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BLOCK DECOMPOSITION VIA THE GEOMETRIC
SATAKE EQUIVALENCE

by Emilien ZABETH

Abstract. — We give a new proof for the description of the blocks in the cat-
egory of representations of a reductive algebraic group G over a field of positive
characteristic ℓ (originally due to Donkin), by working in the Satake category of
the Langlands dual group and applying Smith–Treumann theory as developed by
Riche and Williamson. On the representation theoretic side, our methods enable
us to give a bound for the length of a minimum chain linking two weights in the
same block, and to give a new proof for the block decomposition of a quantum
group at an ℓth root of unity.

Résumé. — Nous donnons une nouvelle preuve pour la description des blocs
de la catégorie des représentations d’un groupe algébrique réductif sur un corps
de caractéristique positive ℓ (originellement due à Donkin), en travaillant dans
la catégorie de Satake du groupe dual de Langlands et en appliquant la théorie
de Smith–Treumann telle que développée par Riche et Williamson. Du côté de la
théorie des représentations, nos méthodes nous permettent de donner une borne
pour la longueur minimale d’une chaîne reliant deux poids dans le même bloc, et
de donner une nouvelle preuve de la décomposition en blocs d’un groupe quantique
à une racine ℓème de l’unité.

1. Introduction

In this paper, we give a proof for the description of the block decompo-
sition of a reductive algebraic group over a field of prime characteristic ℓ
using the geometry of the affine Grassmannian. We apply results from [30],
where Riche and Williamson used and developed Smith–Treumann theory
for sheaves to give a geometric proof of the Linkage principle, which is the
first step towards the block decomposition. Most of our paper is dedicated
to the study of equivalence classes on some subsets of the affine Weyl group.
These equivalence classes will be defined using homomorphisms between

Keywords: Kazhdan–Lusztig polynomials, reductive algebraic groups, perverse sheaves.
2020 Mathematics Subject Classification: 20G05, 14F08, 22E57.



2 Emilien ZABETH

indecomposable parity complexes on some partial affine flag varieties, and
we will show that their description implies the desired description for the
block decomposition. Our methods will moreover allow us to give a bound
for the length of a minimum chain linking two weights in the same block.
Finally, using the fact that some of our techniques work in any character-
istic (for the field of coefficients of our sheaves), we will give a proof for the
description of the block decomposition of a quantum group at an ℓth root
of unity.

In the rest of this introduction, we start by recalling the description of
the blocks for a simply-connected simple algebraic group (due to Donkin),
before giving a brief summary of some key results from [30] and an overview
of our proof.

1.1. The block decomposition of a simply-connected simple
algebraic group

Let G be a simply-connected simple(1) algebraic group over a field k of
prime characteristic ℓ, with a split maximal torus and a Borel subgroup
T ⊂ B. Let also R+ ⊂ R ⊂ X denote the set of positive roots (with
respect to the Borel subgroup B+ satisfying B+ ∩B = T ) and roots inside
the character lattice of T, and W0 be the Weyl group associated with
(G,T ). The category Rep(G) of finite dimensional algebraic G-modules is
a highest weight category, admitting the set of dominant characters X+
of T as a weight poset. For each λ ∈ X+, denote by Lλ the associated
simple G-module (which is the simple socle of the induced G-module of
highest weight λ), and consider the equivalence relation ∼ on X+ generated
by the relation R1:

λR1µ⇐⇒ Ext1
Rep(G)(Lλ, Lµ) ̸= 0.

For any λ ∈ X+, let λ ∈ X+/ ∼ be the associated equivalence class and de-
fine Repλ(G) as the Serre subcategory generated by the family (Lµ, µ ∼ λ)
(this coincides with the full subcategory of Rep(G) consisting of G-modules
whose composition factors are of the form Lµ, with µ ∼ λ). The so-called
block decomposition (cf. [20, Lemma 7.1, Part II]) of Rep(G) is then:

Rep(G) =
⊕

λ∈X+/∼

Repλ(G).

(1) By simple we mean that the root system of G is irreducible.

ANNALES DE L’INSTITUT FOURIER
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Remark 1.1. — This formalism also makes sense when char(k) = 0,
in which case the semi-simplicity of the category Rep(G) (cf. [25, The-
orem 22.42]) tells us that λ = {λ} for every λ ∈ X+, so that the block
Repλ(G) is just the additive subcategory generated by Lλ.

Fix λ ∈ X+ and denote by ρ ∈ X the half-sum of the positive roots (this
belongs to X thanks to our assumption that G is simply connected). The
linkage principle (cf. [20, Corollary 6.17]) tells us that

(1.1) λ ⊂W •ℓ λ ∩X+,

where W := W0 ⋉ZR is the affine Weyl group associated with G and •ℓ is
the usual ℓ-dilated dot action on X, i.e. we have

wtµ •ℓ λ := w(λ+ ℓµ+ ρ)− ρ

for any λ ∈ X, w ∈ W0 and µ ∈ ZR. A non-obvious result is that the
inclusion (1.1) turns out to be an equality when λ is not contained in a
special facet of X⊗Z R (which concerns the majority of weights), i.e. when
λ + ρ ∈ X\ℓ ·X. An easy case, which has been treated in [19], is when λ

is contained inside of an alcove, which means that ⟨λ+ ρ, α⟩ /∈ ℓZ for all α
in the dual root system R∨ (where ⟨·, ·⟩ denotes the usual perfect pairing
between X and the cocharacter lattice X∨). The case where ⟨λ+ρ, α⟩ ∈ ℓZ
for some α ∈ R∨ (but still with λ + ρ ∈ X\ℓ ·X) is however much more
involved, and was treated by Donkin in [15].

The inclusion (1.1) is not an equality in general, and the exact description
of the blocks is still due to Donkin (cf. [15]; as we will recall in Remark 1.4
below, the proof uses the case where λ is not contained in a special facet):
let r(λ+ρ) be the smallest integer satisfying λ+ρ ∈ ℓr(λ+ρ) ·X\ℓr(λ+ρ)+1 ·X
and W (r(λ+ρ)) be the affine Weyl group with translation part dilated by
ℓr(λ+ρ) (cf. Subsection 6.7 for the precise definition), then we have:

λ = W (r(λ+ρ)) •ℓ λ ∩X+.

Remark 1.2. — More recently, M. De Visscher gave a shorter proof for
the block decomposition [36]. Several of her ideas play a key role in our
proof. Her proof requires some restrictions on ℓ and R; we circumvent
these restrictions in this paper.

The main goal of this article is to give a proof of this result by working in
the setting of constructible sheaves via the geometric Satake equivalence.
As we will see in the end (cf. Subsection 7.2), one can deduce from this case
the block decomposition for a general reductive group (this description was
known, but not explicitly written down in [15]).

TOME 0 (0), FASCICULE 0



4 Emilien ZABETH

1.2. A geometric proof of the linkage principle

Let F be an algebraically closed field of prime characteristic p ̸= ℓ, and G
be the Langlands dual group of G over F (in the main body of the text, we
will change the notation and replace G with G∨). The affine grassmannian
Gr is an ind-scheme over F, which can be defined as the fppf-quotient of the
loop group ind-scheme LG (representing the functor R 7→ G(R((z))), where
z is an indeterminate) by the positive loop group scheme L+G (representing
the functor R 7→ G(R[[z]])). The geometric Satake equivalence (cf. [26]),
asserts that there is an equivalence of monoidal categories

(PervL+G(Gr,k), ⋆) ∼−→ (Rep(G),⊗k),

where the left-hand side denotes the Satake category (equipped with a
convolution product), consisting of perverse (étale) sheaves on the affine
Grassmannian Gr, with coefficients in k and which respect an equivariance
condition for the left action of the positive loop group L+G on Gr.

In [30], Riche and Williamson managed to give a new proof of the linkage
principle by working in PervL+G(Gr,k). Moreover, their methods allowed
them to give a new character formula for tilting objects (valid in all char-
acteristics), which involves certain ℓ-Kazhdan–Lusztig polynomials. This
seems to be the first instance of the geometric Satake equivalence being
able to bring us some knowledge on the combinatorics of the category
Rep(G) in positive characteristic. Their proof applies Treumann’s “Smith
theory for sheaves” to the Iwahori–Whittaker incarnation of the Satake
category, which is a highest weight category PervIW(Gr,k) with(2) weight
poset X++ := ρ+X+ admitting an equivalence of highest weight categories

(1.2) PervL+G(Gr,k) ∼−→ PervIW(Gr,k).

This equivalence, which comes from [12], sends an indecomposable tilting
object associated with λ ∈ X+ to the indecomposable tilting object asso-
ciated with λ+ ρ, which we denote by T IW

λ+ρ .

Remark 1.3. — Smith–Treumann theory originates in the work of Smith
in the 1930’s concerning the cohomology of topological spaces with co-
efficients in Z/ℓZ, and was more recently revisited by Treumann in the
setting of constructible sheaves ([35]). The fact that the latter results can
be applied to the theory of parity sheaves was first pointed out by Leslie–
Lonergan in [23]. See [30, Section 1.5] for more comments.

(2) One needs to assume that there exists a primitive pth roots of 1 in k to define
PervIW (Gr, k).

ANNALES DE L’INSTITUT FOURIER



BLOCK DECOMPOSITION VIA GEOMETRIC SATAKE 5

Let µℓ denote the F-group scheme of ℓth root of unity, (Gr)µℓ be the fixed
points for the action of µℓ ⊂ Gm on Gr by rescaling the indeterminate, and
put

aℓ := {µ ∈ X⊗Z R : 0 < ⟨µ, α∨⟩ < ℓ, ∀ α ∈ R+}.
The set aℓ is called the fundamental alcove, and its closure is a fundamental
domain for the ℓ-dilated “box” action □ℓ of W on X⊗Z R, defined by

wtµ□ℓλ := w(λ+ ℓµ)

for any λ ∈ X⊗Z R, w ∈W0 and µ ∈ ZR. Notice that, for any λ ∈ X⊗Z R
and w ∈W , we have

(1.3) w •ℓ (λ− ρ) = w□ℓλ− ρ.

One of the main ingredients used in [30] is the decomposition into connected
components

(Gr)µℓ =
⊔

λ∈aℓ∩X

Flℓ,◦Gλ
,

where Flℓ,◦Gλ
denotes the identity component in the partial affine flag variety

associated with the facet gλ ⊂ aℓ containing λ (cf. [30, Proposition 4.7]).
This partial affine flag variety is an ind-scheme defined as the fppf-quotient
of the loop group ind-scheme LℓG representing the functor R 7→ G(R((zℓ)))
by a positive loop group scheme L+

ℓ Pgλ
, representing R 7→ PGλ

(R[[zℓ]]) and
associated with the “parahoric” group scheme Pgλ

arising from Bruhat–Tits
theory. When λ ∈ aℓ, one recovers for instance the full affine flag variety
for G and if λ = 0, then we get a copy of the affine Grassmannian.

The other main result is the construction of a fully-faithful functor

Φ : TiltIW(Gr,k) −→ SmIW((Gr)µℓ ,k),

from the subcategory of tilting objects of PervIW(Gr,k) to the so-called
Smith category on (Gr)µℓ , which involves a pull-back along the immersion
(Gr)µℓ ↪→ Gr followed by passing to a certain Verdier quotient.

As a consequence of the full-faithfulness (and of the fact that both cat-
egories are Krull–Schmidt), Φ sends indecomposable objects to indecom-
posable objects. Thus, one can see that for every λ, µ ∈ X++, the space
HomTiltIW (Gr,k)(T IW

λ ,T IW
µ ) is non-zero only if the supports of Φ(T IW

λ )
and Φ(T IW

µ ) lie in the same connected component Flℓ,◦Gγ
of (Gr)µℓ for

some γ ∈ aℓ ∩ X, and observe that this happens only if λ, µ ∈ W□ℓγ.
This means that we must have W□ℓλ = W□ℓµ, which is equivalent to
W •ℓ (λ−ρ) = W •ℓ (µ−ρ) thanks to (1.3). In view of the equivalence (1.2)
and of the geometric Satake equivalence, this means that we have

HomRep(G)(Tλ−ρ, Tµ−ρ) ̸= 0 =⇒W •ℓ (λ− ρ) = W •ℓ (µ− ρ),

TOME 0 (0), FASCICULE 0



6 Emilien ZABETH

where Tλ−ρ (resp. Tµ−ρ) denotes the indecomposable tilting G-module as-
sociated with λ − ρ (resp. µ − ρ). Standard arguments on highest weight
categories (see Theorem 2.3 below) then show that this statement is equiv-
alent to the linkage principle (1.1). Moreover, those same standard argu-
ments and equivalences of categories show that, if we denote by λ ⊂ X++
the equivalence class of λ for the equivalence relation on X++ induced by
the relation R2:

γR2γ
′ ⇐⇒ HomTiltIW (Gr,k)

(
T IW
γ ,T IW

γ′

)
̸= 0,

then Donkin’s theorem on blocks is equivalent to

λ = W (r(λ))
□ℓλ ∩X++.

1.3. Summary of the proof

In the sequel, we will push this study further to get the full description of
the blocks. Fix λ, µ ∈ X++. A first step in this direction was actually made
in an earlier unpublished version of [30]; namely, we have an isomorphism
(cf. Proposition 6.9)

HomTiltIW (Gr,k)
(
T IW
ℓ·λ ,T IW

ℓ·µ
)
≃ HomTiltIW (Gr,k)

(
T IW
λ ,T IW

µ

)
.

This isomorphism enables us to only focus on the case where λ ∈ X\ℓ ·X,
for which we want to show that the inclusion λ ⊂ W□ℓλ ∩X++, provided
by the linkage principle, is an equality. So from now on, let us assume that
r(λ) = r(µ) = 0, with W□ℓλ = W□ℓµ; we are thus reduced to showing that
λ ∼ µ. We let γ denote the unique element of W□ℓλ ∩ aℓ.

Remark 1.4. — For any r ∈ Z⩾1 and M ∈ Rep(G), let M [r] denote the
twist of M by the rth power of the Frobenius endomorphism. This first
step is the analogue of the second step in [36], which uses the fact that the
functor M 7→ M [r] ⊗ L(ℓr−1)·ρ induces an equivalence of categories from
Repλ(G) to Repλ′(G), where λ′ := (ℓr − 1) · ρ+ ℓr · λ.

Let g ⊂ aℓ be a facet, Wg ⊂ W denote the stabilizer of g for □ℓ,
and ParIWℓ

(Flℓ,◦g ,k) denote the additive category of Iwahori–Whittaker-
equivariant parity complexes(3) on Flℓ,◦G (cf. Subsection 6.3). The isomor-
phism classes of indecomposable objects of this category are labelled

(3) In the body of the paper, we will mostly work in the equivalent context where G
is a facet for the box action □1 included in the closure of a1 and Fl1,◦

G replaces the
isomorphic ind-variety Flℓ,◦

ℓ·G.

ANNALES DE L’INSTITUT FOURIER
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(up to a shift) by the set

fW
g = {w ∈W : w is minimal in W0w and maximal in wWg},

and we will denote by Eg
ℓ,w the indecomposable parity complex associated

with w. Moreover, the assignment w 7→ w□ℓλ induces a bijection fW
gγ ∼−→

W□ℓγ ∩ X++. In this article, we will extensively study the equivalence
relation ∼G on fW

G generated by the relation RG:

(1.4) wRGw
′ ⇐⇒ Hom•

ParIWℓ(Flℓ,◦
g ,k)

(
Eg
ℓ,w, E

g
ℓ,w′

)
̸= 0, ∀ w,w′ ∈ fW

g.

The reason for this interest is that we have an isomorphism

(1.5) HomTiltIW (Gr,k)
(
T IW
u□ℓγ

,T IW
u′□ℓγ

)
≃ Hom•

ParIWℓ(Flℓ,◦
gγ ,k)

(
Egγ

ℓ,u, E
gγ

ℓ,u′

)
for all u, u′ ∈ fW

gγ , proved in [30] and which arises once again from Smith–
Treumann theory (cf. Proposition 6.8). Thus, if we let v and v′ be the
elements of fW

gγ such that v□ℓγ = λ, v′
□ℓγ = µ, we have that

λ ∼ µ⇐⇒ v ∼gγ
v′.

So we are reduced to proving that the set fW
gγ consists of a single equiv-

alence class for ∼gγ
. The following statement (which is Theorem 5.31) is

the main result of this article.

Theorem 1.5. — If G ⊂ aℓ is a non-special facet, then fW
g consists of

a single equivalence class for ∼g.

A facet g is called special if it is of the form g = {ℓ · δ} for some δ ∈ X.
Since r(λ) = 0, the facet gγ is non-special, so this theorem implies the
desired result. There might also be some non-special facets g ⊂ aℓ which
do not contain an element of X; this is for instance the case of aℓ when
ℓ is less than or equal to the Coxeter number of G. So this theorem gives
a more general result than the block decomposition. We will also describe
completely the equivalence classes in fW

g in the case where g is a special
facet and R∨ is not irreducible (see Theorem 6.14).

Fix a non-special facet g ⊂ aℓ. By standard considerations on parity
complexes, computing the dimension of the Hom-space on the right-hand
side of (1.5) boils down to computing the dimension of the stalks of Eg

ℓ,w

and Eg
ℓ,w′ , which are given by evaluating some anti-spherical ℓ-Kazhdan–

Lusztig polynomials at 1 (cf. [29, Part III]). As the dimension of the Hom-
space can only increase when passing from char(k) = 0 to char(k) = ℓ > 0,
we will get the following crucial implication (which is our Corollary 4.8):

∀ w,w′ ∈ fW
g, nw′,w(1) ̸= 0 =⇒ wRgw

′,

TOME 0 (0), FASCICULE 0
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0

ℓ · ρ

w
w2

w4

w6

w7
v

(a)

w

w2

w3

w5w6
v

0

ℓ · ρ

(b)

Figure 1.1. Hyperplanes arrangement when R∨ is of type C2 for (a)
and A2 for (b). The walls of the dominant cone C +

0 (resp. of ℓ ·ρ+C +
0 )

are represented by thick black lines (resp. dashed lines), each alcove
Ai for (i ∈ [[0, r]]) is gray, each alcove wi□ℓaℓ is labelled with wi, and
the facets {wi□ℓG, i ∈ [[0, r]]} are represented by red lines. Notice that
on both of these examples, it sometimes happens that there are two
alcoves Ai and Ai+1 containing a same red faced in their closure for
some i, so that we have wi = wi+1.
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BLOCK DECOMPOSITION VIA GEOMETRIC SATAKE 9

where (nx,y, x, y ∈ fW ) denotes the usual anti-spherical Kazhdan–Lusztig
polynomials studied in [31, Theorem 3.1]. This implication allows us to view
our problem as a question of combinatorics for the anti-spherical Kazhdan–
Lusztig polynomials. The proof of Theorem 1.5 then roughly goes into two
steps:
(Step 1) Moving away from the walls of the dominant cone. We show that,

for any u ∈ fW
g, there exists some pu ∈ fW

g satisfying

nu,û(1) ̸= 0 and pu□ℓg ⊂ ℓ · ρ+ C +,

where C + denotes the closure of the dominant cone (see Proposi-
tion 5.16). This will allow us to only focus on polynomials nw′,w

with w,w′ ∈ fW
g satisfying

w′
□ℓg, w□ℓg ⊂ ℓ · ρ+ C +,

over which we have a much better control.
(Step 2) Linking close elements. Let v ∈ fW

g be such that v□ℓg ⊂ ℓ ·ρ+aℓ
and pick w ∈ fW

g such that w□ℓg ⊂ ℓ · ρ + C +. We will prove
that we have w ∼g v (in view of the first step, this will conclude
the proof, since any element of fW

g will then be in relation with
v). In order to do that, we will let A0 be an alcove such that
w□ℓG ⊂ A0,

Ar := ℓ · ρ+ aℓ, Ar−1, . . . , A0

be a sequence of alcoves included in ℓ · ρ + C +
0 , where Ai+1 is

obtained by reflecting Ai along one of its walls for every i ∈
[[0, r−1]], and denote by wi the element of fW

g satisfying wi□ℓg ⊂
Ai for all i (so w0 = w and wr = v)(4) . See Figure 1.1 for a
representation of the situation in types C2 and A2, where g is a
wall. We will show that we have

wi ∼g wi−1, ∀ i ∈ [[0, r − 1]].

More specifically, we will find an element ui ∈ fW
g such that

nwi,ui
(1) ̸= 0 and nwi−1,ui

(1) ̸= 0 (occasionally we might have
ui = wi−1, but not always).

Remarks 1.6.
(1) The need for Step 1 is due to the “cancellation effect” occurring

for the anti-spherical Kazhdan–Lusztig polynomials when we are
close to the walls of the dominant chamber, as it was observed

(4) Notice that we don’t necessarily have wi□ℓai = Ai.

TOME 0 (0), FASCICULE 0



10 Emilien ZABETH

in the similar context of [7] (cf. the introduction and section 9 of
this reference).

(2) The Step 2 will actually be split into two parts: the case where
g is not a point, and the case where g is a point (and still a
non-special facet). The latter uses the theory of “periodic poly-
nomials” (originally due to Lusztig) as displayed in [31], and is
the most involved part of the paper (cf. Subsection 5.5).

(3) These steps were inspired to us by the steps used in [36, Section 2].
(4) We will actually use “geometric” arguments (namely, parity com-

plexes on partial affine flag varieties) to prove some “combinato-
rial” facts concerning the anti-spherical ℓ-Kazhdan–Lusztig poly-
nomials (see Proposition 5.4), which hold in particular for the
ordinary anti-spherical Kazhdan–Lusztig polynomials. However,
we do not yet have an analogous geometric incarnation for the
combinatorics we use concerning the periodic polynomials (cf.
Proposition 5.24), but hope to come back to this question in the
future.

