that log|g| = Ga(-, z0).

Proof. — Let F., == {f € O(Q) : f(20) = 0, supg]f]| 1}. Since
F., is a normal family, there exists h € F,, with |%(zo)| cp(zo). If
c¢g(z0) = 0, there is nothing to prove. In the following, we assume that
¢p(z0) > 0. By the maximum principle, |h| < 1 everywhere. Since log|h| < 0
is subharmonic on € and log|h(2)| —log|w(z) — w(zo)| is bounded near z,
we know log|h| < Gq(-,20), and then

cn(z0) = | o0 (z0)

I /N

= ZILIEO exp(log|h(z)| — log|w(z) — w(z0)|)

< lim exp(GQ(z,Zo) - 10g|w(2) - w(ZO)D

z—20
= cp(20).
Therefore, cp(z0) < ¢g(20) in general.
If eg(z0) > 0, then ¢ :=log|h| — Gq(-, z0) < 0 is a subharmonic function

on Q and ¢(z) = log & If cp(zp) = c5(20), then p(z9) = 0. By the

cg(zo)
maximum principle, ¢ = 0, i.e. loglh| = Gq(-,z20). Conversely, if there
exists g € O(Q) such that loglg| = Ga(-, 20), then g € F,, and cg(z0) =
|g—i(zo)| < ¢p(20). This implies cp(z0) = cg(20)- O
THEOREM 2.2 (Sakai [27]). — ¢p < ep. Moreover, c¢p(z9) = cg(z9) > 0

for some zy € Q if and only if 0 is conformally equivalent to the unit
disc less a possible closed set which is expressed as the union of at most a
countable number of compact sets of class Ng.

THEOREM 2.3 (Suita [28]). — 7Bgq > ¢%. Moreover, mBq(20) = cp(20)?
for some zg € Q) if and only if Q0 is conformally equivalent to the unit disc
less a possible closed set of inner capacity zero.

Recall that a compact set E in C = CU{oo} is of class N if all bounded
holomorphic functions on @\E are constant, and a closed set £ in D has
inner capacity zero if and only if E is polar.

In 1972, Suita [28] conjectured that the curvature of cg|dw| is not greater
than —4, i.e.

AT lowes
¢z Owow
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4 Wang XU & Xiangyu ZHOU

and the equality holds at some point if and only if € is conformally equiv-
alent to the unit disc less a possible closed set of inner capacity zero.
2
According to [28], afﬁ(l()g cg) = mBq, then the inequality in Suita’s
conjecture is equivalent to

7Ba(z) > cs(2)%

For a doubly connected planar domain 2 with no degenerate boundary
component, Suita [28] proved that 7Bg > c3.

In [26], Ohsawa observed a connection between the L? extension problem
and the inequality in Suita’s conjecture, and he proved that 7507 Bq(z) >
c5(2)%. Since then, there are many attempts to sharpen the estimate. In
2012, by proving L? extension theorems with optimal estimates, Blocki [5]
(for planar domains) and Guan—Zhou [17] (for Riemann surfaces) solved
the inequality part of the conjecture. Later, Guan—Zhou [19] also settled
the equality part of the conjecture through a careful use of the optimal L?
extension theorem with ‘gain’.

THEOREM 2.4 (Blocki [5]; Guan-Zhou [17, 19]). — 7Bq > ¢}. More-
over, TBq(z0) = cs(20)? for some zy € Q if and only if Q is conformally
equivalent to the unit disc less a possible closed polar set.

In summary, one has
WE <A <A <rB
QXXX Qs

and Theorems 2.1 to 2.4 also give the necessary and sufficient conditions
for these inequalities to become equalities.

3. Various approaches to the Suita conjecture

After [5, 17, 19], there are several new approaches to the Suita con-
jecture. For the inequality part, Blocki [6] gave a new proof based on
the tensor power trick, and Berndtsson—Lempert [4] presented another
proof based on the log-psh variation of fibrewise Bergman kernels. Re-
cently, Dong [10] proposed a simplified proof for the equality part by using
Maitani—-Yamaguchi’s [24] variation formula for fibrewise Bergman kernels.
In [30, Section 5.2], we presented a slightly different proof for the equal-
ity part of Suita’s conjecture, which is based on the concavity of certain
minimal L? integrals and the necessary condition for linearity.

In the following, we compare these different approaches to the Suita
conjecture. We shall adjust the original notations to ensure consistency. As
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GENERALIZED SUITA CONJECTURES 5

before, € is a hyperbolic Riemann surface, (V,w) is a connected coordinate
chart around zp € Q, kg = Bgq|dw|? is the Bergman kernel, cg|dw| is the
logarithmic capacity, and G := Gq( -, 29) is the Green function. Suita [28]
conjectured that mBq(20) > c5(20)?, and the equality holds if and only if
Q) is conformally equivalent to ID less a possible closed polar set.

The inequality part of Suita’s conjecture

The approach of Blocki [5] and Guan—Zhou [19]. — As noticed by Oh-
sawa [26], proving the inequality is equivalent to proving an L? exten-
sion theorem with optimal estimate, i.e. to find a holomorphic 1-form
F e F(Q, KQ) with F(Zo) = dw and

VAPAF < ———.
/Q 2 cs(20)?

The existence of such F would imply Ba(z0) > ([, QF A FjA >
1 eg(20)?. By proving certain optimal L? extension theorems, Blocki and

Guan—Zhou solved the inequality part of the conjecture. O
The approach of Blocki [6]. — Using Donnelly—Fefferman’s L? estimates
of 0, together with a tensor power trick, Btocki showed that, for a pseudo-
convex domain D € C",
1
(31) BD(Z) = 62naV01({GD('7Z) < _a})a
Here, Gp is the pluricomplex Green function of D. In dimension 1, for
a > 1, the sublevel set {GD(-,z) < —a} is almost a disc with radius
e~ %cg(z; D)~1. The right-hand side converges to 7 1cg(2; D)? as a — +o0,
and then Bp(z) = 7 tes(z; D)% O
The approach of Berndtsson—Lempert [4]. — For each ¢t > 0, define ; :=
{2G < —t} and B(t) := Bq, (20). Consider the following Stein manifold:

X ={(r,2) € CxQ:2G(z) + ReT < 0}.

z€D,aecR;.

By the log-psh variation of fibrewise Bergman kernels (see [3, 24]), 7
log B(Re7) is a psh function, then ¢ — log B(t) is a convex function. By
the local behavior of Gq( -, z9) near zg, one has B(t) ~ 7~ lcg(20)%e’ ast —
+00. Since the convex function k(¢) := log B(t) — t is bounded from above
as t = 400, k(t) must be decreasing. Therefore, k(0) > lim;, 40 k(2),
which implies Bq(20) = 7 tes(z0)2.

