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BLOCK DECOMPOSITION VIA THE GEOMETRIC
SATAKE EQUIVALENCE

by Emilien ZABETH

ABSTRACT. — We give a new proof for the description of the blocks in the cat-
egory of representations of a reductive algebraic group G over a field of positive
characteristic £ (originally due to Donkin), by working in the Satake category of
the Langlands dual group and applying Smith—Treumann theory as developed by
Riche and Williamson. On the representation theoretic side, our methods enable
us to give a bound for the length of a minimum chain linking two weights in the
same block, and to give a new proof for the block decomposition of a quantum
group at an £t root of unity.

RESUME. — Nous donnons une nouvelle preuve pour la description des blocs
de la catégorie des représentations d’un groupe algébrique réductif sur un corps
de caractéristique positive ¢ (originellement due & Donkin), en travaillant dans
la catégorie de Satake du groupe dual de Langlands et en appliquant la théorie
de Smith—Treumann telle que développée par Riche et Williamson. Du c6té de la
théorie des représentations, nos méthodes nous permettent de donner une borne
pour la longueur minimale d’une chaine reliant deux poids dans le méme bloc, et
de donner une nouvelle preuve de la décomposition en blocs d’un groupe quantique
A une racine £2™¢ de Punité.

1. Introduction

In this paper, we give a proof for the description of the block decompo-
sition of a reductive algebraic group over a field of prime characteristic ¢
using the geometry of the affine Grassmannian. We apply results from [30],
where Riche and Williamson used and developed Smith—Treumann theory
for sheaves to give a geometric proof of the Linkage principle, which is the
first step towards the block decomposition. Most of our paper is dedicated
to the study of equivalence classes on some subsets of the affine Weyl group.
These equivalence classes will be defined using homomorphisms between

Keywords: Kazhdan—Lusztig polynomials, reductive algebraic groups, perverse sheaves.
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2 Emilien ZABETH

indecomposable parity complexes on some partial affine flag varieties, and
we will show that their description implies the desired description for the
block decomposition. Our methods will moreover allow us to give a bound
for the length of a minimum chain linking two weights in the same block.
Finally, using the fact that some of our techniques work in any character-
istic (for the field of coefficients of our sheaves), we will give a proof for the
description of the block decomposition of a quantum group at an ¢! root
of unity.

In the rest of this introduction, we start by recalling the description of
the blocks for a simply-connected simple algebraic group (due to Donkin),
before giving a brief summary of some key results from [30] and an overview
of our proof.

1.1. The block decomposition of a simply-connected simple
algebraic group

Let G be a simply-connected simple(?) algebraic group over a field k of
prime characteristic ¢, with a split maximal torus and a Borel subgroup
T C B. Let also Ry € SR C X denote the set of positive roots (with
respect to the Borel subgroup BT satisfying BTN B = T) and roots inside
the character lattice of T, and Wy be the Weyl group associated with
(G,T). The category Rep(G) of finite dimensional algebraic G-modules is
a highest weight category, admitting the set of dominant characters X
of T as a weight poset. For each A € X, denote by L) the associated
simple G-module (which is the simple socle of the induced G-module of
highest weight \), and consider the equivalence relation ~ on X generated
by the relation % :

A%’lu <~ Ethl:{ep(G)(LM Lu) 7& 0.

For any A € X, let A € X, / ~ be the associated equivalence class and de-
fine Repy (G) as the Serre subcategory generated by the family (L, u ~ A)
(this coincides with the full subcategory of Rep(G) consisting of G-modules
whose composition factors are of the form L, with p ~ A). The so-called
block decomposition (cf. [20, Lemma 7.1, Part IT]) of Rep(G) is then:

Rep(G) = @ Rep;(G).

AeXy [/~

©) By simple we mean that the root system of G is irreducible.

ANNALES DE L’INSTITUT FOURIER



BLOCK DECOMPOSITION VIA GEOMETRIC SATAKE 3

Remark 1.1. — This formalism also makes sense when char(k) = 0,
in which case the semi-simplicity of the category Rep(G) (cf. [25, The-
orem 22.42]) tells us that A = {\} for every A € X, so that the block
Rep;(G) is just the additive subcategory generated by Ly.