1.4. Consequences

Our new proof of Donkin’s Theorem enables us to give a bound on
the length of a minimum chain linking two weights in the same block for
Rep(G), in the same fashion as [36, Corollary 3.1], but without any restric-
tion on the root system nor on the characteristic of k, see Proposition 7.3.
Such a result was not available via Donkin’s original proof, as his arguments
required going arbitrarily far inside of the dominant cone.

Moreover, our determination of the equivalence classes in fW
g for ∼g also

applies to the case where char(k) = 0, from which we are able to deduce
the block decomposition for a quantum group at an ℓth root of unity in
Subsection 7.3 (this result was originally found in [34]).

1.5. Structure of the paper

After some preliminaries on highest weight categories in Section 2, we re-
call in Section 3 the construction of Iwahori–Whittaker equivariant derived
categories on partial affine flag varieties of the form Fl◦g, for a facet g ⊂ a1.
In particular, we introduce indecomposable parity complexes, and study
the effect of pushforward and pullback of these objects under the canonical

ANNALES DE L’INSTITUT FOURIER



BLOCK DECOMPOSITION VIA GEOMETRIC SATAKE 11

proper morphism πg : Fl◦a1
→ Fl◦g (Subsection 4.1). This allows us to intro-

duce and study the equivalence relation ∼g on the set fW
g. Section 5 is the

heart of the paper and is dedicated to the study of the equivalence classes
for ∼g. In particular, we apply the plan described above: Step 1 is dealt
with at the end of Subsection 5.3, while Step 2 is taken care of in Subsec-
tion 5.4 (when g is not a point) and Subsection 5.5 (when g is a non-special
point). The case where g is a special facet is done at the end of Section 6,
as we need Smith–Treumann theory to deduce it from the previous cases.
Finally, we harvest the consequences for representation theory in the last
section: block decomposition for reductive groups in Subsection 7.2 and for
quantum groups in Subsection 7.3.
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2. Blocks for a highest weight category

In this section, k is any field. The goal of these formal preliminaries
is to introduce two equivalence relations on the weight poset of a highest
weight category. Both relations allow us to give block decompositions of the
category, and we will show that these relations and decompositions are the
same. These results will later be applied in Sections 6 and 7 to categories
of perverse sheaves and representations. We start by briefly recalling some
properties of a highest weight category.

2.1. Recollections on highest weight categories

Let A be a highest weight category over k, with weight poset (Λ,⩽)
(cf. [28, Section 3.7] for a detailed treatment of highest weight categories).

TOME 0 (0), FASCICULE 0



12 Emilien ZABETH

In particular, we assume that each object of A has finite length and that
the vector space HomA(M,N) is finite dimensional for every M,N ∈ A.
To each s ∈ Λ corresponds a simple object Ls, a standard object ∆s and
a costandard object ∇s. By definition, the association s 7→ Ls induces a
bijection between Λ and the isomorphism classes of simple objects of A.
For any M ∈ A and s ∈ Λ, we will denote by [M : Ls] the number of times
Ls appears in a composition series of M .

We denote by Tilt(A) the full additive subcategory of A consisting of
tilting objects, i.e. those admitting both a filtration with sub-quotients be-
ing standard objects and a filtration with sub-quotients being costandard
objects. For any s ∈ Λ and M ∈ Tilt(A), we will denote by (M : ∇s),
resp. (M : ∆s), the number of times ∇s appears in a filtration of M
with costandard, resp. standard, sub-quotients. This number does not de-
pend on the choice of such a filtration, as one can show that it is equal
to dimk HomA(∆s,M), resp. dimk HomA(M,∇s). Indecomposable tilting
objects are also parameterized (up to isomorphism) by Λ; we denote by Ts
the unique indecomposable tilting object such that

[Ts : Ls] = 1 and ∀ t ∈ Λ, [Ts : Lt] ̸= 0 =⇒ t ⩽ s.

We have morphisms Ls ←← ∆s ↪→ Ts for all s ∈ Λ. Finally recall that the
canonical functor

(2.1) Kb Tilt(A) −→ Db(A)

is an equivalence of categories (cf. [28, Proposition 7.17]).

2.2. Equivalence relations on Λ

We are going to consider two equivalence relations on the set Λ. The first
one, denoted by ∼1, is generated by the relation R1, defined by

sR1t⇐⇒ Ext1
A(Ls, Lt) ̸= 0.

Here, Ext1
A(B,A) denotes the Ext-group of isomorphism classes of exten-

sions of B by A, for two objects A,B. Recall (cf. [33, Lemma 13.27.6]) that
this coincides with the k-vector space HomDb(A)(B,A[1]). For all s ∈ Λ,
we denote by s the associated equivalence class and by As the Serre sub-
category generated by the Lt’s, for t ∈ s.
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Proposition 2.1. — The canonical functor⊕
s∈Λ/∼1

As −→ A

is an equivalence of categories.

Proof. — The full faithfulness comes from the fact that, for each
(M,N) ∈ As × At with s ̸= t, we have HomA(M,N) = 0. This is ob-
vious when M and N are simple, and can be shown by induction on the
length of these objects in the general case. With this fact and another in-
duction on the length, one can also show using long exact sequences of
cohomology that

(2.2) Ext1
A(M,N) = 0.

It remains to show that the functor is essentially surjective. We still
proceed by induction on the length of M , the case of simple objects being
obvious. Let N ⊂M and t ∈ Λ be such that we have a short exact sequence

(2.3) 0 −→ N
φ−→M −→ Lt −→ 0.

By the induction hypothesis, we have a canonical isomorphism

N ≃
⊕

s∈Λ/∼1

Ns,

with Ns ∈ As for all s. Now, let p : N → Nt be the canonical projection
and M ′ ∈ A be such that we have the following commutative diagram,
with exact rows:

0 // N
φ
//

p

��

M //

ψ

��

Lt //

id
��

0

0 // Nt
// M ′ // Lt // 0.

The morphism ψ is clearly surjective, and restricting φ to M ′′ :=
⊕

s ̸=tNs
yields an exact sequence

0 −→M ′′ −→M −→M ′ −→ 0.

Finally, observe that M ′, resp. M ′′, belongs to At, resp.
⊕

s̸=tAs, so that
Ext1

A(M ′,M ′′) = 0 thanks to (2.2). Thus, we have M ≃ M ′ ⊕M ′′, and
this concludes the proof. □
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The existence of a quasi-inverse functor allows us to define projection
functors Qs : A → As for every s. We thus have an isomorphism of functors

(2.4) idA ≃
⊕

s∈Λ/∼1

Qs

where there exists no non-zero morphism between the essential images of
any two distinct functors Qs and Qt. In particular, each Qs is exact.

The second equivalence relation is denoted ∼2. It is generated by the
relation R2:

sR2t⇐⇒ HomA(Ts, Tt) ̸= 0.
For every weight s, we denote by (s) the associated equivalence class and
by Tilt(s)(A) the additive sub-category generated by the family (Tt)t∈(s).
Since any tilting object is a sum of indecomposable tilting objects, it is
easy to see that the canonical functor

⊕
(s)∈Λ/∼2

Tilt(s)(A) → Tilt(A) is
an equivalence, so that we can define projection functors π(s) : Tilt(A) →
Tilt(s)(A), inducing an isomorphism of functors

idTilt(A) ≃
⊕

(s)∈Λ/∼2

π(s).

The π(s)’s induce endofunctors of the category Kb Tilt(A) (that we still
denote by π(s)), and those still induce a decomposition of the identity func-
tor. Conjugating the π(s)’s with the equivalence (2.1), the obtained functors
(which we still denote by π(s)) provide a decomposition

(2.5) idDb(A) ≃
⊕

(s)∈Λ/∼2

π(s).

This isomorphism implies that each functor π(s) preserves the sub-cate-
gory A, so we get an isomorphism idA ≃

⊕
(s) π(s). It is also clear that

each π(s) is an exact functor of the category A and that there is no non-
zero morphism between the essential images of two distinct such functors.

Lemma 2.2. — Let s ∈ Λ. For all t ∈ Λ, we have isomorphisms

π(t)(Ls) ≃
{
Ls if s ∈ (t)
0 otherwise

Qt(Ts) ≃
{
Ts if s ∈ t
0 otherwise.

Proof. — By the decompositions (2.4) and (2.5) and the fact that the ob-
jects Ls and Ts are indecomposable, we know that there exists a unique (t),
resp. a unique r, such that π(t)(Ls) ̸= 0, resp. Qr(Ts) ̸= 0, and we then have
π(t)(Ls) ≃ Ls, resp. Qr(Ts) ≃ Ts. By exactness of the projection functors,
we have morphisms

Qu(Ls)←−←−Qu(∆s) ↪−→ Qu(Ts) and π(u)(Ls)←−←− π(u)(∆s) ↪−→ π(u)(Ts)
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for every u ∈ Λ. If Qu(Ts) = 0, then Qu(Ls) = 0, so u ̸= s. This implies
that r = s. Likewise, if π(u)(Ls) ̸= 0, then π(u)(Ts) ̸= 0, so (u) = (s),
whence (t) = (s). □

We have now all the necessary ingredients to prove the following theorem.

Theorem 2.3. — The relations ∼1 and ∼2 coincide.

Proof. — Let s, t ∈ Λ be such that (s) ̸= (t). By Lemma 2.2, we have

Ext1
A(Lt, Ls) = HomDb(A)(Lt, Ls[1]) ≃ HomDb(A)

(
π(t)(Lt), π(s)(Ls[1])

)
.

As there is no non-zero morphism between the essential images of π(s)
and π(t), the right-hand side is zero, so t��R1s. We have thus shown the
implication s = t⇒ (s) = (t).

Conversely, if s, t ∈ Λ are such that s ̸= t, then it follows that

HomA(Tt, Ts) ≃ HomA(Qt(Tt), Qs(Ts)) = 0

so t��R2s, and we have the implication (s) = (t)⇒ s = t. □

In the sequel, we will denote by ∼ the equivalence relation on Λ consid-
ered in the previous theorem.

3. Recollections on (Iwahori–Whittaker) equivariant
derived categories

In this section, we recall the construction of Iwahori–Whittaker-equiva-
riant derived categories on some partial affine flag varieties arising from
Bruhat–Tits theory. We fix a prime number ℓ ̸= p. Since our sheaves will
be étale, we let k be either a finite field of prime characteristic ℓ or a finite
extension of Qℓ.

3.1. Notations

From now on, G will denote a semi-simple algebraic group of adjoint type
defined over an algebraically closed field F of characteristic p > 0. Choose
a Borel subgroup B ⊂ G and a maximal torus T ⊂ B, and let R ⊂ X
(resp. R+) denote the subset of roots (resp. positive roots with respect to
the opposite Borel subgroup of B with respect to T ) inside the group of
characters of T . Each root α defines a subgroup Uα ⊂ G isomorphic to the
additive group Ga, and the subgroup generated by the Uα’s, for α ∈ R+
(resp. for α ∈ −R+), is a unipotent group which we will denote by U+
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(resp. U). We will also denote by R∨ ⊂ X∨ the set of coroots inside the
group of cocharacters of T and by X∨

+ (resp. X∨
++) the set of dominant

(resp. strictly dominant) cocharacters, i.e. those cocharacters which satisfy
⟨λ, α⟩ ⩾ 0 (resp. ⟨λ, α⟩ > 0) for any α ∈ R+.

Fix an integer n ⩾ 1. We will write On := F[[zn]], Kn := F((zn)),
O := O1, K := K1 where z is an indeterminate. For any affine F-group
scheme H, we define the functors L+

nH := R 7→ H(R[[zn]]) and LnH :
R 7→ H(R((zn))) from F-algebras to groups, which are representable by
a F-group scheme and a F-group ind-scheme respectively. Note that these
definitions also make sense if H is only defined over On. We will write
L+H, resp. LH, instead of L+

1 H, resp. L1H. We will denote by Iw+
u the

inverse image of U+ under the evaluation map L+G→ G, z 7→ 0.
We assume that there exists a primitive pth root of unity ζ ∈ k, and

consider the Artin–Schreier map AS : Ga → Ga determined by the map
of rings x 7→ xp − x. This morphism is a Galois cover of group Z/pZ,
so determines a continuous group morphism π1(Ga, 0) → Z/pZ, where
π1(Ga, 0) is the étale fundamental group of Ga with geometric base point 0.
The composition of this map with the morphism Z/pZ→ k× (induced by ζ)
yields a continuous representation of the fundamental group, and thus a
local system on Ga of rank one. We denote this local system by LAS.

3.2. The affine Weyl group and some Bruhat–Tits theory

We let NG(T ) be the normalizer of T in G. The finite Weyl group as-
sociated with (G,T ) will be denoted by W0 := NG(T )/T , and we consider
the affine Weyl group

W := W0 ⋉ ZR∨,

which acts naturally on E := X∨ ⊗Z R via the n-dilated “box” action,
defined by

wtµ□nλ := w(λ+ nµ)
for any λ ∈ X∨ ⊗Z R, w ∈ W0 and µ ∈ ZR∨, where we have denoted by
wtµ the element of the affine Weyl group associated with the couple (w, µ).
The closure an of the set

an := {λ ∈ E | 0 < ⟨λ, α⟩ < n, ∀ α ∈ R+}

is a fundamental domain for this action, which stabilizes X∨. Thus, an∩X∨

is a fundamental domain for the action of W on the set of cocharacters.
Each root α ∈ R defines a reflection sα ∈ W , and we will denote by S0
the set of simple reflections (i.e. associated with a simple root) of the finite
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Weyl group, which is known to generate W0. It is also well known (cf. [20,
Section II.6.3]) that the set of simple reflections

S := {(s, 0), s ∈ S0} ∪ {(sβ , β∨)},

where β∨ runs through the set of largest short roots of the irreducible
components of R∨, generates W . Moreover, W is a Coxeter group, with
Coxeter generating system S, for which we will denote by l : W → Z⩾0 the
associated length function.

It will also be useful for us to note that one can extend the translation
action of ZR∨ to the whole group of cocharacters X∨, by putting tµ□nλ :=
λ + nµ for every µ ∈ E, λ ∈ X∨, and that this extends the action of W
on E to an action of the extended affine Weyl group W̃ := W0 ⋉ X∨. The
subgroup W ⊂ W̃ is normal and one can extend the length function l to
the whole group W̃ (cf. [5, Section 2.1] for more details), so that we can
define the subgroup

Ω :=
{
w ∈ W̃

∣∣∣ l(w) = 0
}
,

which acts on W by Coxeter group isomorphisms and induces an isomor-
phism

(3.1) Ω ⋉W ≃ W̃

such that l(ωw) = l(wω) = l(w) for all (ω,w) ∈ Ω×W .
The action of W̃ on E defines a hyperplane arrangement in E, and

hence a collection of facets (cf. [13, Chapter 5, Section 1.2]). To any facet
g ⊂ an, Bruhat–Tits theory associates a “parahoric group scheme” PG de-
fined over On, whose generic fiber is isomorphic to G×Spec(F) Spec(Kn) and
whose group of On-points coincides with a subgroup of finite index of the
pointwise stabilizer of −g(5) for the action of G(Kn) on the Bruhat–Tits
building associated with G ×Spec(F) Spec(Kn). We fix such a facet g. The
partial affine flag variety associated with g will be denoted by Flng and
defined as the fppf-quotient LnG/L+

nPg, which is an ind-projective ind-
scheme over F (cf. [27] for a detailed exposition on these partial affine flag
varieties). The connected components of FlnG are in bijection with the group
X∨/ZR∨ (see [27, Theorem 0.1]), so we will denote by Fln,◦g the connected
component associated with the neutral element. In the sequel, we will apply
these results to the cases where n = ℓ or n = 1; when n = 1 (which will

(5) We follow the conventions of [30, Section 4] for the facet which Pg(On) must stabilize.
Note that the authors there defined an to be the opposite of our current fundamental
alcove.
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be the case until Section 6), we will write Fl◦G (resp. Flg) instead of Fl1,◦g
(resp. Fl1g).

3.3. Parity sheaves on partial affine flag varieties

Let χ0 : U+ → Ga be a morphism of F-algebraic groups which restricts
to a non-zero morphism on each subgroup Uα, for α a simple root, and
let χ : Iw+

u → Ga denote the composition of χ0 with the evaluation map.
For any Y ⊂ Fl◦g which is a locally closed finite union of Iw+

u -orbits, one
can show (cf. [14, Lemma 3.2]) that the Iw+

u -action on Y factors through
a quotient group of finite type J such that χ factors through χJ : J → Ga,
where χJ is induced by χ; we can then consider the (J, χ∗

JLAS)-equivariant
derived category of étale k-sheaves Db

J,χ∗
J

LAS
(Y,k). This category is by def-

inition the subcategory of Db
c(Y,k) consisting of constructible complexes of

étale k-sheaves F such that there exists an isomorphism a∗F ≃ χ∗
JLAS⊠F ,

where a : J × Y → Y is the action map; this definition does not depend
on the choice of J . We then define the category Db

IW(Fl◦g,k) as a direct
limit of the categories Db

J,χ∗
J

LAS
(Y,k), indexed by finite and closed unions

of Iw+
u -orbits Y which are ordered by inclusion. Notice that, since the tran-

sition maps are push-forwards of closed immersions, they are fully faithful
functors, and one can see this limit as an increasing union of categories.

We now recall the definition and some of the properties of parity com-
plexes on partial affine flag varieties, since those will play a major role
in the sequel. Let Y ⊂ Fl◦g be a finite locally closed union of Iw+

u -orbits.
A complex F ∈ Db

IW(Y,k) is called ∗-even, resp. !-even, if for any inclusion
j : Y ′ ↪→ Y of an Iw+

u -orbit Y ′, the complex j∗F , resp. j!F , is concentrated
in even degrees. One defines similarly ∗-odd and !-odd complexes and say
that a complex is even, resp. odd, if it is both ∗-even and !-even, resp. ∗-odd
and !-odd. A complex is called parity if it is a direct sum of even and odd
complexes.

Since the category Db
IW(Fl◦g,k) is defined as a direct limit, it makes sense

to talk about even and odd objects in this category, and we will denote by
ParIW(Fl◦g,k) the additive full subcategory consisting of parity objects.
The general theory of parity complexes (from [21]) allows us to state the
following result.

Proposition 3.1. — Let g ⊂ a1 be a facet. For each Iw+
u -orbit Y in

Fl◦g which supports a non-zero Iwahori–Whittaker rank one local system L,
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there exists a unique indecomposable parity complex in ParIW(Fl◦g,k) sup-
ported on Y whose restriction to Y is isomorphic to L[dim(Y )], and each
indecomposable parity complex is isomorphic to such an object up to a
cohomological shift. Moreover, each object in ParIW(Fl◦g,k) is isomorphic
to a sum of indecomposable parity complexes.

Remark 3.2. — See Proposition 4.3 below for a characterization of Iw+
u -

orbits which supports a non-zero Iwahori–Whittaker rank one local system.

4. Parity sheaves on partial affine flag varieties and
equivalence relations

4.1. Pushforward and pullback of indecomposable parity
complexes

Let g ⊂ a1 be a facet and πg : Fl◦a1
→ Fl◦g be the canonical projection.

In this section, we will explain what is the effect of applying the functors
π∗

g and πg∗ to the Iwahori–Whittaker-equivariant indecomposable parity
complexes that we described in Proposition 3.1.

Let us first state a lemma which will be needed below. Let (Λ,⩽) be
a finite set endowed with a partial order ⩽, admitting a unique minimal
element λ0 and equipped with a function l : Λ → Z⩾0 compatible with
the order ⩽ (i.e. such that λ ⩽ µ ⇒ l(λ) ⩽ l(µ)). Let also (X, (Xλ)λ∈Λ)
be a stratified variety over F. We make the following assumptions on the
stratification:

• for every λ ∈ Λ, Xλ is an affine space of dimension l(λ) over F,
and we have Xλ =

⊔
µ⩽λXµ;

• there exist isomorphisms of F-schemes (which we fix) Xλ≃Xλ0×F

Al(λ)−l(λ0)
F for every λ ∈ Λ;

• there exists a morphism of F-schemes q : X → Xλ0 such that
q|Xλ

is induced by the canonical projection on the first component
Xλ0 ×F Al(λ)−l(λ0)

F → Xλ0 for every λ ∈ Λ.

Lemma 4.1. — We have an isomorphism in Db
c(Xλ0 ,k):

q!kX ≃
⊕
λ∈Λ

kXλ0
[−2(l(λ)− l(λ0))].

Proof. — The proof is done by induction on the cardinality of Λ. First
note that the result is trivial when #Λ = 1, so we assume from now on
that #Λ ⩾ 2. Let λ ∈ Λ be a maximal element for ⩽, so that we have
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an open immersion i : Xλ ↪→ X. Denoting by j the closed immersion
X ′ := X\Xλ ↪→ X, we get a distinguished triangle

i!i
∗kX −→ kX −→ j!j

∗kX
+1−−→

to which we can apply the triangulated functor q!:

(4.1) q!i!i
∗kX −→ q!kX −→ q!j!j

∗kX
+1−−→ .

Since q ◦ i is the projection induced by Xλ0 ×F Al(λ)−l(λ0)
F → Xλ0 and

i∗kX ≃ kXλ
, we have an isomorphism q!i!i

∗kX ≃ kXλ0
[−2(l(λ) − l(λ0))].

On the other hand, we have j∗kX ≃ kX′ , and the morphism q′ := q ◦ j :
X ′ → Xλ0 satisfies q′|Xµ = q|Xµ for every µ ̸= λ. Thus, we can apply our
induction hypothesis to the stratified space (X ′, (Xµ)µ̸=λ) to find that

q!j!j
∗kX ≃ q′

!kX′ ≃
⊕
µ̸=λ

kXλ0
[−2(l(µ)− l(λ0))].