There is a slightly different proof due to Guan [12]. Since B(t) is the recip-
rocal of certain minimal L? integral on ;, by a general concavity property

TOME 0 (0), FASCICULE 0



6 Wang XU & Xiangyu ZHOU

(see [13, Proposition 4.1]), r m is a concave increasing function
on (0,1]. Therefore, rllogr) is decreasing in r and e*(!) = e~*B(t) is de-
creasing in ¢. As a consequence, Bq(z0) = 7 'cg(20)%. Notice that, in this
particular case, B(t) < Ce' for some C' > 0, then the convexity of log B(t)

implies the concavity of m. O

The equality part of Suita’s conjecture

The approach of Guan—Zhou [19]. — After a suitable change of coor-
dinate, we may assume that G(w) = log|cg(zo)w| on V. Since 7Bg(z0) =
cs(20)?, there exists a unique holomorphic 1-form F € I'(Q2, Kq) such that
F(z9) = dw and fQ ‘/T_TF ANF = mep(z0)72 Given 11 < rg < 13 < 0
such that {2G < r3} € V, let di(t) = 1 and let da(t) be a smooth
function on (—o00,0) so that diy = do on (—oo,7m1) U (13,0), di > do
on (ri,ra), di < dg on (r2,r3), da(t)e! is increasing on (—oo,0), and
[0 da(t)etdt = [0 di(t)et dt = 1.

According to [19, Theorem 2.2], there exists a holomorphic 1-form F’ €
T(Q, Kq) with F'(2) = dw and [;, Y5 d2(2G)F' A F7 < meg(z0) 2. By
careful computations,

/Q@F'/\Wg/QQdQQG)F'/\ﬁgwcﬁ(zo)_Q.

On the other hand, [, @F’ ANF" > Bq(z0)~! = meg(z0)~2. Since the

minimal element is unique, one has F' = F’, and then
/Q IR aF= /Q V14,(2G)F A F.

By careful computations, this equality implies F' |v = dw (see [19, Lemma
4.21]). In summary:

if mBa(20) = cp(20)? and (V,w) is a connected coordi-
nate chart around zg such that G’V = log|cg(z0)w|, then
there exists a global holomorphic 1-form F' € T'(Q2, Kq) with
F |V = dw.

Using this fact and the theory of Riemann surfaces, Guan—Zhou constructed
a holomorphic function g € O(Q2) such that G = log|g|. By Theorems 2.1
and 2.3, cp(20)? = cp(20)? = 7Bq(z0), and € is conformally equivalent
to ID less a possible closed polar set. O

ANNALES DE L’INSTITUT FOURIER
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The approach of Dong [10]. — For each ¢ > 0, put Q; = {2G < ft} and
B(t) = Bq,(20)- Let k¢(+,-) be the Bergman kernel of €, i.e. ki(x,y) =
V=1, 08 (x) A o2 (y), where {¢7}, is a complete orthonormal basis of
A%(Qy, Kq). If we write r4(-,20) = Ki(+) A dw, then K; € T'(Qy, Kq) is
the unique holomorphic 1-form with minimal L?-norm such that K;(zo) =
B(t) dw. Recall from [4] that k(t) := log B(t) — ¢ is a decreasing function.
If mBq(20) = cg(20)?, then k(t) is constant and B(t) = Bq(zq)e’.

Using the variation formula of Maitani—Yamaguchi [24], Dong proved
that KO|Qt, = K;e~! for all t > 0 such that K is zero-free. In this proof,
he needed to approximate €2 by smoothly bordered Riemann surfaces while
keeping the equality mBq(20) = cs(20)>.

Assume that (V,w) is a connected coordinate chart around zy such that
G‘V = log|cs(zo)w|, then Q € V and Ky(w) = B(t)dw for ¢ > 1. Con-
sequently, KO‘V = Bgq(zp) dw. Set F := Ky/Bq(zp), then F|V = dw. By
careful analysis, Dong showed that g := F'/(20G) is a holomorphic function

on © and G = log|g|. By [25, Theorem 1], Q is conformally equivalent to D
less a possible closed polar set. O

The approach of Xu-Zhou [30]. — For each t > 0, set Q; = {2G < —t}
and B(t) = Bgq,(20). Let F; € T'(, Kq) be the unique holomorphic 1-form
with minimal L2-norm such that Fy(z) = dw, then B(t) = ||F;||~2. By the
concavity of minimal L? integrals (see [13]), 7 + [|F_1og.||* is a concave
function. If mBq(z0) = cg(20)?, then B(t) = Ba(zo)e' and ||[F_10g.||* =
r/Bq(zp) is linear in r. By the necessary condition for linearity (see [30,
Remark 5.3)), Folm = F; for any t > 0. If (V,w) is a connected coordinate
, then F, = dw for s > 1
= dw. The other part of the proof is the same as in [19]. O

chart around 2y such that G‘V = 10g|05(zo)w

and then FO’v

Remark 3.1. — The first part of all three proofs is to find a holomorphic
1-form F' € I'(Q2, Kq) such that F|V = dw, in which (V,w) is a connected
coordinate chart around zy with G |V = log’ca (zo)w|. But the approaches
are different. Having such an F, one can construct g € O(Q) such that
loglg| = Ga(- 2).

We remark that, without requiring 7Bq(20) = ¢s(20)? in advance, the
existence of g € O(R) satistying log|g| = Ga(-, 20) guarantees the rigid-
ity. This fact is implicitly contained in Suita’s article [28, p. 213]. It also
follows from a theorem of Minda [25]: if f: X — Y is a holomorphic map
between hyperbolic Riemann surfaces, and Gy (f(a), f(b)) = Gx(a,b) for
some a # b, then f is injective and Y\ f(X) is a closed set of capacity zero.
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4. One dimensional generalizations

In this section, €2 is a hyperbolic Riemann surface, z; is a distinguished
point of  and (V,w) is a coordinate chart around zy. Let p: D — Q be
a universal covering of €). Recall that the group of deck transformations
Deck(ID/€) is isomorphic to the fundamental group 71 (€2). Therefore, any
o € m1(Q) can be identified with an element in Aut(ID) which we shall also
denote by o. Moreover, any such automorphism satisfies p o o = p.

LEMMA 4.1. — If f1 and fy are holomorphic functions on a connected
complex manifold M such that |f1| = |fz|, then f1 = afs for some o € C
with |a] = 1.

Proof. — Apply the Riemann extension theorem and the maximum prin-
ciple to f1/fa. O

LEMMA 4.2. — There exists a g € O(D) such that loglg|=p*Ga(-, 20)-

Proof. — By the Weierstrass theorem for open Riemann surfaces, there
is an h € O(Q) so that h(zp) = 0, dh(zp) # 0 and h!Q\{ZO} = 0. Since
p*(Gal(-, 20) — log|h|) is harmonic on I, there exists f € O(D) such that
Re f = p*(Ga(-,20) — log|h|). Let g := p*(h) exp(f), then g € O(D) and
loglg| = p*Ga(-, 20)- O

Let g € O(D) be a holomorphic function such that log|g| = p*Ga( -, z0).
For any o € m (), we have |g|=exp(p*Ga(-,20)) =exp(c*p*Gal-,20)) =
|oc*g|, which implies 0*g/g is a constant of modulus one. Clearly,

Xzo: 0 €ET(Q) —> 0¥g/g € St

is a group homomorphism, which is independent of the choice of g.