Fix A € X, and denote by p € X the half-sum of the positive roots (this
belongs to X thanks to our assumption that G is simply connected). The
linkage principle (cf. [20, Corollary 6.17]) tells us that

(1.1) ACWeANX,,

where W := W x Z*R is the affine Weyl group associated with G and e, is
the usual /-dilated dot action on X, i.e. we have

wt, e A i=wA+Lp+p)—p

for any A € X, w € Wy and p € Z9R. A non-obvious result is that the
inclusion (1.1) turns out to be an equality when A is not contained in a
special facet of X ®z R (which concerns the majority of weights), i.e. when
A+ p e X\ X. An easy case, which has been treated in [19], is when A
is contained inside of an alcove, which means that (A + p, ) ¢ ¢Z for all «
in the dual root system RY (where {-,-) denotes the usual perfect pairing
between X and the cocharacter lattice XV). The case where (A +p, o) € (Z
for some o € RY (but still with A + p € X\¢ - X) is however much more
involved, and was treated by Donkin in [15].

The inclusion (1.1) is not an equality in general, and the exact description
of the blocks is still due to Donkin (cf. [15]; as we will recall in Remark 1.4
below, the proof uses the case where X is not contained in a special facet):
let 7(A+p) be the smallest integer satisfying \+p € £rOA+2). X\ grd+e)+1.X
and W(A+e) be the affine Weyl group with translation part dilated by
¢7A+P) (cf. Subsection 6.7 for the precise definition), then we have:

j\ - W(T()\er)) oy )\ n X+.

Remark 1.2. — More recently, M. De Visscher gave a shorter proof for
the block decomposition [36]. Several of her ideas play a key role in our
proof. Her proof requires some restrictions on ¢ and R; we circumvent
these restrictions in this paper.

The main goal of this article is to give a proof of this result by working in
the setting of constructible sheaves via the geometric Satake equivalence.
As we will see in the end (cf. Subsection 7.2), one can deduce from this case
the block decomposition for a general reductive group (this description was
known, but not explicitly written down in [15]).

TOME 0 (0), FASCICULE 0



4 Emilien ZABETH
1.2. A geometric proof of the linkage principle

Let F be an algebraically closed field of prime characteristic p # ¢, and G
be the Langlands dual group of G over F (in the main body of the text, we
will change the notation and replace G with GV). The affine grassmannian
Gr is an ind-scheme over [F, which can be defined as the fppf-quotient of the
loop group ind-scheme LG (representing the functor R — G(R((z))), where
z is an indeterminate) by the positive loop group scheme LG (representing
the functor R — G(R[z])). The geometric Satake equivalence (cf. [26]),
asserts that there is an equivalence of monoidal categories

(Pervy+(Gr, k), x) — (Rep(G), ®x),

where the left-hand side denotes the Satake category (equipped with a
convolution product), consisting of perverse (étale) sheaves on the affine
Grassmannian Gr, with coefficients in k and which respect an equivariance
condition for the left action of the positive loop group LTG on Gr.

In [30], Riche and Williamson managed to give a new proof of the linkage
principle by working in Pervy+g(Gr, k). Moreover, their methods allowed
them to give a new character formula for tilting objects (valid in all char-
acteristics), which involves certain ¢-Kazhdan-TLusztig polynomials. This
seems to be the first instance of the geometric Satake equivalence being
able to bring us some knowledge on the combinatorics of the category
Rep(G) in positive characteristic. Their proof applies Treumann’s “Smith
theory for sheaves” to the Iwahori-Whittaker incarnation of the Satake
category, which is a highest weight category Pervzyy (Gr, k) with® weight
poset X4 := p+ X admitting an equivalence of highest weight categories

(1.2) Pervy+q(Gr, k) — Pervzyy (Gr, k).

This equivalence, which comes from [12], sends an indecomposable tilting
object associated with A € X to the indecomposable tilting object asso-

. . . IW
ciated with A + p, which we denote by 9/\+p.

Remark 1.3. — Smith—Treumann theory originates in the work of Smith
in the 1930’s concerning the cohomology of topological spaces with co-
efficients in Z/¢Z, and was more recently revisited by Treumann in the
setting of constructible sheaves ([35]). The fact that the latter results can
be applied to the theory of parity sheaves was first pointed out by Leslie—
Lonergan in [23]. See [30, Section 1.5] for more comments.

th

(2) One needs to assume that there exists a primitive p'® roots of 1 in k to define

PeTVIW (GI‘, 1() .