In particular, we see that q!i!i
∗kX and q!j!j

∗kX only have cohomologies in
even degrees, so that the distinguished triangle (4.1) is split (recall that Xλ0

is an affine space, so it only admits cohomology in even degrees). Therefore
we have an isomorphism

q!kX ≃ q!i!i
∗kX ⊕ q!j!j

∗kX .

This concludes the proof of Lemma 4.1. □

Fix a facet g ⊂ a1. We denote by Wg ⊂W the stabilizer of g for the box
action □1 and put Sg := S ∩Wg. It is well known that (Wg, Sg) is a finite
Coxeter system.(6) We will denote by wg the element of maximal length in
Wg, and by W g the set of elements w ∈ W for which w is maximal in the
left coset wWg. We put w0 := w{0} (notice that W0 = W{0}). The set of
elements w ∈ W which are minimal in W0w will be denoted by fW , and
we put

fW
g = W g ∩ fW.

The following well-known result (which is a direct consequence of [5, Lem-
ma 2.2]) will be useful throughout all the rest of this paper.

Proposition 4.2. — Let w ∈W g. We have the following equivalences

w ∈ fW
g ⇐⇒ ∀ r ∈Wg, wr ∈ fW.

(6) Note that Wg coincides with the stabilizer of the facet ℓ · g ⊂ aℓ for the dilated box
action □ℓ of W .
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For any w ∈ W g, we choose a lift ẇ of w in NG(T )(K) (see [30, Sec-
tion 4.2] for the construction of such a lift), and denote by X g

w the Iw+
u -orbit

in Fl◦g of the image of ẇ under the canonical projection LG(F) → Fl◦g(F).
We then have a stratification

(4.2) (Fl◦g)red =
⊔

w∈Wg

X g
w ,

of the reduced ind-scheme associated with Fl◦g, where each orbit X g
w is

isomorphic to an affine space over F whose dimension is equal to the length
of the minimal element in w0wWg. All the properties concerning this strat-
ification that we use in the sequel follow from the analogous standard facts
concerning the opposite Iwahori subgroup Iwu := ẇ0Iw+

u ẇ0, cf. [2, Appen-
dix A].

Proposition 4.3. — For any w ∈ W g, the Iw+
u -orbit X g

w supports
a non-zero Iwahori–Whittaker equivariant local system if and only if
w ∈ fW , which means that w ∈ fW

g.

For any w ∈ fW
g, we will denote by Lg

w, resp. Eg
w ∈ ParIW(Fl◦g,k),

resp.∇G
w ∈ Db

IW(Fl◦g,k), the rank one Iwahori–Whittaker equivariant local
system, resp. the indecomposable parity complex from Proposition 3.1,
resp. the costandard perverse sheaf, associated with X g

w .
Recall that πg : Fl◦a1

→ Fl◦g is the canonical projection, which is a proper
morphism of ind-schemes, and denote by Ng the length of wg. For any v ∈
fW , we write Xv (resp. Lv, resp. Ev, resp. ∇v) instead of X a1

v (resp. La1
v ,

resp. Ea1
v , resp. ∇a1

v ). For every w ∈ fW
g and v ∈ fW , we fix isomorphisms

of F-schemes

(4.3) Xv ≃ Al(w0v)
F , X G

w ≃ Al(w0wwg)
F .

Let w ∈ fW
g. It is important to note that πg is a locally trivial fibration,

with π−1
g (X G

w ) =
⊔
x∈Wg

Xwx, and that for any h ∈ Wg the morphism
πg|Xwwgh

: Xwwgh → X g
w identifies with the canonical projection on the

first component

Xwwgh ≃Xwwg ×Xw0h −→X g
w .

The projection on the first component comes from the identification of
Xwwg and X g

w with an affine space of dimension l(w0wwg) thanks to (4.3);
fix h ∈ Wg, and let us explain the first isomorphism above. For any v ∈
W , denote by v the image of v̇ under the canonical projection LG(F) →
Fl◦a1

(F). By construction we have

Xwwgh = ẇ0Iwuẇ0 · wwgh = ẇ0Iwu · w0wwgh.
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But thanks to our hypothesis that w ∈W g, we know that wwg is minimal
in wwgWg, and our hypothesis that w ∈ fW implies that wr ∈ fW for
all r ∈ Wg thanks to Proposition 4.2 (in particular this holds when r ∈
{wg, wgh}); these facts imply that we have

l(w0wwgh) = l(w0) + l(wwgh) = l(w0) + l(wwg) + l(h) = l(w0wwg) + l(h).

From these equalities of lengths and the fact that Iwu · x ≃ Al(x)
F for any

x ∈W , we deduce the first isomorphism below

Iwu · w0wwgh ≃ Iwu · w0wwg × Iwu · h = Iwuẇ0 · wwg × Iwuẇ0 · w0h,

and hence finally

ẇ0Iwu · w0wwgh ≃ ẇ0Iwuẇ0 · wwg × ẇ0Iwuẇ0 · w0h.

The right-hand side corresponds to Xwwg ×Xw0h.

Lemma 4.4.
(1) The functors π∗

g and πg∗ send parity complexes to parity com-
plexes.

(2) For any v ∈ fW
g, we have isomorphisms

π∗
g[Ng](Eg

v ) ≃ Ev and πg∗Ev ≃
⊕
w∈Wg

EG
v [−2(l(w0w)− l(w0v))].

(3) Let w ∈ fW , and write w = wgh for some wg ∈ W g, h ∈ Wg.
Then we have

πg∗∇w ≃ ∇g
wg [l(wgh)] if wg ∈ fW,

πg∗∇w = 0 otherwise.

Proof. — The first (resp. third) point can be proven just as in [2, Propo-
sition A.2] (resp. [2, Lemma A.1]).

Let us prove the second point, for which we will take back most of the
arguments of [2, Lemma A.5]. The second isomorphism will arise while
proving the first one.

We first make the following observation: let us write X :=
⊔
w∈Wg

Xvw

and put q := πg|X , the object q∗Lg
v is a rank one Iwahori–Whittaker local

system on X, whose restriction to each orbit Xvw coincides with Lvw (recall
vw does belong to fW thanks to Proposition 4.2). In particular, q∗Lg

v is
indecomposable.

The object π∗
g[Ng](Eg

v ) is parity by (1), with Xv open in its support and
its restriction to this stratum coinciding with Lv[l(w0v)] (recall that Xv is
of dimension l(w0v) thanks to (4.3)). Therefore we can write

(4.4) π∗
g[Ng](Eg

v ) ≃ Ev ⊕ G,
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for some object G ∈ ParIW(Fl◦a1
,k). Since the restriction of π∗

g[Ng](Eg
v )

to X is the indecomposable object q∗Lg
v [l(w0v)], it must be isomorphic to

Ev|X , because the latter is non-zero on Xv.
Thus, the base change theorem implies the first isomorphism below

(πg∗Ev)|X g
v
≃ q∗q

∗Lg
v [l(w0v)] ≃ q!kX ⊗L Lg

v [l(w0v)]

≃
⊕
w∈Wg

LG
v [−2(l(w0w)− l(w0v))],(4.5)

the second isomorphism is implied by the projection formula (and the fact
that q! = q∗ because q is proper), and the third isomorphism is a direct
application of Lemma 4.1. Since X g

v is open in the support of the parity
complex πg∗Ev, we get an isomorphism

(4.6) πg∗Ev ≃
⊕
w∈Wg

Eg
v [−2(l(w0w)− l(w0v))]⊕ G′,

for some G′ ∈ ParIW(Fl◦g,k). Applying πG∗ to (4.4) and using (4.6), we
deduce the following isomorphism of parity complexes:

πg∗π
∗
g[Ng]Eg

v ≃
⊕
w∈Wg

Eg
v [−2(l(w0w)− l(w0v))]⊕ πg∗G ⊕ G′.

Now, for any parity complex E ∈ ParIW(Fl◦g,k) and w ∈ fW
g, one may

write (following [37]):

E|X g
w
≃ V (E)w ⊗k Lg

w,

where V (E)w is a finite-dimensional graded k-vector space (and one can do
likewise for any E ∈ ParIW(Fl◦a1

,k) and w ∈ fW ). From the description
of πg as a locally trivial fibration and from the first observation that was
made at the beginning of the proof, we see that

dimk

(
V
(
π∗

g[Ng]Eg
v

)
uw

)
= dimk(V (Eg

v )u), ∀ (u,w) ∈ fW
g ×Wg,

where we forget the grading of our vector spaces when taking their dimen-
sion. Moreover, the same arguments that were used to prove (4.5) imply
that

dimk

(
V
(
πg∗π

∗
g[Ng]Eg

v

)
u

)
= |Wg| · dimk

(
V
(
π∗

g[Ng]Eg
v

)
u

)
, ∀ u ∈ fW

g.

Thus we get

dimk

(
V
(
πg∗π

∗
g[Ng]Eg

v

)
u

)
= dimk(V (F)u), ∀ u ∈ fW

g,

where F :=
⊕

w∈Wg
Eg
v [−2(l(w0w)− l(w0v))]. We deduce that V (πg∗G)u=

V (G′)u = 0 for all u ∈ fW
G, so that πg∗G ≃G′≃ 0 and πg∗π

∗
g[Ng]EG

v ≃ F .
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This also implies that G ≃ 0, and therefore we get the desired isomorphism

π∗
g[Ng](Eg

v ) ≃ Ev. □

4.2. The antispherical module

Let H be the Hecke algebra associated with (W,S), with standard ba-
sis (Hw, w ∈ W ), and denote by N its antispherical module (we fol-
low the notation of [31, Section 3], the antispherical module is denoted
by Masph in [30]), with standard basis (Nw, w ∈ fW ) and ℓ-canonical ba-
sis (ℓNw, w ∈ fW ). We denote by [ParIW(Fl◦a1

,k)] the split Grothendieck
group of the additive category ParIW(Fl◦a1

,k). We have a canonical iso-
morphism of groups

ch :
[
ParIW

(
Fl◦a1

,k
)] ∼−→ N

defined by

ch([F ]) :=
∑
w∈fW

(∑
n∈Z

dimk HomDb
IW(Fl◦

a1 ,k)(F ,∇w[n])vn
)
Nw.

The morphism ch sends the indecomposable parity complex Ew onto ℓNw.
The ℓ-Kazhdan–Lusztig polynomials (ℓnx,y, x, y ∈ fW ) are defined by the
equality

(4.7) ℓNy =
∑
x∈fW

ℓnx,yNx.

It makes sense to extend the definition of these polynomials to the whole
group W , simply by putting ℓnx,y = 0 whenever x or y does not belong to
fW (this consideration will slightly simplify the statement of the first point
of Proposition 5.4). For any objects E ,F ∈ ParIW(Fl◦g,k), we set

Hom•
Db

IW(Fl◦
g,k)(E ,F) :=

⊕
n∈Z

HomDb
IW (Fl◦

g,k)(E ,F [n]).

It follows that we have

(4.8) ℓnx,y(1) = dimk Hom•
Db

IW(Fl◦
a1 ,k)(Ey,∇x).

When ℓ = 0, the ℓ-canonical basis coincides with the usual Kazhdan–
Lusztig basis from [31, Theorem 3.1], which is denoted by (nx,y, x, y ∈ fW )
there, so we have 0nx,y = nx,y (this is a consequence of the fact that the
perversely shifted indecomposable parity complexes coincide with the in-
tersection cohomology complexes when ℓ = 0). We have the following easy
and useful observation.
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Proposition 4.5. — Let x, y ∈ fW . For any prime number ℓ, we have
ℓnx,y(1) ⩾ nx,y(1).

Proof. — The arguments are the same as the one used in [6, Lemma 3.4],
replacing tilting objects by indecomposable parity sheaves. □

4.3. Equivalence relations on fW
g

Let g ⊂ a1 be a facet. In the sequel, we will consider a relation Rg on
the set fW

g, defined by

wRgw
′ ⇐⇒ Hom•

ParIW(Fl◦
g,k)(Eg

w, E
g
w′) ̸= 0

for any w,w′ ∈ fW
g. The equivalence relation on fW

g generated by RG
will be denoted by ∼g. The following results will be constantly used.

Proposition 4.6. — Let u, v ∈ fW be such that ℓnu,v(1) ̸= 0. Then
vRa1u. Moreover, we get the same conclusion if nu,v(1) ̸= 0.

Proof. — Recall that, thanks to Proposition 4.5, we have

nu,v(1) ⩽ ℓnu,v(1) = dimk Hom•
Db

IW(Fl◦
a1 ,k)(Ev,∇u),

so that our claim is a direct consequence of [21, Proposition 2.6]. □

The relations Ra1 and Rg are actually equivalent on fW
g.

Proposition 4.7. — Let w,w′ ∈ fW
g. We have wRgw

′ iff wRa1w
′.

Proof. — Using Lemma 2.2, we have

Hom•
Db

IW(Fl◦
a1 ,k)(Ew, Ew′) ≃ Hom•

Db
IW(Fl◦

a1 ,k)
(
π∗

g[Ng]Eg
w, π

∗
g[Ng]Eg

w′

)
adjunction
≃ Hom•

Db
IW(Fl◦

g,k)
(
Eg
w, πg∗π

∗
gE

g
w′

)
.

From Lemma 2.2, we know that πg∗π
∗
gE

g
w′ is isomorphic to a finite direct

sum of shifts of Eg
w′ , so the hom-spaces above are non-zero if and only if

Hom•
Db

IW (Fl◦
g,k)(Eg

w, E
g
w′) is non-zero. □

Putting together the two previous propositions yields:

Corollary 4.8. — Let w,w′ ∈ fW
g. We have

nw′,w(1) ̸= 0 =⇒ wRgw
′.
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Remark 4.9. — Define a relation R′
g on fW

g by

wR′
gw

′ ⇐⇒ ℓnw′,w(1) ̸= 0.

Then, using Proposition 4.7 together with [21, Proposition 2.6], it is not
difficult to show that the equivalence relation generated by R′

g is equal
to ∼g.

5. Determination of the equivalence classes

The main goal of this section is to show that, when the root system
R∨ (or, equivalently, R) is indecomposable and g ⊂ a1 is a non-special
facet, the set fW

g consists of a single equivalence class for ∼g (we will
eventually see that the case where the root system is not indecomposable
follows from this first case, see Proposition 5.18). As we will see in the end
(cf. Subsection 6.7), the case where g is a special facet can be deduced
from the non-special case with the help of Smith–Treumann theory, see
Proposition 6.9.

5.1. The regular case

In this short paragraph, we show that the set fW is a single equiva-
lence class for ∼a1 , i.e. that all the elements of fW are in relation for ∼a1 .
Although this case will be included in the more general statement of The-
orem 5.21 (where a1 is replaced with a facet g ⊂ a1 which is not a point),
we give an independent proof here, which is much simpler since many dif-
ficulties do not appear yet.

Remark 5.1. — The result we get in Proposition 5.3 below implies (via
the discussion at the end of Subsection 1.2) that the block associated with
a “regular” dominant weight λ ∈ X∨

+ (regular means inside of an alcove) is
W •ℓ λ ∩ X∨

+ (here we see X∨
+ as the weight poset of Repk(G∨)). This last

result was already much simpler to get than the general description of the
block associated with an arbitrary dominant weight, see [19, Section 2.4].

Lemma 5.2. — Let w ∈ fW . If w ̸= e, then there exists w′ < w such
that w′ ∈ fW and w′Ra1w.
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Proof. — Writing a reduced expression for w, it is easy to see that there
exists an s ∈ S such that ws < w. Let g be the wall fixed by s. Since
w ∈ fW

g, Proposition 4.2 implies that ws ∈ fW . By Lemma 2.2, we get

Hom•
Db

IW(Fl◦
a1 ,k)(Ew,∇ws) ≃ Hom•

Db
IW(Fl◦

a1 ,k)
(
π∗

g[1]Eg
w,∇ws

)
≃ Hom•

Db
IW(Fl◦

g,k)(Eg
w, πg∗[−1]∇ws)

≃ Hom•
Db

IW(Fl◦
g,k)(Eg

w,∇g
w) ̸= 0

where the second line is obtained by adjunction. So if we put w′ := ws, we
get that ℓnw′,w(1) ̸= 0, and Proposition 4.6 allows us to conclude. □

It is now straightforward to conclude.

Proposition 5.3. — The set fW consists of a single class for the equiv-
alence relation ∼a1 .

Proof. — Let w ∈ fW . By the previous lemma and an induction on the
length of w, we can see that w ∼a1 e. This concludes the proof. □

The proof of the fact that all of the elements of fW
g are in relation when

g ⊂ a1 is an arbitrary non-special facet will be much more involved. This
is due to the fact that, for an arbitrary w ∈ fW

g, there is no obvious choice
of an element w′ < w in fW

g such that w′ ∼g w. The goal of the next
subsection is to find such relations.

5.2. Some invariance properties of the ℓ-anti-spherical
Kazhdan–Lusztig polynomials

The following result is a generalization of Lemma 5.2.

Proposition 5.4. — Let q be a facet inside a1 and w ∈ fW
q.

(1) For all w′ ∈ fW , we have ℓnw′r,w(1) = ℓnw′,w(1) for all r ∈Wq.
(2) Assume moreover that g ⊂ a1 is a facet such that q ⊂ g. For all

w1, w2 ∈ wWq ∩W g, we have w1 ∼g w2.

Proof.
(1). — Let w′ ∈ fW and write w′ = uh, where u is the maximal element

in w′Wq, and h ∈Wq. We have the following sequence of isomorphisms(7)

(7) Notice that we forget the grading of the vector spaces in those isomorphisms.
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of k-vector spaces for all r ∈Wq:

Hom•
Db

IW(Fl◦
a1 ,k)(Ew,∇w′r) ≃ Hom•

Db
IW(Fl◦

a1 ,k)
(
π∗

q[Nq]Eq
w,∇w′r

)
adjunction
≃ Hom•

Db
IW(Fl◦

q,k)(Eq
w, (πq)∗∇uhr)

≃

Hom•
Db

IW(Fl◦
q,k)(Eq

w,∇q
u) if u ∈ fW,

0 otherwise,

where the first and last isomorphisms are consequences of the first and
third point of Lemma 2.2 respectively. Thanks to the definition of the ℓ-
anti-spherical polynomials (see (4.7)), this means that ℓnw′r,w(1) = 0 for all
r ∈Wq when u /∈ fW (which trivially implies that ℓnw′r,w(1) = ℓnw′,w(1)),
and ℓnw′r,w(1) = ℓnu,w(1) = ℓnw′,w(1) otherwise.

(2). — First notice that, since w ∈ fW
q, we have that wWq ⊂ fW

thanks to Proposition 4.2, so that

(5.1) wWq ∩W g ⊂ fW ∩W g = fW
g.

Applying the previous point to w′ = w, we get that nwr,w(1) = nw,w(1) = 1
for every r ∈ Wq, and therefore that wRgwr if wr ∈ W g (which implies
that wr ∈ fW

g by (5.1)) thanks to Corollary 4.8. Thus, we have wRgwi
for i ∈ {1, 2}, and we conclude by transitivity that w1 ∼g w2. □

The goal of the next subsection is to get a precise picture of the geom-
etry of the affine space X∨ ⊗Z R. By doing so, we will be able to use the
previous relations together with the bijection between fW

g and A+
g (the

set of dominant facets which are in W□1g) to show that fW
g consists of a

single class for ∼g (when g is not a point).

5.3. Geometry of X∨ ⊗Z R

In this subsection, we follow the terminology and some of the notations(8)

of both [24, Section 1] and [31, Section 4]. The box action □1 of W on the
affine space E := X∨ ⊗Z R defines a set of hyperplanes H (one could also
work with the dilated box action □n for some n ⩾ 1 or with •n, cf. the
setting of [24, Section 1]). For any facet p (not necessarily included in a1),
we will denote by Wp its stabilizer in W for the box action. We define the
set of strictly dominant elements by

C +
0 := {λ ∈ E | ⟨λ, α⟩ > 0, ∀ α ∈ R+}.

(8) The general reference, which is used in [24, Section 1], is [13].
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Recall that the connected components of E\
⋃
H∈H H are products of open

simplices called alcoves.(9) An example is

a1 = {µ ∈ E | 0 < ⟨µ, α⟩ < 1, ∀ α ∈ R+},

which we call the fundamental alcove. The box action on the set of alcoves
A can be extended to an action of W̃ , in which case the stabilizer of a1
is equal to Ω = {w ∈ W̃ | l(w) = 0}. Thus, the assignment w 7→ w□1a1
yields a bijection W ≃ W̃/Ω ∼−→ A, so that any alcove A can be written as
A = w□1a1 for a unique w ∈W . This bijection W ∼−→ A allows us to definea
right action of W on A, induced by right multiplication on itself. We may
also define an order ⩽ on A, induced by the Bruhat order on W . Thus, for
any s ∈ S and A ∈ A, we will have that A < As if and only if l(w) < l(ws),
where w ∈ W is such that w□1a1 = A. Since As is obtained by reflecting
A along its wall which is the W -conjugate of the wall of a1 fixed by s, this
means that A < As if and only if the number of hyperplanes separating A
from a1 (i.e. the number of hyperplanes H ∈ H such that A and a1 are
included in different connected components of E\H) is smaller than the
number of hyperplanes separating As from a1 (see [24, Section 1.4]). In
the sequel, we will denote by d(A) the number of hyperplanes separating
A from a1, so that we have d(A) = l(w).

The set of dominant alcoves (i.e. those included in C +
0 ) will be denoted

by A+; we have a bijection fW
∼−→ A+, w 7→ w□1a1.