Let 1 be a harmonic function on €2, then there exists a holomorphic
function & € O(D) so that || = exp(p*n). For any o € m1(2), we have
|€] = exp(p*n) = exp(o*p*n) = |o*¢|, and then o*¢/¢ is a constant of
modulus one. Clearly,

Xn: 0 €m(Q) — o*¢/E €St

is also a group homomorphism, which is independent of the choice of &.
Given a group homomorphism y € Hom (m(Q), Sl), we define

OX(Q) :={feOM):0"f=x(o)f forall ¢ € m (Q)},
X(Q) = {F eI'(D,Kp) : 0“F = x(0)F for all 0 € m(Q)}.

ANNALES DE L’INSTITUT FOURIER
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A typical element f € OX(Q) (resp. F' € I'X(Q)) is called a multiplicative
function (resp. Prym differential). Recall that the multiplicative Bergman
kernel (or x-Bergman kernel) of € is defined by

ke (2) = sup{\/lF(z) ANF(z): F € I‘X(Q),/ @F ANF < 1}.
Q
Since p.(F A F) is well-defined on ), we can simply write F' A F on .
The extended Suita conjecture (see Yamada [31]) is the following.

EXTENDED SUITA CONJECTURE. — 7k > c3ldw|® and the equality
holds at zy € Q if and only if X = Xz,-

Notice that, if x = xs,, then mr&(20) = cg(20)?|dw|? (see [31, Theo-
rem 7).

There is an equivalent formulation in terms of weighted Bergman kernels.
Given a harmonic function n on €2, we define

Kam(2) = sup{\/—lF(z) AF(z):F e F(Q,KQ),/ VAR A Fe 1 € 1}.
Q
Then the extended Suita conjecture is equivalent to the following.

CONJECTURE. — TKQ, = 0%62"|dw|2 and the equality holds at zy € Q
if and only if xyXz, = 1.

The inequality part of the conjecture was proved in Guan—Zhou [18] and
the equality part was proved in Guan—Zhou [19].

THEOREM 4.3 (Guan-Zhou [18, 19]). — 7k ,(20) = c5(z0)2e?(0)|dw]?
and the equality holds if and only if XXz, = 1.

LEMMA 4.4. — Let 1 be a harmonic function on 2, then anfo =1 for
some k € N if and only if there exists a holomorphic function g € O(2)
such that log|g] = kGq(-,20) + 7.

Proof. — We choose g,£ € O(D) such that log|g| = p*Ga(-,z0) and
€] = exp(p*n). If xyx£, = 1, then

" (69") = Xn (@) - (X2 (0)9)" = €9"

for any o € m(Q). As a consequence, g := p.(£g") is a well-defined holo-
morphic function on €. Since

10g|€gk| = kp*GQ( ) ZO) +p*7]7
it is clear that log|g] = kGq( -, z0) + 1.

TOME 0 (0), FASCICULE 0



10 Wang XU & Xiangyu ZHOU

Conversely, if there is a g € O(f2) such that log|g| = kGq( -, 20) + 7, then
Ip*g| = |£g%|. Hence, £gF = c - p*g for some ¢ € S'. For any o € 71(f), we
)

have p*g = 0*(p*g), this implies

&g" = 07(66") = xa(0)¢ - (xa0(0)9)".
Therefore, X, (0) Xz, (o) =1 for all o € 71(Q). O

Recall that € is a hyperbolic Riemann surface and (V, w) is a coordinate
chart around 2y € . Denote by m,, the unique maximal ideal of O,,.
Given m € N, consider the generalized Bergman kernel

o|F € T(Q, Kq) with F|,, = f dw,

m

Bs()m)(zo) = sup ‘

—(z _

G (%0) /Q@FAF <1, [fl € w2
Clearly, BU™ (z)|dw|>™*2 is independent of the choice of (V,w). For a
planar domain Q C C,, following the method of [5], Blocki-Zwonek [8]

proved that
(4.1) 7BS (20) = m! (m + 1) ¢p(29)2™ 2.

By modifying Guan—Zhou’s proof for the equality part of Suita’s conjecture,
Li [21] obtained an equivalent condition for (4.1) to become an equality
(also see [22]).

THEOREM 4.5 (see [8] and [21]). — WBg(lm)(Zo) > m! (m+1)!eg(z0)*™F2.
Moreover, the equality holds if and only if there exists a holomorphic func-
tion g € O(Q) such that log|g] = (m + 1)Ga( -, 20).

In the following, we illustrate that the method of [30, Section 5.2] is also
applicable to Theorems 4.3 and 4.5. For simplicity, it is better to consider
a unified version.

THEOREM 4.6. — Let 2 be a hyperbolic Riemann surface, ) be a har-
monic function on Q and (V,w) be a coordinate chart around z, € 2. For
m € N, we define

o|F € T(Q, Kq) with F|,, = f dw,

am

Bgz)(zo) = sup ‘awm(zo)

/Q@FAFe*?” <1, [fls €m™

(4'2) Tng:?)(Zo) > m! (m + 1)! cﬁ(z0)2m+26277(20)_

ANNALES DE L’INSTITUT FOURIER



GENERALIZED SUITA CONJECTURES 11

m

Moreover, the equality holds if and only if X"]XZO+1 =1, if and only if there
is a holomorphic function g € O(f2) such that log|g] = (m+1)Ga( -, z0)+n.
In this case,

F =09 —2g0n € T'(Q, Kq)
is extremal with respect to Bg:;)(zo).

Here, a holomorphic 1-form F € T'(Q, Kq) (with F’V = fdw) is said

to be extremal with respect to ng;)(zo), if the following conditions are

satisfied:

1 2

1 = _
ngF/\Fe 2

o™ f

owm™

[f]zo € mg[lp BST:I)(ZO) =

(20)

Clearly, an extremal 1-form always exists and it is unique up to non-zero
multiplicative constants.

Remark 4.7. — Obviously, Theorem 2.4 corresponds to the case of m = 0
and 1 = 0, Theorem 4.3 is the case of m = 0 and Theorem 4.5 is the case
of n = 0. Theorem 4.6 was announced in [29]. We notice that Guan—-Mi-
Yuan [15] obtained a result generalizing this theorem: they characterized
the linearity of certain minimal L? integrals on hyperbolic Riemann sur-
faces by using the solution of the extended Suita conjecture (i.e. Theo-
rem 4.3). But our purpose is different, we give a new and unified proof to
the inequality part and the necessity part of Theorems 2.4, 4.3 and 4.5. For
completeness, we also include a proof for the sufficiency part.