ANNALES DE L’INSTITUT FOURIER



BLOCK DECOMPOSITION VIA GEOMETRIC SATAKE 5

Let j1y denote the F-group scheme of /** root of unity, (Gr)* be the fixed
points for the action of py C Gy, on Gr by rescaling the indeterminate, and
put

ar={peX®R:0< (u,a") <l VaecR}
The set ay is called the fundamental alcove, and its closure is a fundamental
domain for the ¢-dilated “box” action o, of W on X ®7 R, defined by

wt, oA == w(A + L)

for any A € X®z R, w € Wy and p € ZR. Notice that, for any A € X @z R
and w € W, we have

(1.3) w ep (A — p) = woeA — p.

One of the main ingredients used in [30] is the decomposition into connected
components
(Gr)H = |_| Fléc;,
AeanX
where Fléi denotes the identity component in the partial affine flag variety
associated with the facet gy C @; containing A (cf. [30, Proposition 4.7]).
This partial affine flag variety is an ind-scheme defined as the fppf-quotient
of the loop group ind-scheme L,G representing the functor R ~— G(R((z%)))
by a positive loop group scheme L] Pg, , representing R — Pg, (R[2]) and
associated with the “parahoric” group scheme Fg, arising from Bruhat-Tits
theory. When )\ € ay, one recovers for instance the full affine flag variety
for G and if A = 0, then we get a copy of the affine Grassmannian.
The other main result is the construction of a fully-faithful functor

D Tﬂtzw<Gr, k) — szw((GI‘)uf, k),

from the subcategory of tilting objects of Pervzy (Gr, k) to the so-called
Smith category on (Gr)*¢ which involves a pull-back along the immersion
(Gr)* — Gr followed by passing to a certain Verdier quotient.

As a consequence of the full-faithfulness (and of the fact that both cat-
egories are Krull-Schmidt), ® sends indecomposable objects to indecom-
posable objects. Thus, one can see that for every A\, p € X, 4, the space
HomTiltIW(Gr’k)(%\IW, ZLIW) is non-zero only if the supports of ®( V)
and @(%IW) lie in the same connected component Flé: of (Gr)* for
some 7 € ay N X, and observe that this happens only if \,u € Waopy.
This means that we must have WopA = Wopu, which is equivalent to
Wey(A—p) =W ey (u—p) thanks to (1.3). In view of the equivalence (1.2)
and of the geometric Satake equivalence, this means that we have

Homgep(a)(Ta—p, Tyu—p) # 0= W oy (A —p) = W ey (1 — p),

TOME 0 (0), FASCICULE 0



6 Emilien ZABETH

where T\_, (resp. T),—,) denotes the indecomposable tilting G-module as-
sociated with A — p (resp. u — p). Standard arguments on highest weight
categories (see Theorem 2.3 below) then show that this statement is equiv-
alent to the linkage principle (1.1). Moreover, those same standard argu-
ments and equivalences of categories show that, if we denote by A C X, 4
the equivalence class of A for the equivalence relation on X, induced by
the relation %s:

YRy = Homriiey,y e (Z0Y, Z5V) #0,

then Donkin’s theorem on blocks is equivalent to

A=W xnX, .

1.3. Summary of the proof

In the sequel, we will push this study further to get the full description of
the blocks. Fix A, u € X 4. A first step in this direction was actually made
in an earlier unpublished version of [30]; namely, we have an isomorphism
(cf. Proposition 6.9)

HOmTiltzw(Gnk)(%.IAW ’%;}}/v ) = HomTiltzw(Gr,k)(%IWv%IW)-

This isomorphism enables us to only focus on the case where A € X\/¢- X,
for which we want to show that the inclusion A C Wo,A N X, ¢, provided
by the linkage principle, is an equality. So from now on, let us assume that
r(A) = r(p) = 0, with Woy\ = Woyu; we are thus reduced to showing that
A ~ u. We let v denote the unique element of WoyA N ag.