For any facet g ⊂ a1, we define Ag := {w□1g, w ∈ W} and A+
g :=

{w□1g, w ∈ fW
g}. One can show that A+

G is exactly the subset of facets
of Ag which are included in C +

0 . Note that the map w 7→ w□1g induces
a bijection between W g, resp. fW

g, and Ag, resp. A+
g . We will consider

the left action of W on Ag given by wh := w□1h for any h ∈ AG. Thus,
if h = uG for some u ∈ WG, then wh = wuG, and the element of W g

corresponding to the facet wh is the maximal element of wuWg. Also note
that, by continuity of the action of W on E, if A is an alcove containing h
in its closure, then wh is the unique element of Ag which is contained in
the closure of wA. Let us state and prove the following easy result, which
will be used a lot in the sequel.

Proposition 5.5. — Let h be a facet containing a facet p in its closure
such that p ⊂ C +

0 . Then we have h ⊂ C +
0 . In particular if g ⊂ a1 is the

(9) When the root system R∨ is irreducible, the alcoves are open simplices. In general,
R∨ decomposes into a product of irreducible root systems, from which we deduce the
decomposition of any alcove into a product of open simplices (cf. Subsection 5.4).
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facet such that h ∈ Ag, then there exists a unique element w ∈ fW
g such

that wg = h.

Proof. — By definition of C +
0 , any facet is either included in C +

0 or in
E\C +

0 , the latter being a closed subset of E. If h ⊂ E\C +
0 , then h ⊂ E\C +

0 ,
contradicting our assumption on p. Therefore h ⊂ C +

0 . The rest of the
proposition follows. □

A special facet will be a zero dimensional facet by which a maximal
number of hyperplanes passes through. An example is the point {0}, and all
the other special facets are translates of this point by elements of X∨, i.e. are
of the form {λ} for λ ∈ X∨ (cf.[13, Chapter VI, Section 2, Proposition 3]).
For any special facet v, we will denote by Wv the stabilizer of v, which is the
subgroup of W generated by the reflections with respect to the hyperplanes
passing through v. If v = {λ}, then Wv = tλW0t−λ. We will write wv :=
tλw0t−λ, which is an element of Wv.

Lemma 5.6. — Let u,v be special facets. Then wuwv is a translation.

Proof. — Write v = {λ},u = {µ} for some λ, µ ∈ X∨, then we have

wuwv = tµw0t−µtλw0t−λ = w0tw0µt−µtλw0t−λ

= w2
0tµt−w0µtw0λt−λ = tµ−λ+w0(λ−µ). □

Let v be a special facet, a quarter with vertex v is a connected compo-
nent of

E \
⋃

H∈H
v⊂H

H.

When v = 0, one such quarter is the dominant cone C +
0 . For a general v,

we denote by C +
v the quarter with vertex v which is a translate of C +

0 ,
and we put C −

v := wvC +
v . We will also denote by A+

v , resp. A−
v , the unique

alcove contained in C +
v , resp. in C −

v , containing v in its closure. We clearly
have A−

v = wvA
+
v . Furthermore, let H ∗ be the set of hyperplanes H of H

such that H is a wall of some C +
v for a special facet v, we define boxes to

be the connected components of E\
⋃
H∈H ∗ H. Each alcove is contained in

a unique box, and we denote by Πv the box containing A+
v . In our context,

if v = {λ} for some λ ∈ X∨, we put Πλ := Πv, and we get

(5.2) Πλ = {µ ∈ E | 0 < ⟨µ− λ, α⟩ < 1, ∀ α ∈ S0}.

Remark 5.7. — In [24], Lusztig defines Ω to be the group generated by
the orthogonal reflections through the hyperplanes of H , which is seen as
acting on the right on E. In our context, this right action is the left action
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of W = Ω on E, and the left action of W on the set of alcoves from [24] is
our right action on A.

Proposition 5.8. — Let H ∈ H . Then, there exists a unique con-
nected component E1 of E\H that has a non-empty intersection with C +

v
for any special facet v. Moreover, there exists at least one special facet u
such that C −

u ∩ E1 = ∅.

Proof. — Let f : E → R be a linear form (where E is seen as a real
vector space with origin 0) and x ∈ X∨ such that H = x + f−1({0}).
Then the connected components of E\H are E1 := x + f−1(R∗

+) and
E2 := x + f−1(R∗

−). Since f−1({0}) ∈ H , C +
0 must be inside f−1(R∗

+)
or f−1(R∗

−).We may assume that C +
0 ⊂ f−1(R∗

+). Let y ∈ X and put
v := {y}, so that C +

v = y + C +
0 . For any u ∈ C +

0 , we can find r > 0 big
enough so that f(y − x+ ru) > 0 (because f(u) > 0), which implies that

y + ru ∈
(
y + C +

0
)
∩
(
x+ f−1(R∗

+)
)

= C +
v ∩ E1.

So E1 has a non-empty intersection with any C +
v . On the other hand,

we have seen that f−1(R∗
−) ∩ C +

0 = ∅, which means that E2 ∩ C +
x = ∅.

This shows that E1 is the only connected component of E\H having the
desired property.

Finally, we want to show that there exists a special facet u such that
C −

u ∩ E1 = ∅. Recall that we have

C −
0 = w0C

+
0 = −C +

0 .

Since C +
0 ⊂ f−1(R∗

+), we must have C −
0 ∩ f−1(R∗

+) = ∅, and therefore
C −
x ∩ E1 = ∅. □

Let H ∈ H , then E\H consists of two connected components E−
H

and E+
H . Thanks to Proposition 5.8, we can set E+

H to be the one con-
nected component that has a non-empty intersection with C +

v for any spe-
cial facet v. Following [31, Section 4] (see also [24, Section 1.5]), we define
a partial order ⪯ on A generated by the relations

A ⪯ sHA if A ∈ A, H ∈H , sHA ⊂ E+
H ,

where sH ∈ W denotes the affine reflection associated with the hyper-
plane H. One can show (cf. the proof of [31, Claim 4.14]) that this partial
order ⪯ coincides with the usual Bruhat order ⩽ on A+. The following
result will be crucial in the sequel. We let A be an alcove, s ∈ S and H be
the hyperplane containing the wall separating A and As.
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Proposition 5.9. — Assume that A,As ∈ A+ and that there exists a
special point v such that wvA and wvAs belong to A+. Then A < As if
and only if wvAs < wvA.

Proof. — Since the two orders ⩽ and ⪯ coincide on A+ and As = sHA,
the fact that A < As is equivalent to As ⊂ E+

H .
Because the actions of W on the right and on the left on A commute, the

hyperplane H ′ := wv□1H is the one separating wvAs from wvA. Using the
fact that wvA,wvAs ∈ A+, we see that wvAs < wvA if and only if wvA is
included in E+

H′ . Thus, to conclude it is enough to show that E+
H′ = wvE

−
H ,

or equivalently that E−
H′ = wvE

+
H . Notice that since wvE

+
H is connected, it

equals either E+
H′ or E−

H′ . By Proposition 5.8, we can find a special facet u
such that C −

u ∩ E+
H = ∅. Then we have wvC −

u ∩ wvE
+
H = ∅. But

wvC −
u = wvwuC +

u ,

and since wvwu is a translation (thanks to Lemma 5.6), wvC −
u is of the

form C +
w for some special facet w. So C +

w ∩wvE
+
H = ∅, which implies that

E−
H′ = wvE

+
H . □

Following [31, Section 4, Section 5], we consider the bijection A → A,
A 7→ qA. This bijection sends an alcove A inside of Πv to the alcove wvA.
We will denote by A 7→ pA the inverse of this bijection. For any alcove
B ⊂ Π := Π0, we see that qB = w0B. For a general alcove A, write it
uniquely as A = λ + B for some λ ∈ X∨, B ⊂ Π, and it follows that
qA = λ+ w0B.

Lemma 5.10. — Let A ∈ A and write A = λ+B, with λ ∈ X∨, B ⊂ Π.
We have pA = λ+ t2ρ∨w0B.

Proof. — For all µ ∈ Π, we have that w0(µ−ρ∨) ∈ Π. Thus, w0(−ρ∨+B)
⊂ Π for any alcove B ⊂ Π, so if we set C := ρ∨ + w0(−ρ∨ + B), we get
qC = B and so

pB = C = 2ρ∨ + w0B = t2ρ∨w0B.

The general result follows easily, since any alcove A can be written uniquely
as A = λ+B, with λ ∈ X∨, B ⊂ Π, and pA = λ+ pB. □

Proposition 5.11. — Let A ∈ A+. Then pA ⊂ ρ∨ + C +
0 .

Proof. — Let A ∈ A+, and write A = λ+ B, for λ ∈ X∨, B ⊂ Π. Since
A is in A+, we must have λ ∈ C + ∩X∨. Indeed, if µ ∈ Π and λ ∈ X∨\C +,
then one sees using (5.2) that λ+ µ /∈ C +

0 .
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Thus, it is enough to prove the proposition for A ⊂ Π. But in this case,
we have by Lemma 5.10

pA = t2ρ∨w0A = ρ∨ + w0(−ρ∨ +A).

Since w0(−ρ∨ +A) ⊂ Π, this concludes the proof. □

We also need to define a bijection Ag → Ag,h 7→ ph for an arbitrary
facet g ⊂ a1. One can do it as follows: let h ∈ Ag and A ∈ A be such that
h ⊂ A and A ⪯ Aw for all w ∈ Wg (such an alcove exists and is unique,
thanks to the existence and unicity of a minimal element in a coset of a
parabolic subgroup in a Coxeter group), then we define ph as the element
of Ag which sits inside the closure of pA.

Corollary 5.12. — For any h ∈ A+
g , we have ph ⊂ ρ∨ + C +.

Proof. — By definition, h sits inside the closure of some alcove A. No-
tice that, since A contains h in its closure, we must have A ∈ A+ thanks
to Proposition 5.5. Thus pA ⊂ ρ∨ + C +

0 by Proposition 5.11, so ph ⊂
ρ∨ + C +. □

Corollary 5.12 implies in particular that the operation h 7→ ph preser-
ves A+

g .

Proposition 5.13. — Let A ∈ A+ be such that Ar ⩾ A and Ar ∈ A+

for all r ∈Wg. Then, for all r ∈Wg, we have pAr ⩽ pA and pAr ∈ A+.

Proof. — Let v be the special point such that pA ∈ Πv. First notice that
pA is included in ρ∨ + C +

0 thanks to Proposition 5.11. Thus, if we denote
by h the facet of Ag included in the closure of pA, we see that h ⊂ ρ∨ +C +

and that h is included in the closure of all the alcoves of pAWg, so that they
all belong to A+ thanks to Proposition 5.5. Since A = wv pA, we can apply
Proposition 5.9 to get that pAs < pA for all s ∈ Sg. From the general theory
of maximal elements in cosets of parabolic subgroups in Coxeter groups,
this implies that pAw ⩽ pA for all w ∈Wg. □

The anti-spherical ℓ-Kazhdan–Lusztig polynomial ℓnx,y will also be de-
noted by ℓnB,A for the alcoves B,A corresponding to x, y ∈ fW . The fol-
lowing result will be of great importance for us.

Lemma 5.14. — For any dominant alcove A ∈ A+, we have nA,Â(1) = 1.

Proof. — This is an immediate consequence of [31, Theorem 5.1] (see
also [31, Section 7]). □

Lemma 5.15. — Let A ∈ A+ and g ⊂ a1 be a facet such that Ar ⩾ A

and Ar ∈ A+ for all r ∈Wg. Then we have nAr,Â(1) = 1 for all r ∈Wg.
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Proof. — By Lemma 5.14, we have that nA,Â(1) = 1 and, by Proposi-
tion 5.4 (applied to the elements w ∈ fW

g, w′ ∈ fW such that w′aℓ = A and
waℓ = pA) combined with Proposition 5.13, we deduce that nAr,Â(1) = 1
for all r ∈Wg. □

The following proposition will allow us to only consider facets which are
far inside of the dominant cone.

Proposition 5.16. — Let g ⊂ a1 be a facet and h ∈ A+
g . Denote by u,

resp. pu, the elements of fW
g corresponding to h, resp. ph (i.e. such that

ug = h, resp. pug = ph). Then we have nu,û(1) ̸= 0, so that

Hom•
Db

IW(Fl◦
g,k)(Eg

u , E
g
û ) ̸= 0.

Proof. — Recall that wg is the element of maximal length in Wg, and
set A := uwgaℓ. Notice that A ∈ A+ thanks to Proposition 4.2 and, by
construction, A is the alcove such that h ⊂ A, Ar ∈ A+ and A ⩽ Ar for
every r ∈ Wg (in particular Ar ⪯ A for all r ∈ Wg), so that ph ⊂ pA. By
Lemma 5.15, we have that nAwg,Â

(1) = 1 ̸= 0, and pAw ⩽ pA for every
w ∈Wg thanks to Proposition 5.13. In particular we deduce that puaℓ = pA.
Thanks to Proposition 4.6, this implies that

Hom•
Db

IW(Fl◦
a1 ,k)(Eu, Eû) ̸= 0.

By Proposition 4.7, we get the desired result. □

5.4. Facets which are not points

The root system R∨ decomposes uniquely into a disjoint union R∨ =
R∨

1 ⊔ · · · ⊔R∨
t of irreducible root systems. This decomposition comes with

a decomposition of the affine Weyl group W = W1 × · · · ×Wt (where each
Wi is the affine Weyl group associated with R∨

i ) and of the affine space
E = E1 × · · · × Et (where each Ei is associated with R∨

i ). Note that one
also has dually a decomposition R = R1 ⊔ · · · ⊔ Rt into irreducible root
systems, and an isomorphism G1×· · ·×Gr

∼−→ G induced by multiplication
from the product of the minimal closed connected normal subgroups of G of
positive dimension over F, each Gi admitting Ri as a root system (cf. [18,
Theorem and Corollary 27.5]). The point for us is that, for every i, the
alcoves determined by the box action of Wi on Ei are open simplices, and
that each alcove A ∈ A is a product of such alcoves A1 × · · · × At. More
generally, each facet h ⊂ A decomposes into a product of facets h1×· · ·×ht,
with hi ⊂ Ai for every i.
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In this subsection we prove that, for any facet g ⊂ a1 such that each gi
is not a point (where g = g1 × · · · × gt), the set fW

g is single equivalence
class. We will prove in the next subsection that fW

g is a single equivalence
class exactly when each gi is a non-special facet. Let us first explain how
we can reduce ourselves to the case where the root system is irreducible;
we start with a technical lemma, where k could be taken to be any field.

Lemma 5.17. — Let A be a local k-algebra and B be a connected k-
algebra (we do not assume A and B to be commutative). Assume that there
exists a k-algebra morphism A → k and that B is a finite dimensional k-
vector space. Then the ring A⊗k B is connected.

Proof. — Denote by m the maximal ideal of A. Since we have a morphism
A → k, we get an injection A/m ↪→ k, which is in fact an isomorphism
A/m ≃ k as A/m is a k-vector space. Therefore we get an isomorphism

A/m⊗k B ≃ B,

from which we deduce that A/m⊗k B is a connected ring.
Thanks to Nakayama’s lemma (cf. [22, Section 2, Proposition 4.2.3]),

a morphism of finitely generated A-modules f : M → N is surjective if
and only if

f ⊗ idA/m : M/mM −→ N/mN

is surjective. SinceA⊗kB is finitely generated overA (because dimk B<∞),
we can apply this last result to any endomorphism of the finitely generated
A-module A⊗k B, and deduce that an element e ∈ A⊗k B is invertible if
and only if its image e under the canonical projection A⊗kB → A/m⊗kB

is invertible.
Let e ∈ A⊗kB be an idempotent, i.e. an element satisfying e(e−1) = 0.

Then e ∈ A/m⊗kB is an idempotent, from which we deduce that e ∈ {1, 0}
by connectedness of A/m⊗kB. If e = 1, then e ∈ (A⊗kB)× thanks to the
previous paragraph, so e(e− 1) = 0⇒ e = 1. If e = 0, then

e− 1 = e− 1 = −1 ∈ (A/m⊗k B)×,

from which we deduce once again that e− 1 ∈ (A⊗k B)× and thus e = 0.
Therefore any idempotent of A⊗k B is trivial, which means that this ring
is connected. □

For the next result, notice that the decomposition W = W1 × · · · ×Wt

carries on at the level of parabolic subgroups, so that we have equalities
W g = W1

g1 × · · · ×Wt
gt and fW

g = fW1
g1 × · · · × fWt

gt .
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Proposition 5.18. — Let g = g1 × · · · × gt be a facet included in a1,
and w = (w1, . . . , wt), w′ = (w′

1, . . . , w
′
t) be elements of fW

g. Then we have

(5.3) wRgw
′ ⇐⇒ wiRGi

w′
i, ∀ i.

Moreover there is an equality

(5.4) ℓnw,w′(1) = ℓnw1,w′
1
(1)× · · · × ℓnwr,w′

r
(1).

Proof. — The isomorphism G1× · · ·×Gr
∼−→ G induces an isomorphism

from the product of the partial affine flag varieties Fl◦gi
, each being relative

to Gi, to the partial affine flag variety Fl◦g relative to G. This morphism is
equivariant for the action of the product of the Iwahori subgroups Iw+

1 ×
· · · × Iw+

t on the left (where Iw+
i = L+Gi ∩ Iw+ for each i) and of Iw+ on

the right. Thus, external tensor product yields a functor

F :
t∏
i=1

Db
IW
(
Fl◦gi

,k
)
−→ Db

IW
(
Fl◦g,k

)
,

and one can easily check with the Künneth formula that F sends tuples of
parity complexes to parity complexes.

Next, we claim that we have an isomorphism

F
((
Eg1
w1
, . . . , Egt

wt

))
≃ Eg

w.

The two objects above are parity complexes and coincide when restricted
to the stratum X g

w , so we only need to check that the object F ((Eg1
w1
, . . . ,

Egt
wt

)) is indecomposable, which we will do by showing that its endomor-
phism ring is connected.

We claim that we have the following isomorphism of graded k-vector
spaces

(5.5) Hom•
Db

IW(Fl◦
g,k)

(
Eg1
w1

⊠ · · ·⊠ Egt
wt
, Eg1

w′
1
⊠ · · ·⊠ Egt

w′
t

)
≃

t⊗
i=1

Hom•
Db

IW(Fl◦
gi
,k)
(
Egi
wi
, Egi

w′
i

)
.

Let us briefly explain how to obtain (5.5). Thanks to [1, Proposition 1.4.6]
(the result is stated with sheaves for the analytic topology there, but
is easily translated for the étale topology), we know that for every F ,
G ∈ Db

IW(Fl◦g,k) we have a natural isomorphism of graded vector spaces

H•(RΓ(RHom(F ,G))) ≃ H•(RHom(F ,G))
≃ Hom•

Db
IW(Fl◦

g,k)(F ,G),(5.6)
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where Hom is the internal hom functor, and H•(−) means the direct sum
of cohomology groups. Thus, we only need to show that there exists an
isomorphism

RHom(F1 ⊠ · · ·⊠ Ft,G1 ⊠ · · ·⊠ Gt) ≃
t

⊠
i=1

RHom(Fi,Gi)

for every Fi,Gi ∈ Db
IW(Fl◦g,k). This fact is proved in [11, Section 4.2.7(b)]

for constructible complexes.
Next, notice that the k-algebra HomDb

IW (Fl◦
gi
,k)(Egi

wi
, Egi

w′
i
) is local for each

i (because Egi
wi

is indecomposable), so that

Ai := Hom•
Db

IW(Fl◦
gi
,k)
(
Egi
wi
, Egi

w′
i

)
is also a local k-algebra as its degree zero part is local (here we apply [17,
Theorem 3.1]); moreover, restriction to the stratum X gi

wi
yields a k-algebra

morphism from Ai to k. Therefore we can apply Lemma 5.17 (recall that
a local ring is connected) to deduce that the ring on the right-hand side
of (5.5) is connected. Hence we deduce that the degree zero part of the left-
hand side of (5.5) is connected (applying once again [17, Theorem 3.1]),
proving the claim.

Thus, (5.5) can be rewritten as

Hom•
Db

IW(Fl◦
g,k)(Eg

w, E
g
w′) ≃

t⊗
i=1

Hom•
Db

IW(Fl◦
gi
,k)
(
Egi
wi
, Egi

w′
i

)
.

Since a finite tensor product of vector spaces is non-zero if and only if each
vector space appearing in the product is non-zero, this isomorphism finishes
implies the equivalence (5.3).

Now we prove (5.4). First notice that, by compatibility of the ∗-pushfor-
ward with the external tensor product (cf. [11, Section 4.2.7(a)]), we get
an isomorphism ∇g

w′ ≃ ∇g1
w′

1
⊠ · · ·⊠∇g1

w′
t
. Next, another use of (5.6) yields

the second isomorphism below:

Hom•
Db

IW(Fl◦
g,k)(Eg

w,∇
g
w′)

≃ Hom•
Db

IW(Fl◦
g,k)

(
Eg1
w1

⊠ · · ·⊠ Egt
wt
,∇g1

w′
1
⊠ · · ·⊠∇g1

w′
t

)
≃

t⊗
i=1

Hom•
Db

IW(Fl◦
gi
,k)
(
Egi
wi
,∇gi

w′
i

)
.

Taking the dimensions in this isomorphism yields the desired equality. □

Now that we understand how to reduce the study to the case of an
irreducible root system thanks to (5.3), we treat this case in detail. We

TOME 0 (0), FASCICULE 0



38 Emilien ZABETH

start with the following easy lemma (which does not require R∨ to be
irreducible).

Lemma 5.19. — Let A be an alcove contained in ρ∨ + C +
0 . Then there

exist alcoves
Ar, Ar−1, . . . , A1, A0

contained in ρ∨ + C +
0 such that

ρ∨ + a1 = Ar ⩽ Ar−1 ⩽ · · · ⩽ A1 ⩽ A0 = A

and Ai is obtained by reflecting Ai−1 along one of its walls for each i ∈
[[1, r − 1]].

