[Décomposition en blocs via l’équivalence de Satake géométrique]
We give a new proof for the description of the blocks in the category of representations of a reductive algebraic group $\mathbf{G}$ over a field of positive characteristic $\ell $ (originally due to Donkin), by working in the Satake category of the Langlands dual group and applying Smith–Treumann theory as developed by Riche and Williamson. On the representation theoretic side, our methods enable us to give a bound for the length of a minimum chain linking two weights in the same block, and to give a new proof for the block decomposition of a quantum group at an $\ell ^{\text{th}}$ root of unity.
Nous donnons une nouvelle preuve pour la description des blocs de la catégorie des représentations d’un groupe algébrique réductif sur un corps de caractéristique positive $\ell $ (originellement due à Donkin), en travaillant dans la catégorie de Satake du groupe dual de Langlands et en appliquant la théorie de Smith–Treumann telle que développée par Riche et Williamson. Du côté de la théorie des représentations, nos méthodes nous permettent de donner une borne pour la longueur minimale d’une chaîne reliant deux poids dans le même bloc, et de donner une nouvelle preuve de la décomposition en blocs d’un groupe quantique à une racine $\ell ^{\text{ème}}$ de l’unité.
Révisé le :
Accepté le :
Première publication :
Keywords: Kazhdan–Lusztig polynomials, reductive algebraic groups, perverse sheaves
Mots-clés : polynômes de Kazhdan–Lusztig, groupes algébriques réductifs, faisceaux pervers
Zabeth, Emilien  1
@unpublished{AIF_0__0_0_A47_0,
author = {Zabeth, Emilien},
title = {Block decomposition via the geometric {Satake} equivalence},
journal = {Annales de l'Institut Fourier},
year = {2026},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
doi = {10.5802/aif.3755},
language = {en},
note = {Online first},
}
Zabeth, Emilien. Block decomposition via the geometric Satake equivalence. Annales de l'Institut Fourier, Online first, 73 p.
[1] Perverse Sheaves and Applications to Representation Theory, Mathematical Surveys and Monographs, 258, American Mathematical Society, 2021 | DOI | Zbl | MR
[2] The parabolic exotic t-structure, Épijournal de Géom. Algébr., EPIGA, Volume 2 (2018), 8, 31 pages | DOI | Zbl | MR
[3] Modular perverse sheaves on flag varieties I: tilting and parity sheaves, Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016) no. 2, pp. 325-370 (with a joint appendix by Geordie Williamson) | Zbl | MR | Numdam | DOI
[4] Reductive groups, the loop Grassmannian, and the Springer resolution, Invent. Math., Volume 214 (2018) no. 1, pp. 289-436 | DOI | Zbl | MR
[5] A geometric Steinberg formula (2021) | arXiv
[6] A geometric model for blocks of Frobenius kernels (2022) | arXiv
[7] An inversion formula for the Kazhdan–Lusztig polynomials for affine Weyl groups, Adv. Math., Volume 60 (1986) no. 2, pp. 125-153 | Zbl | DOI
[8] Representations of quantum algebras, Invent. Math., Volume 104 (1991) no. 1, pp. 1-59 | DOI | Zbl
[9] Quantum groups, the loop Grassmannian, and the Springer resolution, J. Am. Math. Soc., Volume 17 (2004) no. 3, pp. 595-678 | DOI | Zbl | MR
[10] Notes on the geometric Satake equivalence, Relative aspects in Representation Theory, Langlands Functoriality and Automorphic Forms (Heiermann, Volker; Prasad, Dipendra, eds.) (Lecture Notes in Mathematics), Volume 2221, Springer, 2018, pp. 1-134 | Zbl | DOI