Let us recall the concavity of minimal L? integrals and the necessary
condition for linearity (see [30, Remark 5.3] and [14, Theorem 1.3]). For
simplicity, we only focus on a special case, which is enough to prove Theo-
rem 4.6.

PROPOSITION 4.8. — Let Q be a hyperbolic Riemann surface, ¢ be a
harmonic function on Q and ¢ = 2(m + 1)Gq(-,20). For each t > 0, let
Q= {1/1 < —t} and

A= {F € L@ Ka): [FI%, = [ FLFAFe < +<>o}~
Q

Let F be a holomorphic 1-form defined in a neighbourhood of zy. For each
t >0, let Fy € A; be the unique element with minimal norm that coincides
with F' up to order m at zg.
Set I(t) = ||Fy||%,. Then r — I(—logr) is a concave increasing function
n (0,1] and 1(0) < I(t)e! < I(s)e® for any 0 < t < s. Moreover, if
r+ I(—logr) is linear on (0,1], then F; = F0|Qt for any t > 0.
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12 Wang XU & Xiangyu ZHOU

Proof of Theorem 4.6. — Let p: D — () be a universal covering, let
& € O(D) and g € O(D) be holomorphic functions so that |£| = exp(p*n)
and log|lg| = p*Ga(-, 20). Shrinking V' if necessary, we may assume that
V' is connected and p is biholomorphic on any connected component of
p~1(V). Let U be a component of p~1(V). We define h := p, (g|U) and
¢ = p«(|,), then Ga(-,20) = log|h| and || = €7 on V. After a suitable
change of coordinate, we further assume that w = cg(29)"*h on V. We will
keep these notations throughout the proof.

Let ¢ = 2(m + 1)Gq(-,20) and ¢ = 2n. For each ¢t > 0, we define
Q= {w < —t} and A; as in Proposition 4.8. Let F; € A; be the unique
element with minimal norm that coincides with w™ dw up to order m at zg.
We write B(t) = Bg:%(zo), then

1\2
I p Freon = )
o 2 0T B(t)

By Proposition 4.8, r — B

10 - s a concave function on (0,1] and

B(s)e™® < B(t)e™* < B(0) = By (z0), 0<t<s.
Inequality part. — We may choose s > 1 so that 2, € V. Recall that
Ga(+,2) = log|cs(zo0)w| and |¢| = €7 on V. Therefore,

2 = { Il < calz0) " exp(5s) }

is an open disc in (V,w). Assume that F’ := udw € Ay coincides with
w™ dw up to order m at zp. Then v := u/(Cw™) is a holomorphic function
on D(0;7) satisfying v(0) = 1/{(z0), where r :== cg(z0) " eXp(2m+2) We
may expand v into a power series with normal convergence on D(0;7):

> 1
k .
= arw”  with ag = .
2 ar 7 ((20)
By direct computations,
/ oy N2 —2"—/ )P w2 dA,
Or)
o0
Z‘ak| |w|2m+2k d)\w
D(0;r)
= T
_ 2 2m+2k+2
= ——|ag|*r .
kzzo Sl
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GENERALIZED SUITA CONJECTURES 13

Clearly, the above expression is minimized when v is a constant function.
As a consequence, for such s > 1, Fs(w) = ((z0) ¢ (w)w™ dw and

(m!)? / Nt I
= Y= Fy AN Fge "
B(s) Qs 2

0|2,r2m+2

m+1|a
T
m-+1

For any 0 < t < s, we have
B3 (20) = B(t)e™
(4.3) > B(s)e™*

65(20)727117267277(20)675.

= 77 m! (m + 1)! ep(z0)?m 22100,

this proves the inequality part of the theorem.

Equality part: necessity. — In the following, we assume that the equality
in (4.2) holds. According to inequality (4.3),

B(t)e ™t = m7bm! (m + 1) ep(20)2m2e2720) (V¢ > 0),

1
and then W

for any t > 0. Since Fy(w) = ((20) '¢(w)w™ dw for s > 1, we conclude
that

is a linear function of r. By Proposition 4.8, F; = F0|Qt

Foly, = ((20) " ¢(w)w™ duw.
Multiplying Fp by a constant, we obtain a holomorphic 1-form F €T'(Q2, Kq)
such that F!V = (d(h™*!) and F is extremal with respect to ng;)(zo).
According to the definitions of ¢ and h, we know p*F = £d(g™"!) on U.
By the uniqueness of analytic continuation, p*F = ¢d(¢g™*!) on D. For

any o € 71(2), we have p*F = o*(p*F'); this implies
€d(g™h) = o7 (€d(g™ ")) = xn(0)xz (@)™ - £d(g™ ),
Therefore, x,(0)Xs (o)™ = 1 for all 0 € 71(2), which means that
m—+1 — 1
XT]XZQ .

In this case, § == p. (g™ ") € O(Q) and F = p, (£d(¢g™ 1)) € I'(Q, Kq)
are well-defined, log|g] = (m + 1)Ga(-,z0) + 1, and F is extremal with
respect to Bgri]) (z0). We want a neat formula for the extremal 1-form.
Notice that

Ed(gmth) =€a(E7 - gg™ ) = agg™ ™) — (ggm ) - €M
Differentiating |£|? = exp(2p*n), we get

£0¢ = 20(p™n) exp(2p™n) = 2p* (In)[¢/?,
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14 Wang XU & Xiangyu ZHOU

which implies £ 710¢ = 2p*(dn). As a consequence,

F=p.(£d(g™)
= p. (0(Eg™FY) — (€9™T) - 20" (Om))
= Jg — 290n
= e219(e~2"g).

Similarly, since |g|? = exp(2p*G), where G == Gq( -, 2z0), we have
Ed(g™T) = (m+1)(&g™F) - g7 dg = (m + 1)(Eg™ ™) - 2" (9G),

which implies F = p, (£d(g™™")) = 2(m + 1)gOG on Q\{z0}.
Equality part: sufficiency. — Finally, we assume that X,,x"”‘l =1, then

g=p(Eg"T) €0(Q)  and  Fi=p.(Ed(g™H)) € N(Q, Ka)

are well-defined objects on 2. The above proof suggests that F' is extremal
with respect to Bg';) (20). Clearly, to verify this guess, we only need to prove
Jo FAF’e=2" = ( for any holomorphic 1-form F’ € Ay (with F”V = fdw)
satisfying [f]., € m2tt.