Proof. — Since the order ⩽ is invariant under translation by ρ∨ in A+

(because it coincides with the periodic order ⪯), it is equivalent to prove
that for any alcove A contained in C +

0 , there exist alcoves (Ai)0⩽i⩽r con-
tained in C +

0 such that (Ar, A0) = (a1, A), Ai ⩽ Ai−1 and Ai is obtained
by reflecting Ai−1 along one of its walls. This last condition is equivalent to
requiring that Ai = Ai−1s for some simple reflection s. Now if we let w be
the element of fW such that wa1 = A, we know by the proof of Lemma 5.2
that there exists some simple reflection s such that w1 := ws < w, with
w1 ∈ fW , so that we can put A1 := w1a1. We then conclude by induc-
tion. □

See Figure 1.1 for an illustration of Lemma 5.19 (but notice that one
needs to dilate the affine plane on the picture by ℓ−1 to find back the same
setting).

Lemma 5.20. — Let h ∈ Ag. Pick a facet p ⊂ h and consider h′ := vh
with v ∈ Wp. If p ⊂ C +

0 , then h and h′ belong to A+
g , and we have

w ∼g w
′, where w,w′ ∈ fW

g are such that h = wg and h′ = w′g.

Proof. — Since p is inside C +
0 , the same is true for all the facets vh,

with v ∈Wp, since those contain p in their closure. In particular h and h′

belong to A+
g thanks to Proposition 5.5.

Let w ∈ fW
g be such that wg = h. By construction, there exists a facet

q ⊂ g such that wq = p. In particular, we get that Wp = wWqw
−1 and,

for any v ∈Wp, we have

vh = vwg = wrg,

where r ∈ Wq is such that wrw−1 = v. Let u ∈ Wg be such that wru is
maximal in wrWg. We still have wrug = h′, and since h′ ∈ A+

g , we must
have wru ∈ fW

g, so w′ = wru, with ru ∈Wq. Thanks to the second point
of Proposition 5.4, we conclude that w ∼g w′ (more precisely, if we let
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w′′ ∈ fW
g be the maximal element in wWq (see Figure 5.1 below), then

we have nw,w′′(1) ̸= 0 and nw′,w′′(1) ̸= 0). □

We have now enough ingredients to conclude.

Theorem 5.21. — Assume that R∨ is irreducible and let g ⊂ a1 be
a facet which is not a point. Then fW

g consists of a single class for the
equivalence relation ∼g.

Proof. — We introduce a new notation for this proof: if h,h′ ∈ A+
g are

such that

h = wg, h = w′g

for some w,w′ ∈ fW
g, then we write h ∼g h′ if w ∼g w

′. We want to show
that A+

g consists of a single equivalence class for ∼g.

w

w′ w′′

Figure 5.1. Lemma 5.20 in type C2. The black dot is p, while the Wp-
conjugates of h are represented by blue lines, and the red lines are the
other walls fixed by Wp.

By Proposition 5.16, we have h ∼g ph for any h ∈ A+
g and, thanks to

Corollary 5.12, we know that ph ⊂ ρ∨ +C +. Thus, it is enough to show that
all the elements of A+

g lying inside of ρ∨ + C + are in relation. For this,
we will show that any facet satisfying this condition is in relation with the
unique representative of its W -orbit in ρ∨ + aℓ.

Pick h inside of ρ∨+C + and let A ⊂ ρ∨+C +
0 be an alcove containing h in

its closure. Let also Ar, Ar−1, . . . , A1, A0 := A be alcoves as in Lemma 5.19,
and denote by si ∈ S the reflection such that Aisi = Ai−1.

Since g is not a point and a1 is a simplex (because R∨ is indecompos-
able), the face of the simplex fixed by any s ∈ S (which is the closure of
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the facet fixed by s) must have a nonzero intersection(10) with g inside a1.
This means that for any s ∈ S, there exists a facet q ⊂ g such that s ∈Wq.

For i ∈ [[1, r]], denote by qi a facet such that qi ⊂ g and si ∈ Wqi
; for

i ∈ {0, . . . , r}, denote by wi the element of fW such that wia1 = Aiand put
hi := wig, pi := wiqi. Notice that Aisi = wisiw

−1
i Ai and that hi ⊂ Ai.

By construction, we have the following data

pi ⊂ hi, with h0 = h and hr ⊂ ρ∨ + a1,

hi−1 = wisiw
−1
i hi, ∀ i ∈ [[1, r]] with wisiw

−1
i ∈Wpi

.

Since the alcoves Ai are inside of ρ∨ + C +
0 , the facets pi are inside of C +

0
for all i. Thus we can apply Lemma 5.20 to get that hi ∼g hi−1 for every i,
and by transitivity hr ∼g h. This concludes the proof of Theorem 5.21. □

5.5. Non-special facets which are points

In order to get the statement of Theorem 5.21 for non-special facets
which are points, we need to be able to say more about the anti-spherical
Kazhdan–Lusztig polynomials nB,A. For that, we will make use of the com-
binatorial data linking the “periodic” polynomial pB,A of [31, Remark 4.4]
(which is very closely related to Lusztig’s polynomial QB,A from [24]) and
the anti-spherical polynomials.

Recall the partial order ⪯ introduced in Subsection 5.3. The following
lemma will be helpful throughout all of this subsection.

Lemma 5.22. — Let v be a special facet and C be an alcove contained
in C +

v . Then C is maximal in WvC for ⪯.

Proof. — If D ∈ WvC is different from C, then there exists a hyper-
plane H passing through v which separates D from C +

v (one may take a
well chosen wall of C +

v ), so that D ⊂ E−
H and D ≺ sHD, with sHD ∈WvD.

Assume that sHD ̸= C, then sHD is not included in C +
v (because C is the

only alcove of WvD contained in C +
v ), so that we can once again find some

alcove D2 ∈ WvD satisfying sHD ≺ D2. Since WvD is a finite set, we
can repeat this process a finite number of times until finding an alcove
Dn ∈ WvD which is contained in C +

v and such that D ≺ Dn, so that
Dn = C. Therefore C is the maximal element in WvC for ⪯. □

(10) Recall that, for a positive integer n, an n-simplex ∆ inside of an affine space E of
dimension n is defined as the convex hull of n + 1 vertices (those vertices being n + 1
points not lying on a same hyperplane). For 0 ⩽ k ⩽ n, a k-face of ∆ is a subset consisting
of the convex hull of k + 1 vertices of ∆. From these definitions, it is straightforward to
show that an (n − 1)-face of ∆ has a non-empty intersection with any k-face, for k ⩾ 1.

ANNALES DE L’INSTITUT FOURIER



BLOCK DECOMPOSITION VIA GEOMETRIC SATAKE 41

We now recall the definition of the “periodic” module P, which is the
free left Z[v±1]-module with basis A, equipped with a structure of right
H-module satisfying

(5.7) ∀ s ∈ S, ACs =
{
As+ vA, if A ≺ As
As+ v−1A, if As ≺ A,

where Cs := Hs + v (these data do define a right action of H thanks
to [31, Lemma 4.1]). One then defines the submodule P◦ ⊂ P as the right
H-submodule generated by the elements of the form

Eλ :=
∑
z∈W0

vl(z)(λ+ za1), λ ∈ X∨.

Notice that this definition parallels Lusztig’s definition of

e{λ} :=
∑

A∈A,{λ}⊂A

A

from [24, Section 1.7], because the set of alcoves {λ+ za1, z ∈W0} is equal
to the set {A ∈ A, {λ} ⊂ A}.

Recall that a morphism f : M → N of right H-modules is called skew
linear if it satisfies f(xHw) = f(x)(Hw−1)−1, f(xv) = f(x)v−1 for every
x ∈ M,w ∈ W . It can be shown (cf. [31, Theorem 4.3]) that P◦ admits a
unique H-skew linear involution (·) : P◦ → P◦ such that Eλ = Eλ for all
λ ∈ X∨, and that for all A ∈ A there exists a unique PA ∈ P◦ which is self
dual with respect to this involution, with PA ∈ A +

∑
B vZ[v]B. The PA

form a Z[v±1]-basis of P◦, and the periodic polynomials are defined via the
formula

PA =
∑
B

pB,AB.

The following result follows quite directly from the constructions, but will
be of great importance for us.

Lemma 5.23. — Let A ∈ A and v be the special facet such that A ⊂ Πv.
Then we have

pwC,A(1) = pC,A(1) for all C ∈ A and w ∈Wv.

Proof. — Denote by P1 the free left Z-module Z ⊗Z[v±1] P, where Z is
seen as a Z[v±1]-module through the map Z[v±1] → Z, v 7→ 1, and let
φ : P → P1 be the morphism of Z-modules induced by sending v to 1. In
particular we have

φ(PA) =
∑
B

pB,A(1)B.
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The left and right actions of W on A endow P1 with a structure of left and
right Z[W ]-module, and one can check with (5.7) that φ(PHw) = φ(P )w
for every w ∈ W and P ∈ P. In particular, φ(PHw) belongs to the
right Z[W ]-submodule generated by φ(P ), which we denote by φ(P )Z[W ].
From [31, Remark 4.4], we know that pB,A(1) = QB,A(1) for every alcoves
A,B, where QB,A is Lusztig’s polynomial from [24]. But DA :=

∑
B QB,AB

belongs to the right H-submodule generated by ev thanks to [24, Theo-
rem 2.15], from which we deduce that φ(PA) belongs to evZ[W ]. Now ev
is invariant under the left action of Wv by construction, but since the left
and right actions of W on P1 commute, we get that wP = P for every
P ∈ evZ[W ], concluding the proof. □

For any x ∈ W and A ∈ A, write A = λ + B for a unique λ ∈ X∨

and B ⊂ Π, and put x ∗ A := xλ + B. We will denote by NA the element
that we denoted by Nx in Subsection 3.3, where xa1 = A, and we define
(following [31, Proposition 5.2]) the Z[v±1]-linear application

res : P −→ N ,

which sends an alcove A to NA if A ∈ A+, and to 0 otherwise. Finally, for
any A ∈ A, set

altPA :=
∑
x∈W0

(−1)l(x)P x∗A.

The link between periodic and antispherical polynomials is made explicit
by the following result, which is [31, Theorem 5.3(1)].

Proposition 5.24. — For any alcove A ⊂ ρ∨ + C +
0 , we have

NA = res altPA.

For any special facet v and alcove A ∈ A such that A ⊂ Πv, we define
the set

SA = {C | wC ⪯ A, ∀ w ∈Wv}.
The next few results will help us utilize Proposition 5.24. More precisely,
our main goal in Proposition 5.28 will be to determine for which alcoves C
one has nC,A = pC,A, where the alcove A ⊂ ρ∨ + C +

0 is fixed. As recalled
in the lemma below, our interest for the set SA comes from the fact that
it contains the support of PA.

Lemma 5.25. — Let A ∈ A and v be the special facet such that A ⊂ Πv.
(1) We have the implication pB,A ̸= 0⇒ B ∈ SA.
(2) We have

SA =
{
wC

∣∣w ∈Wv, C ⪯ A and C ⊂ C +
v
}
.
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(3) Assume that there exists some facet G ⊂ a1 such that A ∈
A+

vWg, and that v ⊂ xC +
0 for some x ∈ W0\{id} (this sim-

ply means that v is inside another quarter with vertex {0} than
C +

0 ). Then we have

D ∈ SA =⇒ D ̸⊂ ρ∨ + C +
0 .

Proof.
(1). — This is [31, Proposition 4.22].
(2). — Let us write

S′
A =

{
wC

∣∣w ∈Wv, C ⪯ A and C ⊂ C +
v
}
.

The inclusion SA ⊂ S′
A just follows from the fact that any alcove C ∈ A

has a Wv conjugate wC inside of C +
v . Conversely, if C is an alcove such

that C ⊂ C +
v and C ⪯ A, then we have wC ⪯ C for every w ∈Wv thanks

to Lemma 5.22, so wC ⪯ A for every w ∈ Wv. This proves the inclusion
S′
A ⊂ SA, and concludes the proof of the first point.
(3). — Let C ⊂ C +

v be an alcove such that C ⪯ A.
We claim that C belongs to A+

vWg. Since ⪯ is invariant under trans-
lations, we can translate everything by −µ, where v = {µ}, so that we
are reduced to the case where v = {0}. More precisely, if we denote by
wµ ∈ W the element such that wµa1 = A+

v , by w ∈ Wg the element such
that A = A+

vw and set ωµ := t−µwµ, then we get that ωµa1 = a1 and

C ⪯ A⇐⇒ t−µC ⪯ t−µA = t−µ(wµa1w) = t−µ(wµwa1) = ωµwa1

= (ωµwω−1
µ )ωµa1 = (ωµwω−1

µ )a1.

So now, if we set g′ := ωµg, we get the inequality t−µC ⪯ w′a1, with w′ =
ωµwω

−1
µ ∈ Wg′ . Since the alcoves t−µC and w′a1 belong to A+ (because

they are translates by −µ of alcoves in C +
v ), we get that t−µC ⩽ w′a1, so

that t−µC = w′′a1 for some w′′ ⩽ w′, from which we easily deduce that
w′′ ∈Wg′ ; this means that w′′ = ωµuω

−1
µ for some u ∈Wg, so

C = tµ
(
ωµuω

−1
µ

)
a1 = tµ

(
ωµuω

−1
µ

)
t−µtµa1

= (wµu)
(
w−1
µ tµ

)
a1 = (wµu)ω−1

µ a1 = wµua1 = A+
v u.

Denote by h the W -conjugate of g contained in A+
v . In particular, we

get that h belongs to both A+
v and C (because C ∈ A+

vWg thanks to the
previous paragraph), so that C ∩A+

v ̸= ∅. From this and the description of
SA given in (2), we deduce that for any alcove D ∈ SA, there exists some
w ∈Wv such that

D ∩ wA+
v ̸= ∅
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(just write D = wC for some alcove C as above). But wA+
v ⊂ xC +

0 for
any w ∈ Wv (because x−1wA+

v is an alcove containing x−1v ⊂ C +
0 in

its closure, so that x−1wA+
v ⊂ C +

0 thanks to Proposition 5.5), so we get
ultimately that if an alcove D ∈ SA is contained in C +

0 , then D must have
a non-empty intersection with a hyperplane separating C +

0 from xC +
0 , so

that D is not contained in ρ∨ + C +
0 . □

Lemma 5.26. — Assume that the root system R∨ is irreducible. Let λ
be a nonzero weight contained in C + ∩ X∨, v be a special facet, C be an
alcove contained in

∏
v and put A := λ+ C. If A ∩A+

v ̸= ∅, we must have
C = A+

v .

Proof. — In order to simplify the notations, we may and will reduce
ourselves to the case where v = {0}. Let us write

C = {µ ∈ E | nα − 1 < ⟨µ, α⟩ < nα, ∀ α ∈ R+}

for some integers nα. First notice that if α′, α ∈ R+ are such that α ⩽ α′

(i.e. α′ − α is a sum of positive roots), then we must have nα ⩽ nα′ .
Indeed, since C ⊂ C +

0 , we know that ⟨µ, α⟩ ⩽ ⟨µ, α′⟩ for every µ ∈ C, so
in particular we get that

nα − 1 < ⟨µ, α⟩ ⩽ ⟨µ, α′⟩ < nα′ ,

proving the claim.
Since C ⊂ Π, we know that nα = 1 for every α ∈ S0, and thus nα ⩾ 1

for every α ∈ R+. The assumption that A ∩ a1 ̸= ∅ implies that we have

nα + ⟨λ, α⟩ ∈ {1, 2} for every α ∈ R+.

Therefore we must have ⟨λ, α⟩ ∈ {0, 1} for every α ∈ R+. Since λ ̸= 0,
there exists some α0 ∈ S0 such that ⟨λ, α0⟩ > 0. So let β =

∑
S0
cαα ∈ R+

be the longest root (cf. [13, Chapter 6, Proposition 25], this is where we
need the assumption that R is irreducible). In particular we have cα ⩾ 1 for
every α ∈ S0, so that ⟨λ, β⟩ > 0, and thus nβ = 1. But for every α ∈ R+,
we have α ⩽ β, so we get that nα ⩽ nβ , and finally nα = 1. This means
that C = a1. □

The following corollary can be visualized on Figure 5.2 below.

Corollary 5.27. — Let v be a special facet, g ⊂ a1 be a non-special
facet and A ∈ A+

vWg be the alcove which is maximal in A+
vWg for ⪯. Then

A belongs to Πv.

Proof. — Let us first explain why A ⊂ C +
v . Denote by h′ the element of

Ag which belongs to the closure of A+
v . We have the inclusion A+

v ⊂ C +
v ,
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so we know that h′ is included in C +
v . If C ∈ A+

vWg is an alcove which
is not included in C +

v , then there exists a hyperplane H of the boundary
of C +

v which contains h′ and separates C from C +
v , so we clearly have the

inclusion C ⊂ E−
H , and therefore C ≺ sHC. Since sH ∈ Wh′ , the alcove

sHC must belong(11) to A+
vWg. This shows that the maximal element in

A+
vWg for ⪯ must be contained in C +

v , whence A ⊂ C +
v .

Now let us show that A ⊂ Πv. For this we may and will assume until
the end of this proof that R is irreducible. Assume that this inclusion does
not hold, then because A ⊂ C +

v , we can write A = λ+C for some nonzero
weight λ ∈ C +∩X∨ and some alcove C ⊂ Πv. But we also have A∩A+

v ̸= ∅
(both of those sets contain h′), therefore we can apply Lemma 5.26 (here
we use the assumption that R is irreducible) to see that C = A+

v . So we
are in the following situation:

(5.8) λ+A+
v ∈ A+

vWg.

Let µ ∈ X∨ be such that {µ} = v, and denote by wµ ∈W the element such
that wµa1 = A+

v . Putting ωµ := t−µwµ and applying t−µ to (5.8), we get
that

λ+ ωµa1 ∈ ωµa1Wg =
(
ωµWgω

−1
µ

)
ωµa1,

and, using the fact that ωµ fixes the fundamental alcove a1, we obtain

(5.9) λ+ a1 ∈Wg′a1, with g′ := ωµg.

Since ωµ ∈ Ω (because ωµ fixes a1) and g is a non-special facet, g′ is also
a non-special facet(12) included in the closure of the fundamental alcove.
From (5.9) we deduce that g′ ⊂ λ + a1. But λ ∈ C + ∩ X∨ is nonzero, so
⟨λ, β⟩ ⩾ 1, where β ∈ R+ is the longest root. Since g′ ⊂ a1, we have that
⟨µ, β⟩ ⩽ 0 for every µ ∈ −λ + g′ (because ⟨µ′, β⟩ ⩽ 1 for all µ′ ∈ a1);
therefore the inclusion −λ + g′ ⊂ a1 is possible only when ⟨µ, β⟩ = 0 for
all µ ∈ −λ+ g′. Since α ⩽ β for all α ∈ R+ we get that

0 ⩽ ⟨µ, α⟩ ⩽ ⟨µ, β⟩ = 0, ∀ α ∈ R+, µ ∈ −λ+ g′

which means that µ = 0 and so g′ = {λ}, contradicting our assumption that
g′ is not a special facet. This concludes the proof of the Corollary 5.27. □

We are now ready to prove our central result.

(11) Indeed, write C = wa1 for some w ∈ W , then h′ = wg and w−1sHw ∈ Wg, so that
sHC = C(w−1sHw) ∈ CWg = A+

v Wg.
(12) Indeed, the action of W (and hence of Ω) on E obviously permutes the set of
hyperplanes H, so it also permutes the set of special facets by construction.

TOME 0 (0), FASCICULE 0



46 Emilien ZABETH

Proposition 5.28. — Let g ⊂ a1 be a non-special facet, h ∈ A+
g be

such that h ⊂ ρ∨ + C + and B ⊂ ρ∨ + C +
0 be an alcove containing h in its

closure. Let also v be a special facet such that v ⊂ B, and A be the alcove
which is maximal in A+

vWg for ⩽. Then we have A ⊂ Πv and

nBr,A(1) = 1, ∀ r ∈Wg.

Proof. — Let h′ be the element of Ag which is included in A+
v . By con-

struction (i.e. because v ⊂ ρ∨ + C +), we have that A+
v ⊂ ρ∨ + C +

0 , so
that in particular h′ ⊂ C +

0 . Thus, applying Proposition 5.5, we know that
all the alcoves of A+

vWg are contained in A+ (because they contain h′ in
their closure), so that the orders ⪯ and ⩽ coincide in A+

vWg. Therefore A
is maximal in A+

vWg for ⪯, so is included in Πv thanks to Corollary 5.27.
By Lemma 5.24 and because A ⊂ ρ∨ + C +

0 , we have that

(5.10)
∑
C

nC,ANC =
∑
x∈W0

(−1)l(x)
∑
C

pC,x∗A res C.

Our next goal is to use this formula to show that

nC,A = pC,A for all C ⊂ ρ∨ + C +
0 .

For that we will prove that when the alcove C ⊂ ρ∨ + C +
0 is fixed and

x ∈ W0\{id}, we have pC,x∗A = 0; this will follow from a careful study of
the periodic polynomials.

Fix x ∈ W0\{id}, and notice that x ∗ A ⊂ Πxv since A ⊂ Πv. We can
then apply the first point of Lemma 5.25:

pD,x∗A ̸= 0 =⇒ D ∈ Sx∗A.

But we have that x∗A ∈ A+
xvWg (because x∗A and A+

xv are just translates
of A and A+

v respectively, by the same translation of ZR∨) and xv ⊂ xC +
0 ,

so Lemma 5.25(3) tells us that

D ∈ Sx∗A =⇒ D ̸⊂ ρ∨ + C +
0 .