Remark 1.4. — For any r € Zs; and M € Rep(G), let M!"! denote the
twist of M by the 7" power of the Frobenius endomorphism. This first
step is the analogue of the second step in [36], which uses the fact that the
functor M +— M @ L4r_1)., induces an equivalence of categories from

Rep;(G) to Repys(G), where X' := ({7 —1) - p+£7 - \.
Let g C a; be a facet, Wy C W denote the stabilizer of g for oy,
and Parzyy, (Flg’o, k) denote the additive category of Iwahori-Whittaker-

equivariant parity complexes® on Fléo (cf. Subsection 6.3). The isomor-
phism classes of indecomposable objects of this category are labelled

() In the body of the paper, we will mostly work in the equivalent context where G
is a facet for the box action 07 included in the closure of a; and Fléo replaces the

isomorphic ind-variety FlgjOG.

ANNALES DE L’INSTITUT FOURIER



BLOCK DECOMPOSITION VIA GEOMETRIC SATAKE 7

(up to a shift) by the set
W€ = {w € W : w is minimal in Wyw and maximal in wWg},

and we will denote by Efw the indecomposable parity complex associated

with w. Moreover, the assignment w — woy) induces a bijection (W& =

Woey N X4 4. In this article, we will extensively study the equivalence

relation ~g on (WE generated by the relation Zq:

(1.4) w#cw' < Hom? (FIZ° k) (Eegw,é’lgw/> #£0, VYw,w € ;W8
g ) )

Parzwf

The reason for this interest is that we have an isomorphism

ALY W ~ o 8y v
(1'5) HomTiltIW(Gr,k) (%Dm]v %’Dm) — HomParIWZ (Fléi’vk) (gi,uv 5e,u/>

for all u,u’ € {W®~, proved in [30] and which arises once again from Smith—
Treumann theory (cf. Proposition 6.8). Thus, if we let v and v’ be the
elements of (W& such that voey = A, v'opy = p, we have that

/
A~ = v ~g V.

So we are reduced to proving that the set (W8 consists of a single equiv-
alence class for ~g . The following statement (which is Theorem 5.31) is
the main result of this article.

THEOREM 1.5. — If G C ay is a non-special facet, then {W¢ consists of
a single equivalence class for ~g.

A facet g is called special if it is of the form g = {¢- §} for some 0 € X.
Since 7(A) = 0, the facet g, is non-special, so this theorem implies the
desired result. There might also be some non-special facets g C a; which
do not contain an element of X; this is for instance the case of a;, when
¢ is less than or equal to the Coxeter number of G. So this theorem gives
a more general result than the block decomposition. We will also describe
completely the equivalence classes in {178 in the case where g is a special
facet and R is not irreducible (see Theorem 6.14).

Fix a non-special facet g C a;. By standard considerations on parity
complexes, computing the dimension of the Hom-space on the right-hand
side of (1.5) boils down to computing the dimension of the stalks of Sgw
and Sﬁw,, which are given by evaluating some anti-spherical ¢-Kazhdan—
Lusztig polynomials at 1 (cf. [29, Part III]). As the dimension of the Hom-
space can only increase when passing from char(k) = 0 to char(k) = ¢ > 0,
we will get the following crucial implication (which is our Corollary 4.8):

Vw,w € W8 ny (1) #0 = wZgw',

TOME 0 (0), FASCICULE 0



8 Emilien ZABETH

/ ’LU4 w

(b)

Figure 1.1. Hyperplanes arrangement when RV is of type Cy for (a)
and Ay for (b). The walls of the dominant cone €, (resp. of £- p+%6;")
are represented by thick black lines (resp. dashed lines), each alcove
A; for (i € [0,7]) is gray, each alcove w;opa, is labelled with w;, and
the facets {w;00G,% € [0,7]} are represented by red lines. Notice that
on both of these examples, it sometimes happens that there are two
alcoves A; and A;1 containing a same red faced in their closure for
some ¢, so that we have w; = w;41.

ANNALES DE L’INSTITUT FOURIER



BLOCK DECOMPOSITION VIA GEOMETRIC SATAKE 9

where (ng,,2,y € ¢{WW) denotes the usual anti-spherical Kazhdan-Lusztig
polynomials studied in [31, Theorem 3.1]. This implication allows us to view
our problem as a question of combinatorics for the anti-spherical Kazhdan—
Lusztig polynomials. The proof of Theorem 1.5 then roughly goes into two

steps:
(Step 1)

(Step 2)

Moving away from the walls of the dominant cone. We show that,
for any u € {W®, there exists some 4 € (W# satisfying

Nya(l) #0 and Uoeg C ¢- p—+ET,

where €'+ denotes the closure of the dominant cone (see Proposi-
tion 5.16). This will allow us to only focus on polynomials 7., 4,
with w,w’” € {W# satisfying

w/D€g7 woeg C - P+ %7

over which we have a much better control.