Since [g], € mQE‘H and g # 0 elsewhere, we know that F” := F’/g is a
holomorphic 1-form on €. Since F = €279(e~2"g) and [g|? = e2(mTVG+2n,

we have
/F/\F’ 2’7—/3 “G) N GF"

— [ (e 1) A T
Q

= [ 0(e2mTIE) A FT.
[ ot

We take a sequence of subdomains D; > 2y such that ﬁ] C Djq1, Q=
U; D;j and each D; is bounded by analytic curves (see [2, p. 144]). Then
G; = Gp,(-,2) is continuous up to D; and G; = 0 on dD;. By the
reflection principle, G; has a harmonic extension in some neighbourhood
of D;. By Stokes’ formula,

/ 8(62(m+1)Gj)/\W:/ 62(m+1)Gjﬁ: ﬁ:/ dWZO
D aD; dD; D;

J

Notice that e2(m*+1Gi and e2(m+DE have no singularity at zg, and G; — G
is a harmonic function on D;. Since D; €, it is clear that G; \, G. By
Harnack’s theorem, G; — G decreases to 0 uniformly on any compact subset
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GENERALIZED SUITA CONJECTURES 15

of Q. Using the estimates on derivatives, 9(G; — G) — 0 uniformly on any
compact subset of Q. Let a; := 9(e2(m*1% ) and a := 9(e2(™ V). Since

2(m+1)G;\ _ 2(m+1)G
d(e ) d(e )
_ a|:(62(m+1)(Gj7G) B 1)62(m+1)G:|
_ (62(m+1)(Gj—G) _ 1)8(62(m+1)6) + 2(m + 1)62(m+1)6‘j 8(Gj _ G),

we conclude that o; — « uniformly on any compact subset of €2.
We recall a useful formula for Green’s function G = Gg( -, 20):

/ V=18G A 3GeC = g (Va>0).
Q
In particular,

/ V=lana=4(m+ 1)2/ V=10G A dGe* ™G — (m + 1),

Q Q

Similarly, fDi vV—1a; AN@j = (m + 1)7. Recall that F/ = gF" € Ay, then

IF')%, = / V=IF' NFle™ = / V=IF" AF7em 6 < oo,

Q Q
We may assume that {2(m +1)G < —to} € D1 for some tg > 1, then
V=1F" NF7 < eP||F'||%, < +oc.

Q\Dl

Recall that [, «; A F” = 0. For any integers j > k > 1, we have

/a/\ﬁ
Q
/a/\ﬁ—/ aj/\ﬁ
Q D;

J
/ aNF" / a; N F
Q\Dg D;\Dg

< (lallz) + lleyllL2 (o)) IF L2\ py) +

N

+ +

/Dk(ozj—a)/\F”
/D (o —a)/\F’”.

k

Since || F"||z2(\p,) < +o0 and Dy 7 Q, the first term converges to 0 as
k — +oo. For fixed k, since a; — o uniformly on D, the second term
converges to 0 as j — +o0o. Let j — +00 and then k£ — 400, we conclude
that [, « AF” = 0.
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16 Wang XU & Xiangyu ZHOU

In summary, provided x,x7*! = 1, we prove that F := p,(£d(g™ "))

is extremal with respect to ngln)(zo). Recall that F|v = ¢d(h™*™1) and
h = cg(z0)w on V. Therefore,

F|V (m + 1)eg(20)™ ¢ (w)w™ dw.
If we write F’v = f(w) dw, then [f]., € mJ! and

a’m,
3wTJ:‘ (20)

On the other hand, since F' = 2(m + 1)gdG on Q \ {20}, we have

2
_ ((m + 1)!)205(zo)2m+2€2n(20)'

[ AT a1 [ 06 A8GE™ I — (mt D
Q Q

Since F' is extremal with respect to Bgz])(zo), we conclude that
m -+ 1)!)205(20)2m+262”(Z0)
(m+ )7 '
This completes the proof. O

B () =

5. The equality in higher order Suita conjecture

In this section, we restrict ourselves to the case of planar domains.

By the Riemann mapping theorem, any simply connected domain 2 C C
is conformally equivalent to the unit disk, then it is clear that WBS()m) (20) =
m! (m + 1) cg(20)*™*2 for all 29 € Q and m € N.

Next, we consider a domain  C C of finite connectivity n > 2. Since
isolated points are removable singularities for L? holomorphic functions and
upper bounded subharmonic functions, we may assume that no connected
component of C \ © reduces to a point. After a conformal transformation,
we assume that € is bounded by n analytic curvesI'y,...,I',. Let w; be the
harmonic measure of I'; with respect to Q. By the reflection principle, w;
and Gq( -, z0) (V 20 € Q) have harmonic extensions in some neighbourhood
of 90 =T1U---UTl,. It is known that the period fr *dGq( -, z0) equals to
21w; (20), where *du = —/—=1(0u — du) denotes the conjugate differential
of du. (See [1] for details.)

If n = 2, then such 2 is conformally equivalent to some annulus A =
{z € C:1 < |z] < R}. In a joint work [22] with Li, by studying the
multi-valued harmonic conjugate of G4, (-, zp), we showed that, if |z9| =
exp(m "1 log R) for some integer k € [1,m], then there exists a holomorphic
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GENERALIZED SUITA CONJECTURES 17
function g € O(Ag) such that loglg| = (m + 1)G 4, (-, ). According to
Theorem 4.5, for any integers 1 < k < m, we have
(5.1) 7BYY (20) = m! (m + 1) es(z0; AR)*™ 2, |z9| = R7H1.

This also follows from an explicit formula for the Green’s function of Ag
(see [20]):

(1 —a_lz)H(a,z)‘

Gap(z,a) =log FEC , l<a<R,
where
*© (1—2R"2)(1—-¢R~?%
H(a,z) — 1;1)1/:1( a — )( lz 721/22
II,-.;(1 —azR )(1*;1% )
and
loga
=1 .
s(a) log R

Ifa = exp(miﬂlogR) for some integer k € [1,m], then s(a) = 1 — m—ﬂ

and
(1—a"'2)(a, z))m+1

9a(2) = Smt1—k

is a holomorphic function on Ax such that loglgs| = (m + 1)Ga,(-,a).
As pointed out by Guan—Sun—Yuan [16], given zg € 2 and m € N, there

exists a holomorphic function g € O() satisfying log|lg| = (m+1)Gq( -, 20)

if and only if (m + 1)w;(z0) € Z for all 1 < j < n. By Theorem 4.5, these

2m—+2

conditions are equivalent to 7TBS(1 )(zo) = m! (m + 1)!es(20) . Since

0<w;j<1lon®andw;+ -+ w, =1, in this case, one has
1=w1(20)+"'+wn(2’0) > mLH

Consequently, if the equality in m-order Suita conjecture holds somewhere
in an n-connected domain, then it is necessary that m > n — 1. (Every
domain considered here is bounded by analytic curves!) Moreover, Guan—
Sun—Yuan [16] showed that, in any 3-connected domain 2, there exist some
20 €  and large m € N such that WB(m)( 0) =m! (m+ 1) cg(z)*™ 2.