This fact, combined with (5.10), implies that we have

(5.11) nC,A = pC,A, ∀ C ⊂ ρ∨ + C +
0 .

On the other hand, recall the result of Lemma 5.23:

(5.12) pwC,A(1) = pC,A(1), ∀ w ∈Wv.

Thus, for any alcove C included in ρ∨ + C +
0 , (5.11) and (5.12) yield

(5.13) nwC,A(1) = nC,A(1), ∀ w ∈Wv such that wC ⊂ ρ∨ + C +
0 .
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By construction, there exist elements w ∈ Wv, r0 ∈ Wg such that B =
wA+

v and A+
v = Ar0, so that B = wAr0. Since B ⊂ ρ∨ + C +

0 , we can
apply (5.13) to get that

nB,A(1) = nAr0,A(1).

Finally, since A is maximal in AWg for ⩽, we can apply successively the
first point of Proposition 5.4 (where the facet q from this proposition is
our current g, and where the elements w ∈ fW

g, w′ ∈ fW are such that
wa1 = A and w′a1 = B) to obtain

nBr,A(1) = nB,A(1) = nAr0,A(1) = nA,A(1) = 1, ∀ r ∈Wg. □

See Figure 5.2 for an illustration of the setting of the previous Proposi-
tion.

B

A+
v A

Figure 5.2. Proposition 5.28 in type C2. The black dot is v and the
thick black lines represent the affine hyperplanes fixed by the reflec-
tions in Wv. The red dots are the Wv-conjugates of h, and the set of
gray alcoves represents {Br, r ∈Wg}.

Remark 5.29. — Keep the notations of the previous proposition. By posi-
tivity of the coefficients of the anti-spherical Kazdhan–Lusztig polynomials,
the fact that nBr,A(1) = 1 for all r ∈Wg means that the polynomial nBr,A
is always a non-zero monomial.

Corollary 5.30. — Let g ⊂ a1 be a non-special facet, h ∈ A+
g be

such that h ⊂ ρ∨ + C +, B ⊂ ρ∨ + C +
0 be an alcove such that h ⊂ B, and

let v ⊂ ρ∨ + C + be a special facet such that v ⊂ B. If we let u ∈ Wv be
such that B′ := uB is included in ρ∨ + C + and denote by h′ the element
of A+

g included in B′, then we have w′ ∼g w, where w′, w ∈ fW
g are such

that h = wg and h′ = w′g.
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Proof. — Denote by A the alcove which is maximal in A+
vWg for ⩽, and

by h′′ the element of Ag included in A. Recall that A ⊂ Πv thanks to
Proposition 5.28, so that in particular h′′ ∈ A+

g . So if we let w′′ be the
element of fW

g which satisfies w′′g = h′′ and r ∈Wg be the element such
that Br is maximal in BWg for ⩽ (so that wa1 = Br and w′′a1 = A), then
Proposition 5.28 tells us that

nBr,A(1) = 1,

from which we deduce that w ∼g w′′ thanks to Corollary 4.8. The same
reasoning (considering this time the alcove B′ containing both h′ and v in
its closure) shows that w′ ∼g w

′′, so finally w ∼g w
′ by transitivity. □

We can finally complete the proof of Theorem 5.21.

Theorem 5.31. — Assume that R∨ is irreducible and let g ⊂ a1 be a
non-special facet. Then fW

g consists of a single class for the equivalence
relation ∼g.

Proof. — Thanks to Theorem 5.21, we may and will assume that g is
a point. With the notation of the proof of Theorem 5.21, recall that we
want to show that A+

g consists of a single equivalence class for ∼g. Also
recall from the proof of Theorem 5.21 that it is enough to show that all the
elements of A+

g lying inside of ρ∨ + C + are in relation.
Pick h inside of ρ∨+C + and let A ⊂ ρ∨+C +

0 be an alcove containing h in
its closure. Let also Ar, Ar−1, . . . , A1, A0 := A be alcoves as in Lemma 5.19,
and denote by si ∈ S the reflection such that Aisi = Ai−1.

Since R is irreducible, there exists a unique simple reflection σ ∈ S which
does not belong to the finite Weyl group W0. Moreover, because a1 is a
simplex, there is only one facet inside a1 which is a point and which is not
included in the hyperplane fixed by σ: this is the special facet {0}. Thus,
since g is not special, it must be included in the wall fixed by σ, or in other
words we have σ ∈Wg.

For i ∈ [[0, . . . , r]], denote by wi the element of fW such that wia1 = Ai
and put hi := wig. Notice that Aisi = wisiw

−1
i Ai and that hi ⊂ Ai. By

construction, we also have

hi−1 = wisiw
−1
i hi, ∀ i ∈ [[1, . . . , r]] and h0 = h.

Fix i ∈ [[1, . . . , r]]. Now, if si = σ, then wisiw
−1
i fixes hi, so that

hi = hi−1. So assume that si ̸= σ, which implies that si ∈ W0, and put
vi := wi{0}. Then we see that vi is a special facet included in Ai, which
thus satisfies the inclusion vi ⊂ ρ∨ + C +, with wisiw

−1
i ∈ Wvi . Therefore
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we may apply Corollary 5.30 to see that hi ∼g hi−1. By transitivity of the
relation we get h ∼g hr, concluding the proof. □

Remark 5.32. — Take back the notations of the previous proof. Corol-
lary 5.30 (when g is a point) and Lemma 5.20 (when g is not a point)
actually allow us to be a bit more precise: for all i ∈ [[1, . . . , r]], there exists
an element ui ∈ fW

g (which is the maximal element in Wvi
wi in Corol-

lary 5.30, and the maximal element in wiWqi
in Lemma 5.20) such that

nwi,ui
(1) ̸= 0 and nwi−1,ui

(1) ̸= 0.

One of the advantages of our proof is that it gives an explicit way of
linking an element w ∈ fW

g to the unique element v of fW
g satisfying

vg ⊂ ρ∨ + a1. This allows us to give the following result.

Corollary 5.33. — Assume that R∨ is irreducible. Let g ⊂ a1 be a
non-special facet and w,w′ be elements of fW

g which are in the same equiv-
alence class for ∼g. Denote by Aw (resp. Aw′) the alcove which contains
wg (resp. w′g) in its closure and which is minimal in AwWg (resp. Aw′Wg)
for ⪯. Then there exists a positive integer s and a chain of elements of fW

g

ws = w,ws−1, . . . , w0 = w′

such that, for all i ∈ [[0, s− 1]], there exists an element ui ∈ fW
g satisfying

nwi,ui
(1) ̸= 0 and nwi+1,ui

(1) ̸= 0,

and such that
s ⩽ 2 + d

(
pAw − ρ∨

)
+ d
(

pAw′ − ρ∨
)
.

Proof. — Denote by v the unique element of fW
g such that vg ⊂ ρ∨+a1.

Let us also denote by pw the element of fW
g such that pwg ⊂ pAw and

A0 := pAw, Ar−1, . . . , Ar := ρ∨ + a1 be the alcoves of Lemma 5.19. By
Remark 5.32, we know that there exist elements wi, ui ∈ fW

g such that
(wr, w0) = (v, pw) and

wig ⊂ Ai, nwi,ui
(1) ̸= 0 and nwi+1,ui

(1) ̸= 0, ∀ i ∈ [[0, r − 1]].

Therefore, the chain w, pw,w1, . . . , wr = v linking w to v is of length equal
to 1 plus the number of hyperplanes separating pAw from a1 + ρ∨, and this
last number is equal to the number of hyperplanes separating pAw−ρ∨ from
a1, i.e. to d( pAw − ρ∨). Repeating the same process for w′, we find a chain
linking w′ to v of length equal to 1+d( pAw′−ρ∨), so that the concatenation
of these two chains yields the desired result. □
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6. Smith–Treumann theory and consequences

6.1. Geometric Satake equivalence

The affine Grassmannian Gr associated with G can be defined as the
fppf-quotient LG/L+G, which can be shown to be an ind-projective ind-
scheme over F. In particular, Gr coincides with the partial affine flag variety
Fl{0} (cf. Subsection 3.2). For any λ ∈ X∨, we denote by zλ ∈ T (O) the
image of z by λ : Gm(K) → T (K), and define [λ] := zλL+G. The orbit
L+G · [λ] will be denoted Xλ. Using the Cartan decomposition, one can
show that the action of L+G on Gr induces the following equality

(Gr)red =
⊔
λ∈X∨

+

Xλ,

where (Gr)red is the reduced ind-scheme associated with Gr. Moreover, each
orbit Xλ is a smooth F-scheme of finite type and

Xλ =
⊔
µ⩽λ
µ∈X∨

+

Xµ

is a projective F-scheme, where µ ⩽ λ means as usual that λ− µ is a sum
of positive coroots.

For any X which is a locally closed finite union of L+G-orbits, one can
show that the L+G-action on X factors through a quotient group of finite
type J ; this quotient may and will be chosen so that the kernel of the map
L+G → J is contained in ker(L+G → G). More concretely, one can take
J to be the group representing the functor R 7→ G(R[z]/zn), for a large
enough integer n. We can then consider the J-equivariant derived category
of constructible étale k-sheaves Db

J(X,k), which does not depend on our
choice of J (see [14, Section 3.3]). We are now allowed to define the category
Db
L+G(Gr,k) as the direct limit of the categoriesDb

J(X,k), indexed by finite
and closed unions of orbits X which are ordered by inclusion and where
the transition maps are given by direct images. This category admits a
canonical perverse t-structure, and we denote by PervL+G(Gr,k) its heart.

For λ ∈ X∨
+, let iλ : Xλ ↪→ Gr denote the inclusion and define

∆sph
λ := pH0(iλ! kXλ

[dim(Xλ)]
)
, ∇sph

λ := pH0(iλ∗kXλ
[dim(Xλ)]

)
.

The complex ∆sph
λ , resp. ∇sph

λ , is called the standard perverse sheaf, resp
the costandard perverse sheaf attached to λ. By construction, there is a
canonical map ∆sph

λ → ∇sph
λ , and we define the intersection cohomology

complex ICsph
λ associated with λ as the image of this map. Intersection
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cohomology complexes cover (up to isomorphism) all of the simple objects
of the category PervL+G(Gr,k) when λ runs through X∨

+.

Proposition 6.1 ([10, Proposition 12.4]). — The category PervL+G(Gr,
k) is a highest weight category, with weight poset X∨

+, standard objects
{∆sph

λ , λ ∈ X∨
+} and costandard objects {∇sph

λ , λ ∈ X∨
+}.

The category Db
L+G(Gr,k) admits a monoidal product ⋆, which restricts

to a monoidal product on PervL+G(Gr,k). In the following crucial result,
we denote by G∨ the Langlands dual group of G over k, and by Repk(G∨)
the category of algebraic finite dimensional k-representations of G∨.

Theorem 6.2 ([26, Theorem 14.1]). — There is an equivalence of mon-
oidal categories

(PervL+G(Gr,k), ⋆) ∼−→ (Repk(G∨),⊗k).

Remark 6.3. — Let λ ∈ X∨
+. It is well known that the category Repk(G∨)

also admits a highest weight structure, and we denote by ∆λ, resp. ∇λ,
resp. Lλ, the standard object, resp. the costandard object, resp. the simple
module, associated with λ. Then, the previous equivalence of categories
sends ∇sph

λ , resp. ∆sph
λ , resp. ICsph

λ , on ∇λ, resp. ∆λ, resp. Lλ (cf. [26,
Proposition 13.1]). We will say that this equivalence is an equivalence of
highest weight categories.

6.2. Iwahori–Whittaker variant

Recall the construction of Db
IW(Gr,k) from Subsection 3.3. If we denote

by Yλ the orbit of [λ] under the action of Iw+
u , then we have a decomposition

(Gr)red =
⊔
λ∈X∨

Yλ,

where each Yλ is a finite dimensional affine space over F. One can show
that an orbit Yλ supports a non-zero Iwahori–Whittaker local system iff λ

is strictly dominant, and that in this case there exists exactly one (up to
isomorphism) such local system of rank one on Yλ, which we will denote
by LλAS (here AS stands for Artin–Schreier).

Once again, the category Db
IW(Gr,k) admits a canonical perverse t-

structure, and we will denote by PervIW(Gr,k) its heart. Thanks to the
fact that the Iw+

u -orbits are affine spaces over F, this category of per-
verse sheaves admits a transparent highest weight structure (cf. [12, Corol-
lary 3.6]). Namely, the weight poset is given by X∨

++, and the standard,
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costandard and simple objects associated with some λ ∈ X∨
++ are respec-

tively given by

∆IW
λ := jλ! LλAS[dim(Yλ)], ∇IW

λ := jλ∗LλAS[dim(Yλ)], ICIW
λ ,

where jλ : Yλ ↪→ Gr is the inclusion, and ICIW
λ is obtained as the image

of the canonical morphism ∆IW
λ → ∇IW

λ . In the sequel, we will denote by
TiltIW(Gr,k) the category of tilting objects associated with this highest
weight category, and by T IW

λ the indecomposable tilting object of highest
weight λ ∈ X∨

++.
Although the category Db

IW(Gr,k) is not endowed with a canonical con-
volution product making it a monoidal category, it admits a right action of
the monoidal category Db

L+G(Gr,k). The following result was found by the
authors of [12], and gives another incarnation of the category Repk(G∨).
Note that by our assumptions on G, the element ρ∨, defined as the half-sum
of positive coroots, belongs to X∨.

Theorem 6.4. — The functor F 7→ ∇IW
ρ∨ ⋆F induces an equivalence of

highest weight categories

PervL+G(Gr,k) ∼−→ PervIW(Gr,k).

Remark 6.5. — At this stage, we can note that the action of Gm on Gr
by rescaling z stabilizes each Iw+

u -orbit. This allows us to consider the loop
rotation equivariant Iwahori–Whittaker derived category of k-sheaves

Db
IW,Gm

(Gr,k),

which comes with a natural t-exact forgetful functor to Db
IW(Gr,k) (cf. [30,

Section 5.2]). It is then not difficult to show (cf. [30, Lemma 5.2]) that the
forgetful functor

(6.1) PervIW,Gm(Gr,k) −→ PervIW(Gr,k)

is an equivalence of categories. These considerations will become useful in
Section 6.

6.3. Fixed points of the affine Grassmannian and connected
components

As in Subsection 3.1, we fix an integer n ⩾ 1. We denote by µn the
finite group scheme of nth roots of unity, which acts on L+G and LG by
rescaling the indeterminate z; in particular, µn acts on Gr. The following
fact, which will only be used with n = ℓ, is one of the fundamental tools

ANNALES DE L’INSTITUT FOURIER



BLOCK DECOMPOSITION VIA GEOMETRIC SATAKE 53

used by the authors of [30] (cf. [30, Proposition 4.7]). For any λ ∈ an ∩X∨,
we will denote by gλ ⊂ an the facet which contains λ.

Proposition 6.6. — For any λ ∈ an ∩ X∨, the map g 7→ g · [λ] factors
through an open and closed embedding

Fln,◦gλ
↪−→ (Gr)µn

and the induced map ⊔
λ∈an∩X∨

Fln,◦gλ
−→ (Gr)µn

is an isomorphism of ind-schemes.

If we denote by Iw+
u,ℓ the inverse image of U+ under the evaluation

map L+
ℓ G → G, zℓ 7→ 0, then we get (Iw+

u )µℓ = Iw+
u,ℓ, and the orbits

of (Gr)µℓ under the action of Iw+
u,ℓ are still parametrized by X∨ (cf. [30,

Lemma 4.8]). Thus, using the morphism Iw+
u,ℓ → Ga induced by χ, we

can take back the constructions of Subsection 6.2 to define the category
Db

IWℓ
(Y,k), where Y ⊂ (Gr)µℓ is a finite locally closed union of Iw+

u,ℓ-
orbits. The theory of parity complexes also adapts to the present context:
a complex F ∈ Db

IWℓ
(Y,k) is called ∗-even, resp. !-even, if for any(13)

λ ∈ X∨
++ such that (Yλ)µℓ ⊂ Y the complex (jλµℓ

)∗F , resp. (jλµℓ
)!F , is

concentrated in even degrees, where jλµℓ
: (Yλ)µℓ ↪→ Y is the inclusion. The

definition for ∗-odd and !-odd complexes is similar and one says that a
complex is even, resp. odd, if it is both ∗-even and !-even, resp. ∗-odd and
!-odd. As usual, a complex is called parity if it is a direct sum of even and
odd complexes.

Defining the category Db
IWℓ

((Gr)µℓ ,k) (resp. Db
IWℓ

(Flℓ,◦g ,k) for a facet
G ⊂ aℓ) as a direct limit, it then makes sense to talk about even and odd
objects in this category, and we will denote by ParIWℓ

((Gr)µℓ ,k) (resp.
ParIWℓ

(Flℓ,◦g ,k)) the additive full subcategory consisting of parity objects.
By Proposition 6.6, it is clear that the additive category ParIWℓ

((Gr)µℓ ,k)
splits into a direct sum of subcategories of the form ParIWℓ

(Flℓ,◦g ,k), where
g runs through the facets inside aℓ.

It is important to note that we have a bijection g 7→ ℓ ·G between facets
inside a1 associated with the action □1 of W on E and facets inside aℓ
associated with the action □ℓ of W on E, and that a simple change of
variable (namely, replacing z with zℓ) induces canonical isomorphisms of

(13) Notice that, if λ /∈ X∨
++, the restriction and co-restriction of F to (Yλ)µℓ is zero

(because this orbit supports an Iwahori–Whittaker local system only when λ ∈ X∨
++),

so that we can restrict ourselves to the case where λ ∈ X∨
++.
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ind-schemes Fl◦g := Fl1,◦g ≃ Flℓ,◦ℓ·g, Iw+
u ≃ Iw+

u,ℓ, sending Iw+
u -orbits in Fl◦g

to Iw+
u,ℓ-orbits in Flℓ,◦ℓ·g. For any facet g ⊂ a1, we thus have a canonical

equivalence of categories

Db
IW
(
Fl◦g,k

)
≃ Db

IWℓ

(
Flℓ,◦ℓ·g,k

)
,

restricting to an equivalence between the corresponding categories of parity
complexes:

(6.2) ParIW
(
Fl◦g,k

)
≃ ParIWℓ

(
Flℓ,◦ℓ·g,k

)
.

In the sequel, we will denote by Eℓ·gℓ,w the indecomposable parity complex
in ParIWℓ

(Flℓ,◦ℓ·g,k) corresponding to Eg
w via the equivalence (6.2). It is

clear that, up to a shift, all of the indecomposable parity complexes in
ParIWℓ

(Flℓ,◦ℓ·g,k) (coming from Proposition 3.1) arise in this way.

6.4. Smith category and the linkage principle

Since the action of Gm on Gr stabilizes the fixed points (Gr)µℓ , we can
take back the construction recalled in Remark 6.5 to define the category
Db

IWℓ,Gm
(Y,k), where Y ⊂ (Gr)µℓ is a locally closed finite union of Iw+

u,ℓ-
orbits. We will denote by Db

IWℓ,Gm
(Y,k)µℓ−perf the full subcategory whose

objects are the F for which the object ResGm
µℓ

(F) has perfect geometric
stalks in the sense of [30, Section 3.3]. The Smith category SmIW(Y,k) on
Y is by definition the Verdier quotient

Db
IWℓ,Gm

(Y,k)/Db
IWℓ,Gm

(Y,k)µℓ−perf .

Let X ⊂ Gr be a locally closed finite union of Iw+
u -orbits, and iX :

(X)µℓ ↪→ X denote the inclusion. We define the functor

i!∗X : PervIW,Gm(X,k) −→ SmIW((X)µℓ ,k)

as the composition of the inverse image i∗X with the canonical quotient map

Q : Db
IWℓ,Gm

((X)µℓ ,k) −→ SmIW((X)µℓ ,k).

A crucial result says that taking i!X instead of i∗X in the previous construc-
tion gives isomorphic functors (cf. [30, Section 6.2]), whence the notation.
It then takes a bit more work (cf. [30, Lemma 6.1]) to prove that, for two
locally closed finite unions of Iw+

u,ℓ-orbits Z ⊂ Y , the canonical functor
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fSm
∗ : SmIW(Z,k) → SmIW(Y,k) induced by the direct image in the cor-

responding derived categories is fully faithful, and fits into the following
commutative diagram

Db
IWℓ,Gm

(Z,k)
f∗
//

��

Db
IWℓ,Gm

(Y,k)

��

SmIW(Z,k)
fSm

∗ // SmIW(Y,k),

where the vertical arrows are the quotient maps. One can thus define the
category SmIW((Gr)µℓ ,k) as a direct limit indexed by finite closed unions
of Iw+

u,ℓ-orbits, and consider the functor

i!∗Gr : PervIW,Gm(Gr,k) −→ SmIW((Gr)µℓ ,k).

The following statement is [30, Theorem 7.4].

Theorem 6.7. — The composition of functors

PervIW(Gr,k) Remark 6.5−−−−−−−→ PervIW,Gm(Gr,k) i!∗Gr−−→ SmIW((Gr)µℓ ,k)

restricts to a fully faithful functor Φ : TiltIW(Gr,k)→ SmIW((Gr)µℓ ,k).