[11] Faisceaux pervers. Proceedings of the colloquium “Analysis and topology on singular spaces”, Luminy, France, July 6–10, 1981. Part I, Astérisque, 100, Société Mathématique de France, 2018 | Zbl | MR
[12] An Iwahori–Whittaker model for the Satake category, J. Éc. Polytech., Math., Volume 6 (2019), pp. 707-735 | DOI | Zbl | Numdam | MR
[13] Éléments de mathématique. Groupes et algèbres de Lie: Chapitres 4 à 6, Springer, 2007 | DOI | Zbl
[14] Hecke category actions via Smith–Treumann theory (2021) | arXiv
[15] The blocks of a semisimple algebraic group, J. Algebra, Volume 67 (1980) no. 1, pp. 36-53 | DOI | Zbl | MR
[16] Lievis: Lie theory visualisations, https://www.jgibson.id.au/lievis/, 2022
[17] Graded artin algebras, J. Algebra, Volume 76 (1982) no. 1, pp. 111-137 | DOI | Zbl | MR
[18] Linear Algebraic Groups, Graduate Texts in Mathematics, 21, Springer, 1975 | Zbl | MR
[19] Blocks and indecomposable modules for semisimple algebraic groups, J. Algebra, Volume 54 (1978) no. 2, pp. 494-503 | DOI | Zbl | MR
[20] Representations of Algebraic Groups, Mathematical Surveys and Monographs, 107, American Mathematical Society, 2003 | Zbl | MR
[21] Parity sheaves, J. Am. Math. Soc., Volume 27 (2014) no. 4, pp. 1169-1212 | Zbl | MR | DOI
[22] Quadratic and Hermitian forms over rings, Grundlehren der Mathematischen Wissenschaften, 294, Springer, 1991 (with a foreword by I. Bertuccioni) | Zbl | DOI | MR
[23] Parity sheaves and Smith theory, J. Reine Angew. Math., Volume 777 (2021), pp. 49-87 | DOI | MR | Zbl
[24] Hecke algebras and Jantzen’s generic decomposition patterns, Adv. Math., Volume 37 (1980) no. 2, pp. 121-164 | DOI | Zbl
[25] Algebraic groups. The theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, 170, Cambridge University Press, 2017 | DOI | Zbl | MR
[26] Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. Math., Volume 166 (2007) no. 1, pp. 95-143 | DOI | Zbl
[27] Twisted loop groups and their affine flag varieties, Adv. Math., Volume 219 (2008) no. 1, pp. 118-198 | DOI | Zbl | MR
[28] Geometric Representation Theory in positive characteristic, Habilitation à diriger des recherches, Université Blaise Pascal (Clermont Ferrand 2) (2016) https://tel.archives-ouvertes.fr/tel-01431526
[29] Tilting modules and the -canonical basis, Astérisque, 397, Société Mathématique de France, 2018 | Zbl
[30] Smith–Treumann theory and the linkage principle, Publ. Math., Inst. Hautes Étud. Sci., Volume 136 (2022), pp. 225-292 | DOI | MR | Zbl
[31] Kazhdan–Lusztig polynomials and a combinatoric for tilting modules, Represent. Theory, Volume 1 (1997), pp. 83-114 | Zbl | DOI
[32] Character formulas for tilting modules over Kac–Moody algebras, Represent. Theory, Volume 2 (1998) no. 13, pp. 432-448 | DOI | Zbl
[33] The Stacks project, https://stacks.math.columbia.edu, 2022
[34] The blocks of a quantum algebra, Commun. Algebra, Volume 22 (1994) no. 5, pp. 1617-1628 | DOI | Zbl | MR
[35] Smith theory and geometric Hecke algebras, Math. Ann., Volume 375 (2019) no. 1-2, pp. 595-628 | DOI | MR | Zbl
[36] On the blocks of semisimple algebraic groups and associated generalized Schur algebras, J. Algebra, Volume 319 (2008) no. 3, pp. 952-965 | DOI | Zbl | MR
[37] Modular intersection cohomology complexes on flag varieties, Math. Z., Volume 272 (2012) no. 3-4, pp. 697-727 (with an appendix by T. Braden) | DOI | Zbl
[38] Weights of mixed tilting sheaves and geometric Ringel duality, Sel. Math., New Ser., Volume 14 (2009) no. 2, pp. 299-320 | DOI | Zbl | MR
Cité par Sources :