In summary, if Q C C is simply connected, then for any m > 0, the equal-
ity in m-order Suita conjecture holds for every point of Q; if Q is doubly
connected, then for any m > 1, the equality in m-order Suita conjecture
holds for all points on m analytic curves.

It is natural to ask, if € is 3-connected, can we find a point zg € ) such
that the equality in 2-order Suita conjecture holds? However, the following
counterexample shows that this is impossible in general.
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18 Wang XU & Xiangyu ZHOU

THEOREM 5.1. — Given any integers n > 3 and M > 1, there exists
a family of smoothly bounded n-connected domain 2 C C such that no
point of ) can satisfy the equality in m-order Suita conjecture, where m =
0,1,..., M.

Proof. — Let a,e € (0,1) be positive constants to be specified later.
Define n
z+a z—a
v1(z) = 1T az and wa(z) =
they are automorphisms of the unit disk D. Let
:{ZED:|<p1(z)|<5} and Dgz{zED:’¢2(z)’<5}.

By the property of linear fractional transformations, D, and Dy are closed
a(l —&?)

disks in D:
< e(1 —a?) .
1 — a2e2 1 — a2e2?

If € < a, then D; and Dy are disjoint. Let Ds,..., D, 1 be arbitrary
disjoint closed disks in D\ (D U Ds). Denote I'; = 0D; and T, = 9D.
Then

1—az’

Dl,DQZ{ZGCZ zx

Q:=D\ (Uj=i D;)
is an n-connected domain bounded by circles I'y, ..., T,.

Let w; be the harmonic measure of I'; with respect to €2, i.e. w; is a
harmonic function on {2, taking boundary values 1 on I'; and 0 on the
other contours. Notice that log|p1(z)|/loge is a harmonic function on €,
taking boundary values 1 on I'; and is nonnegative on the other contours.
By the maximum principle,

10g‘<P1(2)‘

<
wi(2) loge

Let ¢ := inf{|¢1(2)| : 2 € D,Rez > 0}. Since ¢1 € Aut(D) and ¢1(—a) =0,
it clear that 0 < ¢ < 1. Therefore,

z €.

)

log ¢

wi(z) < z€Qn{z:Rez>0}.

loge’

Similarly, ws < }ggg on QN {z : Rez < O}. Notice that the constant c

depends only on a. Indeed, we can show that ¢ = ’Lpl (O)| = a.

loge
loge < M+1’

ie. 0 <e < eMtl Since wy < ﬁ on QN {z:Rez > 0}, all the curves
wy = ¢q, with ¢ € (%Z U---u ﬁZ) N Q4, completely lie in the left half-
plane. Similarly, all the curves ws = ¢’, with ¢’ € (%Z U--- M+1 ) NQ4,
completely lie in the right half-plane. Since these curves are disjoint, for

Let a € (0,1) be arbitrarily given, we choose ¢ < 1 so that
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any integer m = 0,1,..., M, we cannot find a point zg € 2 such that
w1(z0),wa(z0) € m+1Z Therefore no point of  can satisfy the equality in
m-order Suita conjecture, where m =0,1,..., M. d

6. Higher dimensional generalizations

In this section, D is a bounded domain in C". Given a measurable func-
tion ¢ on D which is locally bounded from above, the weighted Bergman
space is defined by

A(Dye %) = {f e OD): I = [ |fPe < +oo}7
D
and the weighted Bergman kernel is

Bp(ze™%) =sup{|f(2)]” : f € A*(Dse™%), | f]* <1}.

If ¢ = 0, we shall simplify these notations as A%(D) and Bp(z).
Denote by Gp(-,z) the pluricomplex Green function of D with a pole
at z € D, then the Azukawa pseudometric of D is defined by

Ap(z; X) = /@)(GD(Z—I— AX,z) —log|A]), z€D, X eC".

Clearly, Ap(z;-) € psh(C") and Ap(z;7X) = Ap(z; X) + log|7| for any
7 € C. Therefore, the Azukawa indicatrix

Ip(z) ={X €C": Ap(z; X) <0}

is a balanced pseudoconvex domain in C". (Recall that a set U C C™ is
said to be balanced, if 7z € U for every z € U and 7 € C with |7| < 1.)

For simplicity, we assume that zop = 0 and B"(0;r) C D C B"(0; R). For
each a > 0, let D, = {Gp(-,0) < —a}. Since log(|z|/R) < Gp(z,0) <
log(|z|/r), it is easy to see that B"(0;r) C e*D, C B"(0; R) and B™(0;7) C
Ip(0) € B™(0; R). Here we use the standard convention: given U C C™ and
¢ > 0, then cU is a set defined by {cz 1z € U}.

In the following, we assume that D C C™ is hyperconvex, which means
that there exists a negative continuous psh exhaustion function on D. In
this case, Zwonek [32] proved that Ap is continuous on D x C™ and

Ap(z; X) = lim (Gp(w,z) — log |u‘§|z|> (X #0).
wW—z, WHZ
(w—z)/|lw—z|—X/|X|
For any 0 < £ < 1, we can find an a. > 0 such that e*D, C (1 +¢)Ip(0)
for all @ > a.. Otherwise, there exist € > 0, a; — +o00 and X; € C" such

that X; € e%D,; (& G(e”*X;,0) < —a;) and X; ¢ (1+¢)Ip(0) (&
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20 Wang XU & Xiangyu ZHOU

A(0; X;) > log(1 +¢€)). Since (1 + ¢)r < |X;| < R, we may assume that
X; = X* as j — +o00. Using the regularity of Ap, we reach a contradiction:

Ap(0; X*) = lim Ap(0; X;) > log(l +¢),
J—+oo

Ap(0; X*) = lim (GD(e*anj,O) log 17 ’X‘) <.

Jj—+oo |
Similarly, for any 0 < ¢ < 1, we can find an a. > 0 such that e*D, D
(1 —¢€)Ip(0) for all @ > a.. In summary, for any 0 < ¢ < 1, we have
(6.1) (1—¢)Ip(0) Ce*D, C (1+¢)Ip(0) foralla>1.
As a consequence, limg_, 4o €% Vol(D,) = Vol(Ip(0)). Using (3.1), Blo-

cki—Zwonek [7] obtained the following generalization to Suita’s conjecture:
_
Vol(Ip(z0))

Via approximation, (6.2) holds for general pseudoconvex domains in C”.

(6.2) Bp(20) 2

Let H(z) = 3 |4/=m Ca?” be a homogeneous polynomial of degree m
on C", for any holomorphic function f(z), we define

a\alf
H . a
o1 f o= E cal2f = laZ o g

Blocki-Zwonek [9] introduced the following generalized Bergman kernel:

B () =sw{fof )l 1 € 2), [P ar< L. (7 emz ).