We can now reformulate the proof of the linkage principle from [30,
Theorem 8.5]. Thanks to the decomposition of (Gr)µℓ into its connected
components from Proposition 6.6, we deduce from Theorem 6.7 above that
two strictly dominant weights λ and µ which are not in the same orbit for
the box action cannot be in relation for R2 (seen as a relation on the weight
poset X∨

++ of the highest weight category PervIW(Gr,k), cf. Section 2).
Indeed, let δ, resp. γ, be the element of W□ℓλ ∩ aℓ, resp. of W□ℓµ ∩ aℓ.
We have

HomTiltIW (Gr,k)
(
T IW
λ ,T IW

µ

)
≃ HomSmIW ((Gr)µℓ ,k)

(
Φ
(
T IW
λ

)
,Φ
(
T IW
µ

))
,

and since the object Φ(T IW
λ ), resp. Φ(T IW

µ ), is indecomposable (thanks
to the full faithfulness of Φ), its support must be contained in a single
connected component of (Gr)µℓ , which is easily seen to be the parametrized
by δ, resp. γ, in the isomorphism of Proposition 6.6 applied to the case
n = ℓ.

Thanks to Theorem 6.4, this implies that two dominant weights λ′, µ′

which are not in the same orbit for the dot action cannot be in relation for
R2 (where we now consider the highest weight category PervL+G(Gr,k)).
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Finally, the geometric Satake equivalence (Theorem 6.2) and Theorem 2.3
allow to prove the linkage principle for G∨ (cf. [20, Corollary 6.17, Part II]):

(6.3) ∀ λ′, µ′ ∈ X∨
+ such that W •ℓ λ′ ̸= W •ℓ µ′,

we have Ext1
G∨(Lλ′ , Lµ′) = 0.

6.5. Consequences on equivalence relations

Recall the definition of the “dot” action of W , which acts on X∨ by

w •ℓ µ := w□ℓ(µ+ ρ∨)− ρ∨,

for any w ∈ W , µ ∈ X∨. Let µ ∈ X∨ ∩ aℓ and gµ be the facet (for □ℓ)
containing µ. Therefore, ℓ−1 · gµ ⊂ a1 is a facet for □1. The assignment
w 7→ w□ℓµ, resp. w 7→ w •ℓ (µ− ρ∨), induces a bijection

(6.4) fW
ℓ−1·gµ ∼−→W□ℓµ ∩ X∨

++, resp. fW
ℓ−1·gµ ∼−→W •ℓ (µ− ρ∨) ∩ X∨

+

(this follows from the fact that, if we denote by Wgµ,□ℓ
⊂W the stabilizer

of gµ for □ℓ, then we have an equality Wgµ,□ℓ
= Wℓ−1·gµ

).
In the sequel, we will want to determine an exact description of the

blocks in X∨
++ (seen as the weight poset of PervIW(Gr,k)) for R2 (cf.

Subsection 2.2). The following results will help us to do so (cf. the proof
of [30, Theorem 8.9]).

Proposition 6.8. — Let µ ∈ X∨∩aℓ, gµ be the facet (for □ℓ) containing
µ, and w,w′ be elements of fW

ℓ−1·gµ . We have an isomorphism

HomTiltIW (Gr,k)
(
T IW
w□ℓµ

,T IW
w′□ℓµ

)
≃ Hom•

ParIWℓ(Flℓ,◦
gµ ,k)

(
Egµ

ℓ,w, E
gµ

ℓ,w′

)
.

Proof. — This is a direct consequence of [30, Proposition 8.11] and of the
equivalence of highest weight categories Repk(G∨) ≃ PervIW(Gr,k), which
sends the indecomposable tilting module of highest weight w •ℓ (µ − ρ∨),
resp. w′ •ℓ (µ− ρ∨), to T IW

w□ℓµ
, resp. T IW

w′□ℓµ
. □

Let λ ∈ aℓ ∩ X∨. Note that, thanks to the equivalence (6.2), we have

Hom•
ParIW

(
Fl◦

ℓ−1·gλ
,k
)(Eℓ−1·gλ

w , Eℓ
−1·gλ

w′

)
≃ Hom•

ParIWℓ(Flℓ,◦
gλ
,k)
(
Egλ

ℓ,w, E
gλ

ℓ,w′

)
.

Therefore Proposition 6.8 yields

(6.5) ∀ w,w′ ∈ fW
ℓ−1·gλ , wRℓ−1·gλ

w′ ⇐⇒ (w□ℓλ)R2(w′
□ℓλ).
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6.6. Dilating weights by ℓ

Smith–Treumann theory allows us to understand the effect of dilating
dominant weights by ℓ on the equivalence relation ∼.

Proposition 6.9. — Let λ, µ ∈ X∨
++. We have an isomorphism

HomTiltIW (Gr,k)
(
T IW
ℓ·λ ,T IW

ℓ·µ
)
≃ HomTiltIW (Gr,k)

(
T IW
λ ,T IW

µ

)
.

Proof. — First recall that, by full-faithfulness of Φ, we have an isomor-
phism

(6.6) HomTiltIW (Gr,k)
(
T IW
ℓ·λ ,T IW

ℓ·µ
)

≃ HomSmIW ((Gr)µℓ ,k)
(
Φ
(
T IW
ℓ·λ

)
,Φ
(
T IW
ℓ·µ

))
.

Next, notice that we have an embedding

LℓG/L
+
ℓ G ↪−→ (Gr)µℓ

thanks to [30, Remark 4.8], and that the left-hand side identifies (via Propo-
sition 6.6) with the union of the connected components Flℓ,◦gλ

, with λ running
through aℓ∩ℓ·X∨. Moreover, the L+

ℓ G-orbits in LℓG/L+
ℓ G are parametrized

by ℓ ·X∨
+, and a simple change of variable z 7→ zℓ together with (6.1) induce

an equivalence of categories

R : TiltIW(Gr,k) ≃ TiltIWℓ,Gm

(
LℓG/L

+
ℓ G,k

)
,

which sends T IW
λ (resp. T IW

µ ) to the indecomposable tilting object asso-
ciated with ℓ·λ (resp. ℓ·µ). Therefore, the indecomposable tilting objects in
TiltIWℓ,Gm(LℓG/L+

ℓ G,k) are parity complexes (see [12, Proposition 4.12]),
so that we can take back the same arguments as in the proof of [30, Theo-
rem 7.4] to show that restricting the functor

Q : Db
IWℓ,Gm

((Gr)µℓ ,k) −→ SmIW((Gr)µℓ ,k)

to LℓG/L+
ℓ G and composing it with R yields a fully-faithful functor

Q ◦R : TiltIW(Gr,k) −→ SmIW
(
LℓG/L

+
ℓ G,k

)
,

which satisfies the following isomorphisms:

Q ◦R
(
T IW
λ

)
≃ Φ

(
T IW
ℓ·λ

)
and Q ◦R

(
T IW
µ

)
≃ Φ

(
T IW
ℓ·µ

)
.

The desired result thus follows from comparing (6.6) with the following
isomorphism

Hom
(
T IW
λ ,T IW

µ

)
≃ Hom

(
Q ◦R

(
T IW
λ

)
, Q ◦R

(
T IW
µ

))
. □

TOME 0 (0), FASCICULE 0



58 Emilien ZABETH

In the next corollary, we consider the equivalence relation ∼ on the set
X∨

++, seen as the weight poset of the highest weight category PervIW(Gr,k)
(cf. Subsection 2.2).

Corollary 6.10. — For any γ ∈ X∨
++, denote by γ the equivalence

class of γ for the equivalence relation ∼. Then we have

∀ λ ∈ X∨
++, ℓ · λ ⊂ ℓ · λ.

Proof. — This is a direct consequence of Proposition 6.9 and of the fact
that ∼ is generated by R2 (cf. Section 2). □

Corollary 6.11. — Let λ, µ ∈ X∨
++. We have an equality(

T IW
λ : ∇IW

µ

)
=
(
T IW
ℓ·λ : ∇IW

ℓ·µ
)
.

Proof. — For any γ ∈ X∨
++, let us denote by n(γ) the number of elements

ν ∈ X∨
++ such that ν < γ. We may and will assume that µ ⩽ λ to prove the

desired equality, and proceed by induction on n(ℓ ·µ). Standard arguments
on highest weight categories (and the fact that Verdier duality sends ∆IW

ν ,
resp. T IW

ν , to ∇IW
ν , resp. T IW

ν , for all ν ∈ X∨
++; namely, we use the same

arguments as the one used in [3, Section 6.2]) imply that we have

(6.7)
(
T IW
λ : ∇IW

µ

)
= dimk Hom

(
T IW
λ ,T IW

µ

)
−

∑
ν<µ,ν∈X∨

++

(
T IW
λ : ∇IW

ν

)
·
(
T IW
µ : ∇IW

ν

)
.

Now when n(ℓ · µ) = 0, we get that n(µ) = 0 and so(
T IW
λ : ∇IW

µ

)
= dimk Hom

(
T IW
λ ,T IW

µ

)
= dimk Hom

(
T IW
ℓ·λ ,T IW

ℓ·µ
)

=
(
T IW
ℓ·λ : ∇IW

ℓ·µ
)
,

where the second equality is due to Proposition 6.9. This proves the first
step of the induction. The induction step still follows from using (6.7) and
Proposition 6.9, together with the fact that for any ν ∈ X∨

++ such that
(T IW

ℓ·µ : ∇IW
ν ) ̸= 0, we have that ν ∈ ℓ ·X∨

++ (this is because we must have
ν ∈W□ℓ(ℓ · µ) by the linkage principle). □

6.7. The general case for equivalence relations on fW
g

In this subsection, we apply the equivalence (6.5) and Proposition 6.9 to
finish the study of Section 5 by treating the case of special facets. The ar-
guments that we have used until now do not apply when g is a special facet
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(notice that Corollary 5.27 is false in this case). With good reason: we are
going to see that the set fW

g splits into infinitely many classes when some
component of g is a special facet. As in Subsections 5.4 and 5.5, we are
first going to deal with the case where the root system is irreducible before
generalizing.

Let g ⊂ a1 be a facet, w ∈ fW
g, and recall that if g special, then wg

can be written as wg = {λ} for a unique coweight λ. We will denote by w
the equivalence class of w for ∼g, and define rg(w) to be equal to −1 if g
is not special, and to be the unique (non-negative) integer such that

λ ∈ ℓrg(w)X∨\ℓrg(w)+1X∨, with wg = {λ}

if g is special. For any positive integer r, we also define the group W (r) :=
W0 ⋉ ℓrZR∨, which is a subgroup of W isomorphic to it, with W (0) = W .
Finally, notice that for any λ ∈ X∨ and positive integer r, we have ℓr ·
W□ℓλ = W (r)

□ℓ(ℓr · λ). We start with an easy lemma.

Lemma 6.12. — Let ν ∈ a1∩X∨, g ⊂ a1 be the facet containing ν, w ∈
fW

g and r be a positive integer. If we set λ := w□1ν, then the application
W → X∨, u 7→ u□ℓ(ℓ · ν) induces a bijection(

W (r)wWg

)
∩ fW

g ≃W (r)
□ℓ(ℓ · λ) ∩ X∨

++.

Proof. — Notice that ℓ · λ = w□ℓ(ℓ · ν), so that W (r)
□ℓ(ℓ · λ) = W (r)

w□ℓ(ℓ · ν). The desired isomorphism then follows from the fact that Wg is
the stabilizer of ℓ ·ν for □ℓ, and from the well-known fact that u 7→ u□ℓ(ℓ ·ν)
induces a bijection

fW
g ≃W□ℓ(ℓ · ν) ∩ X∨

++. □

Proposition 6.13. — Assume that R∨ is irreducible. For any facet
g ⊂ a1 and w ∈ fW

g, we have

w =
{
{w} if g is special and char(k) = 0(
W (rg(w)+1)wWG

)
∩ fW

g otherwise.

Proof. — If g is not special, then we have rg(w) = −1 by definition and(
W (rg(w)+1)wWg

)
∩ fW

g = W ∩ fW
g = fW

g,

which does coincide with w thanks to Theorem 5.31. So we assume from now
on that g is a special facet. We will first treat the case where char(k) = ℓ.

Let w, v ∈ fW
g, ν ∈ X∨ ∩ a1 be such that g = {ν}, and put wG = {λ},

vg = {µ}. Notice that w□ℓ(ℓ · ν) = ℓ · λ, v□ℓ(ℓ · ν) = ℓ · µ, and recall that,
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thanks to Proposition 6.8 coupled with (6.2), we have

HomTiltIW (Gr,k)
(
T IW
ℓ·λ ,T IW

ℓ·µ
)
≃ Hom•

ParIW(Fl◦
g,k)(Eg

w, Eg
v ),

which implies that wRgv ⇔ (ℓ · λ)R2(ℓ · µ). Moreover, recall that by the
geometric linkage principle ([30, Theorem 8.5]) we have

∀ γ ∈ X∨
++, (ℓ · λ)R2γ =⇒ γ ∈W□ℓ(ℓ · λ),

so that in particular

(6.8) (ℓ · λ)R2γ =⇒ γ ∈ ℓ · X∨
++.

Therefore, Lemma 6.12 (applied to r = rg(w) + 1) implies that our claim
on w is equivalent to showing that

ℓ · λ = W (rg(w)+1)
□ℓ(ℓ · λ) ∩ X∨

++,

where ℓ · λ denotes the equivalence class of ℓ ·λ for the equivalence relation
∼ on X∨

++.
By definition of rg(w) and rg(v), we know that there exist λ′, µ′ ∈ X∨

++
such that ℓrg(w) · λ′ = λ and ℓrg(v) · µ′ = µ. Assume (without any loss of
generality, up to switching the roles of λ and µ) that rg(v) ⩾ rg(w), so
that Proposition 6.9 yields

(6.9) HomTiltIW (Gr,k)
(
T IW
ℓ·λ ,T IW

ℓ·µ
)

≃ HomTiltIW (Gr,k)

(
T IW
λ′ ,T IW

ℓrg(v)−rg(w)·µ′

)
.

If we denote by g′ ⊂ aℓ the facet (for □ℓ) containing the element of W□ℓλ
′∩

aℓ, then ℓ−1 · g′ is a facet (for □1) contained in a1 which is not special
(because otherwise we could write g′ = {ℓ · λ′′} for some weight λ′′, and
λ′ = w′′

□ℓ(ℓ · λ′′) = ℓ · (w′′
□1λ

′′) for some w′′ ∈ W , contradicting the
definition of rg(w)). So thanks to (6.5) and Theorem 5.31 we get

λ′ = W□ℓλ
′ ∩ X∨

++.

In particular, if rg(v) > rg(w), then we easily see that ℓrg(v)−rg(w) · µ′ /∈
W□ℓλ

′, so the right-hand side in (6.9) is non-zero only if rg(v) = rg(w).
This observation, together with (6.9) and (6.8), allows us to deduce that
ℓrg(w)+1 · λ′ ⊂ ℓrg(w)+1·λ′. The reversed inclusion ℓrg(w)+1·λ′ ⊂ ℓrg(w)+1 · λ′

is obtained by applying Corollary 6.10. We finally get the desired equality:

ℓ · λ = ℓrg(w)+1 · λ′ = ℓrg(w)+1 · λ′

= ℓrg(w)+1 ·W□ℓλ
′ ∩ X∨

++

= W (rg(w)+1)
□ℓ(ℓ · λ) ∩ X∨

++.
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Now we pass to the case char(k) = 0. We want to show that for any
w′ ∈ fW

g such that w′ ̸= w, we have

(6.10) Hom•
Db

IW(Fl◦
G,k)(Eg

w′ , Eg
w) = 0.

We claim that there exists ω ∈ Ω such that ω{0} = g. Indeed, the map
u 7→ u{0} is actually a bijection from Ω to a1∩X∨ thanks to the first point
of the remark in [13, Chapter VI, Section 2.3]. We then have an isomorphism
L+Pg ≃ ω̇L+Gω̇−1, and conjugation by ω̇ yields an isomorphism

Fl◦{0} ≃ Fl◦g .

Since ω̇ belongs to Ω, conjugation by ω̇ preserves Iw+
u , so that we get an

equivalence of categories

(6.11) Db
IW
(
Fl◦g,k

)
≃ Db

IW

(
Fl◦{0},k

)
.

This equivalence implies that we only need to prove (6.10) with g replaced
by {0}. Now, recall that Fl{0} ≃ Gr and let λ, λ′ ∈ X∨

++ be such that
wg = {λ}, w′g = {λ′}. By [12, Remark 3.5], the complex Ew is isomorphic
to ICIW

λ when char(k) = 0 (which denotes the intersection cohomology
complex on Gr associated with λ, cf. Subsection 6.2). Therefore in charac-
teristic zero we have an isomorphism

Hom•
Db

IW

(
Fl◦

{0},k
)(Ew′ , Ew) ≃ Hom•

Db
IW (Gr,k)

(
ICIW

λ′ , ICIW
λ

)
.

But we know from [12, Section 3.2] that we have an equivalence of triangu-
lated categories Db

IW(Gr,k) ≃ Db PervIW(Gr,k), and that PervIW(Gr,k)
is semi-simple when char(k) = 0 thanks to [12, Corollary 3.6]. Therefore
the right-hand side above is zero when λ ̸= λ′ and char(k) = 0, which is
equivalent to w ̸= w′.(14) □

This last result coupled with Proposition 5.18 now enables us to deal
with the case where R∨ splits into irreducible root systems, inducing de-
compositions W = W1× · · · ×Wr and g = g1× · · · ×gr (see the beginning
of Subsection 5.4).

Theorem 6.14. — Assume that char(k) = ℓ. For any facet g ⊂ a1 and
w = (w1, . . . , wr) ∈ fW

g, we have

w =
r∏
i=1

W
(r(wi)+1)
i wiWgi ∩ fWi

gi .

(14) Instead of using the equivalence (6.11), we could have argued by saying that Fl◦g is
a connected component of Gr.
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When char(k) = 0 and r(wi) ⩾ 0 for some i, one replaces the i’th compo-
nent in the above product by {wi}.

7. Applications to representation theory

7.1. Preliminaries on alcoves

Just as in Subsection 5.3, the action •ℓ of W on E defines a hyperplane
arrangement H ′, where the shift by ρ∨ induces a bijection between H ′

and H . We will call a connected component of E\H ′ an alcove for •ℓ, and
a facet contained in the closure of an alcove for •ℓ will be called a facet
for •ℓ; once again shifting by ρ∨ induces a bijection between facets for •ℓ
and facets for □ℓ, and composing this bijection with the dilation by ℓ−1 gives
a bijection with facets for □1. We put Cℓ := aℓ−ρ∨. The bijection between
sets of alcoves allows us to define right and left actions of W on these sets,
together with the Bruhat order ⩽ and the periodic order ⪯, by transport
of structure from the set of alcoves for □1 (or equivalently, by seeing every
alcove for •ℓ, resp. for □ℓ, as a W -translate of Cℓ, resp. of aℓ). Note that
if A,B are two alcoves for •ℓ, then we have A ⪯ B ⇔ A ↑ B, where
the order ↑ is defined in [20, Section 6]: this is an immediate consequence
of [20, Chapter II, Section 6.6, (4)] (which says that ↑ is invariant under
translation) together with [4, Section II, Lemma 10.1] (which implies that
↑ coincides with the Bruhat order inside of C +

0 −ρ∨, and thus with ⪯). For
any alcove C for •ℓ, we define the alcove pC for •ℓ, resp. the integer d(C),
by transport of structure using once again the bijection between alcoves
for •ℓ and □1 (notice that d(C) is then the number of hyperplanes of H ′

separating C from Cℓ).
For any facet h for •ℓ, we will denote by Wh,•ℓ

⊂ W the stabilizer of h
for •ℓ. One can easily check that we have

Wh,•ℓ
= Wh+ρ∨,□ℓ

= Wℓ−1·(h+ρ∨),

where the second and third sets denote stabilizers for □ℓ and □1 respectively.
Let λ ∈ X∨

+ and h ⊂ E be the facet for •ℓ containing λ, which is of the
form

h =
{
µ ∈ E

∣∣∣∣∣ ⟨µ+ ρ∨, α⟩ = ℓ · nα, ∀ α ∈ R0
+(h),

ℓ · (nα − 1) < ⟨µ+ ρ∨, α⟩ < ℓ · nα, ∀ α ∈ R1
+(h)

}
for suitable integers nα and a partition R+ = R0

+(h)⊔R1
+(h). If we let Cλ

be the alcove for •ℓ defined by the integers (nα)α∈R+ , then Cλ is the only
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alcove satisfying

λ ∈ C̃λ :=
{
µ ∈ E

∣∣ ℓ · (nα − 1) < ⟨µ+ ρ∨, α⟩ ⩽ ℓ · nα, ∀ α ∈ R+
}
.

The set C̃λ (which is denoted by pCλ in [20]) is called the upper closure
of Cλ. The alcove Cλ can be characterized as the only alcove containing
h in its closure which is minimal in Wh,•ℓ

•ℓ Cλ for the order ⪯ (cf. [20,
Section 6.11]). Now, let us denote by µ the element of W •ℓ λ contained in
Cℓ, by g′ ⊂ aℓ the facet containing µ+ρ∨ and by w the element of fW

ℓ−1·g′

such that w□ℓ(µ+ ρ∨) = λ+ ρ∨ (cf. the first isomorphism of (6.4)). Then
the alcove A := ρ∨ + Cλ is the only alcove for □ℓ containing λ + ρ∨ in its
closure which is minimal in

Wh+ρ∨,□ℓ
A = Wwg′,□ℓ

A = AWg′,□ℓ

for ⪯. Likewise, the alcove Aw := ℓ−1 · A is the only alcove (for □1) con-
taining ℓ−1 · (h +ρ∨) in its closure which is minimal in AwWg for ⪯, where
g := ℓ−1 ·g′. By definition of the operationpon the set of alcoves for •ℓ, we
have pCλ = ℓ · pAw−ρ∨, and so pCλ− ℓ ·ρ∨ = ℓ · ( pAw−ρ∨)−ρ∨. In particular
(once again by definition of the application d(·) on the set of alcoves for •ℓ),
we have

(7.1) d
(

pCλ − ℓ · ρ∨
)

= d
(

pAw − ρ∨
)
.