At first, we assume that D > 2y is a bounded hyperconvex domain.
Assume that zg = 0 and let D, := {Gp(-,0) < —a}. By the monotonicity
property of Bergman kernels and (6.1),

lim e ?"t™eBY (0) = lim B, (0)=Bf (0).

a—r+00 ‘ a—r+o00
Using a tensor power trick, Blocki—Zwonek [9] proved that
a— e 2mtmapl (@)

is a decreasing function on [0, +00), and then

(6.3) Bp(20) = By .(0).

Via approximation, (6.3) is true for general pseudoconvex domains. Clearly,
if H = 1, then BE are the usual Bergman kernels and (6.3) reduces to (6.2).

If D C Cis a planar domain, then Ip(zo) = D(0;cg(20) 1), where cg(z)
is the logarithmic capacity of D at zg. In this case, (6.2) reduces to Suita’s
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conjecture. Let H(z) = 2™, then BHE = Bgn). By direct computations,
BII;(ZO)(O) =7 m! (m + 1) cg(20)*™*2 and then (6.3) reduces to (4.1).

In the following, we apply the approach of Section 4 to prove (6.3).

Recall that D 3 z is a bounded pseudoconvex domain in C" and H(z) is
a homogeneous polynomial of degree m. There exists some f € A?(D) such
that [f]., € m7 and 9% f(z0) = 1. We obtain such an f by solving certain
0-equation with L? estimate. Alternatively, we can apply [30, Corollary 1.4]
directly. Let 1 := 2(n + m)Gp(-,z). For each t > 0, let D, == {¢) < —t}
and let f; € A%(D;) be the unique holomorphic function with minimal L?
norm such that

[fi):o €m? and 9 fi(20) = L.

Let I(t) == ||ft||A2 (D) then it is clear that BR (z0) = I(t)"

Notice that, if f is a holomorphlc function such that | f fl2e ¥ is
locally integrable near zp, then [ f]zO € mJ and o f (zo) = 1. Therefore,
the arguments of [30, Section 5.1] can be apphed without any change, and
we conclude that (see also [14]):

(i) r— I(—logr) is a concave increasing function on (0, 1];

(ii) if r — I(—logr) is linear, then f0|Dt = f; for any t > 0.
By concavity, r — I(—logr)/r is decreasing on (0, 1], then ¢ — e~ *BE (z0)
is also decreasing on [0, +00). This monotonicity was proved in [9] by using
a tensor power trick. (Recall that D, = {GD( 20) < —a} = Da(ntm)a-)
The remaining part of the proof is the same as [9]: if D is hyperconvex,
then

lim e~ BDt (z0) = lim 672("+m)aBga (20) = Bﬁ)(ZO)(O),

t——+oo a—+o0o

and the monotonicity implies the inequality (6.3); via approximation, (6.3)
is true for general pseudoconvex domains. Actually, we have something
more.

PROPOSITION 6.1. — Let D 3 zg be a bounded pseudoconvex domain
in C™ and H(z) be a holomorphic homogeneous polynomial of degree m
on C". For each t > 0, let D; := {2(n + m)Gp(-,z) < —t} and B(t) =
Bgt(zo)-

(1) For any N € Ny, r — B(—%logr)fN is a concave function on
(0,1].

(2) If BE (%) = Bﬁ)(ZO)(O), then f0|D,, = f; for any t > 0, where
fi € A%(Dy) is the unique holomorphic function with minimal L?
norm such that [f]., € m2 and 0 f,(z0) = 1.
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Proof. — We assume the same notations as above. By conclusion (i), r —
B(—1logr)~! is a concave function on (0,1]. Given N € N, we consider
the product domain D:=Dx--xDcCC"™ and zo = (20,...,20) € D.
By the same reason,

re (0,1 — (BEGXA (2))

is a concave function, where ¥ := 2(n + m)NG3(-,2). By the prod-
uct properties of pluricomplex Green functions (see [20]) and generalized
Bergman kernels (see [9]),

{\I/ <logr} = {1/;< 1"%} X oo X {¢< IOJ%T},
N
Bﬂi’igﬁﬁ(%) = (ng<logr/N}(Z0)) = B(—+ logr

Therefore, r — B(—% log r)fN is a concave function on (0, 1].
If D is hyperconvex, we know

Bp(20) 2 e 'Bp,(20) = BiL.,(0), t>0.

)N

Via approximation, this is true for general pseudoconvex domains. Hence,
if BH(2) = Bg)(zg)(O), then BJ (z0) = e'Bp(z0) for all t. In this case,
r + I(—logr) = r/BH(z) is linear, then it follows from conclusion (ii)

that fO‘Dt = fy forany t > 0. O

If D C Cis a planar domain, then (6.3) reduces to (4.1), and Theorem 4.5
gives a full characterization for the equality case of (4.1). However, in higher
dimensions, such a characterization is unknown yet. Nevertheless, the above
proposition gives a necessary condition for the equality of (6.3).

7. The equality in higher dimension Suita conjecture

In this section, we study the equality case of higher order Suita conjec-
ture. The first example is well-known; the second example is one dimen-
sional, it was included for completeness. As an application of Theorem 4.6,
we also give a new family of examples for which (6.3) becomes an equality.

(1) Let D = {z € C" : h(z) < 1} be a bounded balanced pseudoconvex
domain, where h: C" — [0,00) is homogeneous (which means that
h(rz) = |r|h(z) for any 7 € C) and logh is psh. As Gp(-,0) = logh,
we know D, = {Gp(-,0) < —a} = e *D and Ip(0) = D. Let H(z)
be a homogeneous polynomial of degree m on C", then

Bp(0) = e "t ™eBE (0) = Bfj )(0) (Va>0).
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(2) Let @ = {z € C: 1 < |2| < R} be an annulus and H(z) = 2™. We

Zm
choose a point zg € Q with |z| = exp(;25 log R), where k € [1,m] is

an integer. According to equation (5.1),
Bl (20) = 77 m! (m + 1) cp(20; Q)*™+2 = Bﬁz(ZO)(O).

(3) Let €2 be a bounded domain in C and 7 be a harmonic function on €.
Let D = {w € C" : h(w) < 1} be a bounded balanced pseudoconvex
domain in C", where h: C" — [0, 00) is homogeneous and log h is psh.
We consider the following generalized Hartogs domain:

Q= {(z,w) e Ax C" : h(w) < 67"(2)}.

Let ¢ be a subharmonic exhaustion function of €2, then

max{¢(z)a _M}

is a psh exhaustion function of Q. Hence, Q c CHl s pseudoconvex.

For any 29 € Q, ¢(z,w) = max{Gq(z,2), logh(w) + n(z)} is a
negative psh function on Q. Clearly, 1(z,w) has a logarithmic pole at
(20,0). By the definition of pluricomplex Green functions,

Ga((z, w), (20,0)) = max{Gq(z, 20), log h(w) + n(z) }.