7.2. A new proof of Donkin’s Theorem

As an application of the study that was made in the previous sections,
we can give a new proof of the description of blocks of Repk(G∨). Unless
specified otherwise, G is assumed to be a semi-simple algebraic group of
adjoint type over F (so G∨ is simply connected). For any λ ∈ X∨, we define
r(λ) to be the unique non-negative integer such that

λ ∈ ℓr(λ) · X∨\ℓr(λ)+1 · X∨.

If we let λ′ be the W -conjugate (for the action □ℓ) of λ contained in aℓ,
gλ′ ⊂ aℓ be the facet containing λ′, put g := ℓ−1 · gλ′ and let w be the
unique element of fW

g such that w□ℓλ
′ = λ (cf. (6.4)), then one can easily

check that
r(λ) = rg(w) + 1,

where rg(w) is as it was defined in Subsection 6.7.
We take back the setting of the beginning of Subsection 5.4 for the next

statement: since G∨ is semi-simple and simply connected, we get a decom-
position G∨ = G∨

1 ×· · ·×G∨
t into simply connected simple algebraic groups,
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each G∨
i admitting R∨

i as a root system; this decomposition induces a de-
composition of the root system, affine Weyl group and dominant characters
attached to G∨. Moreover, for every i, we will denote by ρ∨

i ∈ X∨
i,+ the half

sum of positive coroots relative to G∨
i and, for any positive integer r, we

will denote by W
(r)
i the subgroup of Wi whose translation part has been

dilated by ℓr (cf. Subsection 6.7 for the precise definition).

Theorem 7.1. — Let µ = (µ1, . . . , µr) ∈ X∨
+ =

∏
iX∨

i,+, and denote
by µ the equivalence class of µ for the equivalence relation ∼ (cf. Section 2)
on X∨

+ (seen as the weight poset of Repk(G∨)). We have

µ =
r∏
i=1

W
(r(µi+ρ∨

i ))
i •ℓ µi ∩ X∨

i,+.

Proof. — Recall that thanks to the geometric Satake equivalence (The-
orem 6.2) and Theorem 6.4, we have an equivalence of highest weight cat-
egories

(7.2) Repk(G∨) ∼−→ PervIW(Gr,k)

sending a tilting module Tµ to the tilting Iwahori–Whittaker perverse sheaf
T IW
λ , where λ := µ + ρ∨. Therefore, proving the claim is equivalent to

showing that for any λ ∈ X∨
++ = X∨

+ + ρ∨ =
∏
i(X∨

i,+ + ρ∨
i ), we have the

equality

(7.3) λ =
r∏
i=1

W
(r(λi))
i □ℓλi ∩ X∨

i,++,

where λ now denotes the equivalence class of λ = (λ1, . . . , λr) for the
equivalence relation ∼ on X∨

++, seen as the weight poset of PervIW(Gr,k).
Denote by λ′ the unique W -conjugate (for the dilated box action □ℓ)

of λ which is contained in aℓ, by gλ′ ⊂ aℓ the facet containing λ′, put
g := ℓ−1 · gλ′ ⊂ a1 and let w the element of fW

g such that w□ℓλ
′ = λ.

Recall that fW
g

□ℓλ
′ = W□ℓλ

′ ∩ X∨
++. By (6.5), we have

(w□ℓλ
′) ∼ (w′

□ℓλ
′)⇐⇒ w ∼g w

′, ∀ w,w′ ∈ fW
g,

and by Proposition 5.18 we have

w ∼g w
′ ⇐⇒ wi ∼gi w

′
i, ∀ i,

where w = (w1, . . . , wr), w′ = (w′
1, . . . , w

′
r).

On the other hand, the linkage principle tells us that

(w□ℓλ
′) ∼ µ =⇒ µ ∈W□ℓλ

′,
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from which we deduce (also using Lemma 6.12) that proving (7.3) is equiv-
alent to proving that

w =
r∏
i=1

W
(r(λi))
i wiWgi ∩ fWi

gi .

But this last equality was proved in Theorem 6.14 (because r(λi) =
rgi(wi) + 1 for all i). □

We can also apply our Corollary 5.33 to give a bound on the length of
a minimum chain linking two weights in the same block. We start with a
lemma.

Lemma 7.2. — Let λ, µ ∈ X∨
+, r ∈ Z⩾0, and put λ′ := ℓr · (λ+ρ∨)−ρ∨,

µ′ := ℓr · (µ+ ρ∨)− ρ∨. We have

(Tλ′ : ∇µ′) = (Tλ : ∇µ).

Proof. — By the geometric Satake equivalence (Theorem 6.2) coupled
with Theorem 6.4, we have an equivalence of highest weight categories

Repk(G∨) ∼−→ PervIW(Gr,k),

sending Tγ to T IW
γ+ρ∨ for every γ ∈ X∨

+. We can thus apply Corollary 6.11:

(Tλ′ : ∇µ′) =
(
T IW
ℓr·(λ+ρ∨) : ∇IW

ℓr·(µ+ρ∨)

)
Corollary 6.11=

(
T IW
λ+ρ∨ ,∇IW

µ+ρ∨

)
= (Tλ : ∇µ). □

Proposition 7.3. — Assume that G∨ is a simple and simply connected
algebraic group over k. Let λ, λ′ be two elements of X∨

+ in the same equiv-
alence class for ∼, and denote by λ̃ (resp. λ̃′) the unique element of X∨

+
which satisfies λ+ ρ∨ = ℓr · (λ̃+ ρ∨) (resp. λ′ + ρ∨ = ℓr · (λ̃′ + ρ∨)), where
r = r(λ+ρ∨) (notice that λ = λ̃ when r = 0). Also denote by Cλ̃ (resp. Cλ̃′)
the alcove containing λ̃ (resp. λ̃′) in its upper closure. Then there exists a
chain of dominant characters

λs = λ, λs−1, . . . , λ0 = λ′

such that, for all i ∈ [[0, s− 1]], there exists an indecomposable G∨-module
Mi satisfying

[Mi : Lλi ] ̸= 0 and [Mi : Lλi+1 ] ̸= 0

and such that

s ⩽ 2 + d
(

pC λ̃ − ℓ · ρ
∨
)

+ d
(

pC λ̃′ − ℓ · ρ∨
)
.
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Proof. — Denote by µ the W -conjugate (for •ℓ) of λ which is included
in Cℓ. We will first deal with the case where r = 0, which means that the
facets (for □ℓ) containing λ + ρ∨ and λ′ + ρ∨ are not special (notice that,
since λ and λ′ are in the same equivalence class, we must have r(λ+ ρ∨) =
r(λ′ + ρ∨) thanks to Theorem 7.1).

We denote by gµ ⊂ aℓ the facet containing µ + ρ∨, put g := ℓ−1 · gµ
and let w,w′ be the elements of fW

g satisfying w□ℓ(µ + ρ∨) = λ + ρ∨,
w′

□ℓ(µ+ρ∨) = λ′ +ρ∨. The facet g for □1 is a non-special facet included in
the closure of a1. Let us also denote by Aw, resp. Aw′ , the alcove containing
wg, resp. w′g, in its closure and which is minimal in AwWg, resp. Aw′Wg,
for the order ⪯. Thus, we can apply Corollary 5.33, and pick a chain of
elements of fW

g

ws = w,ws−1, . . . , w0 = w′

as in this corollary, with s ⩽ 2 + d( pAw − ρ∨) + d( pAw′ − ρ∨). Thanks to the
equation (7.1), we have that d( pAw−ρ∨) = d( pCλ−ℓ ·ρ∨) and d( pAw′−ρ∨) =
d( pCλ′ − ℓ · ρ∨), so that s is bounded by the desired integer. This same
corollary tells us that for all i ∈ [[0, s−1]], there exists an element ui ∈ fW

g

satisfying
nwi,ui(1) ̸= 0 and nwi+1,ui(1) ̸= 0.

By Proposition 4.5, we can replace n with ℓn in the above, so that the
character formula of tilting modules given in [30, Theorem 8.9] yields

(Tui•ℓµ : ∇wi•ℓµ) ̸= 0 and
(
Tui•ℓµ : ∇wi+1•ℓµ

)
̸= 0,

which implies that

[Tui•ℓµ : Lwi•ℓµ] ̸= 0 and [Tui•ℓµ : Lwi+1•ℓµ] ̸= 0.

So we get the result by putting λi = wi •ℓ µ and Mi = Tui•ℓµ.
Now we assume that r > 0. Since r(λ̃+ ρ) = r(λ̃′ + ρ) = 0, we can apply

the previous step and find two sequences of dominant characters (λ̃i), (ν̃i)
of the desired length such that λ̃s = λ̃, λ̃0 = λ̃′ and(

Tν̃i : ∇λ̃i

)
̸= 0 and

(
Tν̃i : ∇λ̃i+1

)
̸= 0.

By Lemma 7.2, we see that if we put νi := ℓr · (ν̃i + ρ) − ρ and λi :=
ℓr · (λ̃i + ρ)− ρ, we get:

(Tνi : ∇λi) =
(
Tν̃i : ∇λ̃i

)
̸= 0 and

(
Tνi : ∇λi+1

)
=
(
Tν̃i : ∇λ̃i+1

)
̸= 0,

from which we deduce that

[Tνi
: Lλi

] ̸= 0 and [Tνi
: Lλi+1 ] ̸= 0.

This concludes the proof of Proposition 7.3. □
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We will now use the process described in [20, Section II.7.3] to deduce
from Theorem 7.1 the block decomposition of Repk(G∨) in the general case
where G∨ is a reductive group(15) , starting with a lemma.

Lemma 7.4. — Let H1, H2 be reductive algebraic groups over k, with
T1 ⊂ B1, resp. T2 ⊂ B2, a maximal torus and a Borel subgroup of H1,
resp. of H2, and φ : H1 → H2 a central isogeny such that φ(T1) = T2,
φ(B1)=B2. Denote by X(T1)+ ⊂ X(T1) (resp. X(T2)+ ⊂ X(T2)) the domi-
nant characters and characters associated with T1 ⊂ B1 (resp. T2 ⊂ B2).

Then φ induces an injective morphism X(T2)+ ↪→ X(T1)+, and the blocks
of H2 are the blocks of H1 contained in X(T2)+.

Proof. — Since φ is a central isogeny, the morphism induced on root data
identifies the root systems of H1 and H2, (cf. [20, Section II.1.17]). There-
fore, the injection X(T2) ↪→ X(T1) (induced by φ|T1) induces an injection
X(T2)+ ↪→ X(T1)+. On the other hand, pulling back by φ induces a fully-
faithful functor φ∗ : Repk(H2) → Repk(H1), which sends an indecompos-
able tilting module of highest weight λ to the indecomposable tilting mod-
ule of same highest weight (cf. [20, Section E.7]), and such that there exists
no non-zero morphism between an indecomposable tilting module in the
essential image of φ∗ and an indecomposable tilting module of Repk(H1)
which is not in this essential image. The conclusion follows easily, thanks
to the description of blocks via tilting modules (cf. Theorem 2.3). □

Corollary 7.5. — Assume that G is a general reductive group. Denote
by DG∨ the derived subgroup of G∨, by T2 the reduced part of the neutral
connected component of the centre of G∨ and let H1, . . . ,Ht be the simply
connected covers of the minimal closed connected normal subgroups of
positive dimension of DG∨. For each i ∈ [[1, t]], also denote by T∨

i the split
maximal torus of Hi determined by the split maximal torus of G∨ which
is Langlands dual to T , by Wi (resp. by X∨

i,+, resp. by ρ∨
i ) the affine Weyl

group (resp. the set of dominant characters of T∨
i determined by R∨

+, resp.
the half-sum of positive roots) associated with Hi, seen as a subgroup of
the affine Weyl group associated with DG∨, and by X(T2) the group of
characters of T2. Then there is a central isogeny

φ : DG∨ × T2 −→ G∨,

(15) We warn the reader that the statement (3) given in [20, Section II.7.3] is wrong,
since one needs to assume the semi-simple group of loc. cit. to be simple for it to be
correct.
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which induces an injection X∨
+ ↪→

∏
iX∨

i,+×X(T2) and such that, for every

λ = (λ1, . . . , λt, λt+1) ∈ X∨
+,

we have

λ =
t∏
i=1

W
(r(λi+ρ∨

i ))
i •ℓ λi ∩ X∨

i,+ × {λt+1}.

Proof. — The fact that φ exists follows from [20, Section II.1.18]. More-
over, we know that DG∨ is a semi-simple algebraic group, so that we have
a central isogeny H ′

1×· · ·×H ′
t → DG∨, where H ′

1, . . . ,H
′
t are the minimal

closed normal subgroups of positive dimension of DG∨, which are simple
algebraic groups. We then get a central isogeny H1 × · · · ×Ht → DG∨ by
replacing each H ′

i with its simply connected cover. Therefore, Lemma 7.4
and Theorem 7.1 tell us that for any dominant character λ′ of the maximal
torus T ∩ DG∨ of DG∨, the associated block of Repk(DG∨) is equal to

t∏
i=1

W
(r(λ′

i+ρ∨
i ))

i •ℓ λ′
i ∩ X∨

i,+,

where we see λ′ as the element (λ′
1, . . . , λ

′
t) of

∏
iX∨

i,+ (notice that the above
set is included in the set of dominant characters of T ∩DG∨, because each
Wi is a subgroup of the affine Weyl group associated with DG∨).

Finally, since T2 is a torus (in particular, the category Repk(T2) is semi-
simple), one can easily check that the block of λ in DG∨ × T2 is equal to
the product of blocks associated to (λ1, . . . , λt) and λt+1 in Repk(DG∨)
and Repk(T2) respectively, i.e. to

t∏
i=1

W
(r(λi+ρ∨

i ))
i •ℓ λi ∩ X∨

i,+ × {λt+1}.

This concludes the proof by Lemma 7.4, since the above set is included
in X∨

+. □

Remark 7.6. — We take back the context of Corollary 7.5, and let λ, λ′

be dominant characters in the same equivalence class. The result of Propo-
sition 7.3 can also be generalized to the case where G∨ is a general reductive
group. Indeed, using the central isogeny DG∨ × T2 → G∨, one is reduced
to proving it for DG∨, and since DG∨ is a central isogeny of the product
of t simple subgroups (because DG∨ is semi-simple), we can further re-
duce to the case where G∨ is a product of simply connected simple groups
H1 × · · · ×Ht. Finally, the equality (5.4) of Proposition 5.18 allows us to
bound the length of a minimum chain linking two weights (λ1, . . . , λt) and
(λ′

1, . . . , λ
′
t) in the same block by max{si, i ∈ [[1, t]]}, where si is the bound
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obtained in Proposition 7.3 for the length of a minimum chain linking λi
and λ′

i.

7.3. Block decomposition for a quantum group

In this subsection, G is semi-simple of adjoint type. We assume that
char(k) = 0, and that there exists a primitive ℓth root of unity q in k. More-
over, we assume that ℓ is odd, greater than the Coxeter number of R∨ and
not equal to 3 if R∨ has a component of type G2. We then denote by Uq,k
Lusztig’s quantized enveloping algebra specialized at q and associated with
G∨ (we take the conventions of [20, Appendix H]). The category of finite
dimensional representations of Uq,k, which we will denote by Rep(Uq,k),
has many features in common with the category Rep(G∨

k′), where G∨
k′ de-

notes the Langlands dual group of G over some field k′ of characteristic ℓ.
In particular, Rep(Uq,k) is a highest weight category with weight poset X∨

+;
for any λ ∈ X∨

+, we will denote by Tq(λ), resp. ∇q(λ), the indecomposable
tilting module, resp. the costandard object, with highest weight λ.

We fix a weight λ ∈ Cℓ∩X∨, let g′ be the facet for □ℓ containing λ+ρ∨ and
w,w′ be elements of fW

g, where g := ℓ−1 · g′ (recall the bijections (6.4)).
Most importantly for us, the multiplicity of costandard objects in tilting
objects is known.

Proposition 7.7. — We have

(Tq(w •ℓ λ) : ∇q(w′ •ℓ λ)) = nw′,w(1).

Moreover, we have that (Tq(w •ℓ λ) : ∇q(λ′)) = 0 whenever λ′ /∈W •ℓ λ.

Proof. — The second claim is due to the linkage principle for quantum
groups, see [8, Section 8].

Let us denote by W(0) the subset of W consisting of elements w which
are minimal in wW0, and recall that the action of Iw by left multiplication
on Fl◦a1

, resp. on Gr◦, yields stratifications

(Fl◦a1
)red =

⊔
u∈W

Xu, (Gr◦)red =
⊔

v∈W(0)

Yv,

where Yu := Iw · u̇, resp. Xv := Iw · v̇, is an affine F-space of dimension l(u),
resp. l(v). Moreover, the canonical projection π : Fl◦a1

→ Gr◦ is ind-proper,
Iw-equivariant and satisfies π−1(Yw) =

⊔
z∈W0

Xwz for every w ∈W(0). We
denote by Perv(Iw)(Fl◦a1

,k), resp. Perv(Iw)(Gr◦,k), the category of perverse
sheaves on Fl◦a1

, resp. Gr◦, constant along the Iw-orbits, and by Rep0(Uq,k)
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the Serre subcategory of Rep(Uq,k) generated by the simple objects whose
highest weight belongs to W •ℓ 0 ∩X∨

+ (the fact that Rep0(Uq,k) is truly a
block will follow from Proposition 7.10).

Thanks to [9], we have an equivalence of highest weight categories

Rep0(Uq,k) ≃ Perv(Iw)(Gr◦,k),

sending Tq(x •ℓ 0) (resp. ∇q(y •ℓ 0)) to the indecomposable tilting object
T

(Iw)
x−1 (resp. to the costandard object ∇(Iw)

y−1 ) associated with x, for any
x ∈ fW (resp. y ∈ fW ).(16)

For any u ∈ W , let us denote by Tu ∈ Perv(Iw)(Fl◦a1
,k) the indecom-

posable tilting object associated with u; by [38, Proposition 3.4.1], we have
an isomorphism π!Tw ≃ T (Iw)

w for any w ∈W(0). Therefore, combining [38,
(3.4.1)] with [38, Theorem 5.3.1], we get(

T (Iw)
u : ∇(Iw)

v

)
=
∑
z∈W0

(−1)l(z)hvz,u(1), ∀ u, v ∈W(0),

where (hx,y, x, y ∈W ) denotes the ordinary Kazhdan–Lusztig polynomials
associated with W , as described in [31]. Using [31, Proposition 3.4] together
with the fact that hx,y = hx−1,y−1 for all x, y ∈W (which is a consequence
of the fact that the anti-automorphism i from the proof of [31, Theorem 2.7]
commutes with the involution d : H → H defined in loc. cit.) show that the
right-hand side in the above equation coincides with nv−1,u−1(1). So we get

(Tq(w •ℓ 0) : ∇q(w′ •ℓ 0)) =
(
T

(Iw)
w−1 : ∇(Iw)

w′−1

)
= nw′,w(1),

which proves our claim in the case where λ = 0. Using the second point
of [31, Remark 7.2], one can deduce from this the general case. □

Remark 7.8. — The character formula of Proposition 7.7 was originally
stated as a conjecture in [31, Conjecture 7.1], and proved in [32] for ℓ > 33.

In particular, the second assertion of Proposition 7.7 tells us that µ ⊂
W •ℓ µ for any µ ∈ X∨

+.

Corollary 7.9. — We have an equality

dimk HomRep(Uq,k)
(
Tq(w •ℓ λ), Tq(w′ •ℓ λ)

)
= dimk Hom•

ParIW(Fl◦
g,k)(Eg

w, E
g
w′).

(16) Notice that w 7→ w−1 induces a bijection fW ≃ W(0).
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Proof. — Proposition 7.7 and standard arguments (see [3, Section 6.2])
show that we have

(7.4) dimk HomRep(Uq,k)
(
Tq(w•ℓλ), Tq(w′•ℓλ)

)
=

∑
y∈fWg

ny,w(1)·ny,w′(1).

But we also know that

dimk Hom•
Db

IW(Fl◦
g,k)

(
Eg
x ,∇g

y

)
= ny,x(1), ∀ x, y ∈ fW

g

thanks to (4.8) together with Lemma 2.2. So by [21, Proposition 2.6] the
right-hand side in (7.4) coincides with

dimk Hom•
ParIW(Fl◦

g,k)(Eg
w, E

g
w′). □

Therefore, we get a very similar situation as the one in Subsection 6.5:

w •ℓ λ ∼ w′ •ℓ λ⇐⇒ w ∼g w
′.

For any µ ∈ X∨
+, recall the definition of r(µ) from Subsection 7.2, and put

δ(µ) :=
{

1 if r(µ) = 0
0 othewise.

We defineW δ to be equal to W when δ = 1, and to {id} otherwise. The next
result is obtained from Theorem 6.14 in the same way that Theorem 7.1
was, from which we take back the notations.

Proposition 7.10. — Let µ = (µ1, . . . , µr) ∈ X∨
+ =

∏
i X∨

i,+, and de-
note by µ the equivalence class of µ in X∨

+ (seen as the weight poset of
Rep(Uq,k)) for the equivalence relation ∼ from Section 2. We have

µ =
r∏
i=1

W
δ(µi+ρ∨

i )
i •ℓ µi ∩ X∨

i,+.

Remarks 7.11.
(1) The proof of the previous proposition does not require Smith–

Treumann theory (because the proof of Theorem 6.14 does not
require it when char(k) = 0).

(2) One can use Corollary 5.33 to give a bound for the length of a min-
imal chain linking two weights in the same block for Rep(Uq,k),
of the same kind as Proposition 7.3.

(3) Another proof of Proposition 7.10 was found in [34] (under the
same assumptions on ℓ). However, the results of loc. cit. use the
proof of Donkin from [15], so it does not allow to give a bound as
in the previous point.
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