Now we estimate the Azukawa pseudometric of Q at (20,0). For any
non-zero (X,Y) e Cx C",
Aﬁ((zo, 0); (X, Y))

- @J(Gﬁ((zo +AX,AY), (20,0)) — log\)\|)
> ﬁ(max{GQ(zo + AX, 20), log h(AY) + (20 + AX)} — log|)\\)
e
= ﬁmax{(}g(zo + AX, 20) — log|Al, log h(Y') + n(z0 + AX) }.
—

Notice that, if X # 0, then limy_,o exp(GQ(zo + X, z) — log|)\X|) =
cs(z0), where cg(zp) is the logarithmic capacity of Q at zp. Therefore,

)l\ii%(GQ(zo + XX, 2z0) — log|A|), log h(Y) + )I\ILI%) n(zo + /\X)}

= max{log|cg(20) X[, log h(Y) +n(z0) }-

Consequently,

> max{

(7.1) I5((20,0)) C {(X, Y)eCxC":|X| < cp(z0)7, R(Y) < 6*71(20)}
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and
(7.2) Vol (I3 ((20,0))) < meg(z0) % x Vol(D)e—2mm(z0).

Then we compute the Bergman kernel of Q at (20,0). For any r > 0,
since rD = {w € C" : h(w) < r} is a balanced domain, it is clear that

/D‘f(w)|2dAw > Vol(D)|f(())]2r2”, feowD).

Notice that the integral on the left-hand side may be infinite. For any
f € A%(Q), we have

fora ([ jemio)on

> Vol(D) / |F(z,0)[7e~2m1C) d,.
Q

It follows that f(-,0) € A2(Q;e2"7) and
}.}7(2070”2 s A
Bﬁ((zo,())) = SHP{W\ cf € A%(Q)

2
|9(ZO)| 2 —2
< : A= (8 M
Sup{VOl(D) fﬂ‘g|26_2nn d)\ g S ( (& )

_ BQﬂm(ZO)
— Vol(D)

On the other hand, for any g € A?(Q;e~2"), we define g(z,w) =
g(z); then
geA%Q) and /~\§]’|2d)\ = vol(D)/|g\2e—2”” dA.
Q Q
Then it is clear that
Bq nn(20)
. B~ = —l

If D is the unit ball in C™, (7.3) is also known as Ligocka’s formula [23].
Combining (7.3), (6.2) and (7.2), we get
Ba nn(20) 1 < cp(zp)2e?mn(zo)
Vol(D) Vol(I5((2,0))) = @ Vol(D)

By Theorem 4.3, if x, )y = 1 (equivalently, there exists some g € O((2)
such that log|g] = Ga( -, z0) +nn), then the above inequalities become
equalities.
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THEOREM 7.1. — Let ) be a bounded domain in C and i be a harmonic
functi'on on ). Let D be a bounded balanced pseudoconvex domain in C™
and Q) = {(z,w) eEQxC":we e*”(z)D}. If Xz x7 = 1 for some zg € (,

then
1

Vol (I ((20,0)))

It is not hard to generalize the above example to the case of (6.3).

B5((20,0)) =

THEOREM 7.2. — Let 2 be a bounded domain in C and n be a harmonic
function on Q. Let D be a bounded balanced pseudoconvex domain in C™
and

Q= {(z,w) eQxC":we e_"(Z)D}.
Let Hy(w) be a homogeneous polynomial of degree k on C"™ and H(z,w) :=
2™ Hy(w). If)(m+1 nt+k — 1 for some zy € Q, then

BZ ((20,0)) = By ((0,0)), where W = I5((20,0))-

Proof. — Since rD is a balanced domain, any f € O(rD) can be written
as a compactly convergent series f = > ;2 fi, where each f; is a homo-
geneous polynomial of degree [. It is clear that [fy]o € mE, 0z f,(0) =

0Hz £(0) and
/TDdeA;/TDuﬂdu/mkodA.

Notice that these integrals may be infinite. By the definition of generalized
Bergman kernels,

2 2
/ If\de/ Suan s 20O o fO
P BTHB(O) BH2 (0)r—2(n+0)

For any f € AQ(Q) with [f (20,0) € m(ZO 0)7 we have

/N\ﬂZd)\ ( z,w)’zd)\w> d\,
Q e—n(z)D

/} 12 F(2, 0) P 2mHma) g,

BH2

Therefore, 52 f(-,0) € A2 (Q; e=2+km) Since [852]"( -,O)L emy
know

su ’amaHzf(ZO’ )|2
7 Jolol F(z,0)[Fe-2nhm) . / B2 (0)
< BYY o (z0) x BE(0).
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Here, the supremum is taken over all fe A2(§~2) with [ﬂ(zO 0) € m(z:_O)

It is easy to find a homogeneous polynomial u of degree k on C" such that
[plul?dX\ = 1and Bj?(0) = [0H2u(0)|2. For any g € A%(Q; e~ 2("+0)n) with
9]z € M7, let g(z,w) = g(z)u(w), then g € A%(Q) and [g](»,,0) € m@:lg).
Therefore,

P
L JolgPe 2+ dx
|8H 20,0 ‘/’8H2u |2
-7 JalgP? dx
Bg((ZO,O))
Bp2(0)

Here, the supremum is taken over all g € A%(Q; e=2("+k)") with [g]., € mT

Denote by W the Azukawa indicatrix of Q at (zo,0). According to (7.1),
W C U x V, where U :=D(0;cs(20) ") and V := e~"(=0) D. By the mono-
tonicity property and the product property of generalized Bergman kernels,

BV]{/((Ovo)) 2 BIIJJXV((O?O))
= B (0) x B{f*(0)

_m! (n;+1)!05(20)2m+2 % 62(n+k)n(zo)BgQ (0>

Combining these results with (6.3), we get

H
BY) iy (70) X BR2(0) = BE ((2,0))
Biy ((0,0))
> m! (m+1)!CB(ZO)2m+262(n+k)n(zo) % Bgz (0)
According to Theorem 4.6, if x7'*'x7% = 1 (equivalently, there exists
g € O(Q) such that log|g] = (m + 1)Ga(-,20) + (n+ k)n), then the above
inequalities become equalities. 0

Remark 7.3. — It is easy to find (Q,n) satisfying the requirements of
Theorem 7.2. Let €’ be an arbitrary bounded domain in C, we choose
a holomorphic function 0 £ f € O(Q) having at least a zero zy € V.
Define Q := (Q'\ f71(0)) U{20}; then z is the only zero of f € O(). Let
m = ord,, (f) — 1 and

ni= n%rk(logm — (m+1)Ga(-,2)),

m+1, n+k _ = 1.

then 7 is a harmonic function on © and X7\ X7
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Clearly, all balanced domains are contractible. In contrast, the Q defined
in Theorem 7.2 has the same homotopy type as €2, which could be very
complicated.

Using the transformation rule under biholomorphism and the product
property of generalized Bergman kernels (see [9]), one can construct more
and more examples from (1), (2) and (3). It would be interesting to find a
full characterization for the equality of (6.3).
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