Linking close elements. Let v € {W® be such that vo,g C £-p+ag
and pick w € W8 such that woyg C £- p+ €F. We will prove
that we have w ~g v (in view of the first step, this will conclude
the proof, since any element of ;7#/% will then be in relation with
v). In order to do that, we will let Ay be an alcove such that
wopG C /To,

Ar ::g'p+a€7Ar—1a---aA0

be a sequence of alcoves included in ¢ - p + ‘50+7 where A;41 is
obtained by reflecting A; along one of its walls for every i €
[0,7—1], and denote by w; the element of W satisfying w;n,g C
A; for all i (so wg = w and w, = v)(4). See Figure 1.1 for a
representation of the situation in types C5 and As, where g is a
wall. We will show that we have

Wi ~g Wi—1, V’L'GHO,’I"—].]].

More specifically, we will find an element u; € {#W® such that
Ny, u; (1) # 0 and ny,, 4, (1) # 0 (occasionally we might have
u; = w;—1, but not always).

Remarks 1.6.

(1)

The need for Step 1 is due to the “cancellation effect” occurring
for the anti-spherical Kazhdan—Lusztig polynomials when we are
close to the walls of the dominant chamber, as it was observed

(4) Notice that we don’t necessarily have w;0pa; = A;.

TOME 0 (0), FASCICULE 0



10 Emilien ZABETH

in the similar context of [7] (cf. the introduction and section 9 of
this reference).

(2) The Step 2 will actually be split into two parts: the case where
g is not a point, and the case where g is a point (and still a
non-special facet). The latter uses the theory of “periodic poly-
nomials” (originally due to Lusztig) as displayed in [31], and is
the most involved part of the paper (cf. Subsection 5.5).

(3) These steps were inspired to us by the steps used in [36, Section 2.

(4) We will actually use “geometric” arguments (namely, parity com-
plexes on partial affine flag varieties) to prove some “combinato-
rial” facts concerning the anti-spherical {-Kazhdan—Lusztig poly-
nomials (see Proposition 5.4), which hold in particular for the
ordinary anti-spherical Kazhdan—Lusztig polynomials. However,
we do not yet have an analogous geometric incarnation for the
combinatorics we use concerning the periodic polynomials (cf.
Proposition 5.24), but hope to come back to this question in the
future.

1.4. Consequences

Our new proof of Donkin’s Theorem enables us to give a bound on
the length of a minimum chain linking two weights in the same block for
Rep(G), in the same fashion as [36, Corollary 3.1], but without any restric-
tion on the root system nor on the characteristic of k, see Proposition 7.3.
Such a result was not available via Donkin’s original proof, as his arguments
required going arbitrarily far inside of the dominant cone.

Moreover, our determination of the equivalence classes in { W for ~g also
applies to the case where char(k) = 0, from which we are able to deduce
the block decomposition for a quantum group at an ¢ root of unity in
Subsection 7.3 (this result was originally found in [34]).

1.5. Structure of the paper

After some preliminaries on highest weight categories in Section 2, we re-
call in Section 3 the construction of Iwahori-Whittaker equivariant derived
categories on partial affine flag varieties of the form Fl;, for a facet g C ay.
In particular, we introduce indecomposable parity complexes, and study
the effect of pushforward and pullback of these objects under the canonical

ANNALES DE L’INSTITUT FOURIER



BLOCK DECOMPOSITION VIA GEOMETRIC SATAKE 11

proper morphism g : FI; — FIg (Subsection 4.1). This allows us to intro-
duce and study the equivalence relation ~g on the set (1¥8. Section 5 is the
heart of the paper and is dedicated to the study of the equivalence classes
for ~g. In particular, we apply the plan described above: Step 1 is dealt
with at the end of Subsection 5.3, while Step 2 is taken care of in Subsec-
tion 5.4 (when g is not a point) and Subsection 5.5 (when g is a non-special
point). The case where g is a special facet is done at the end of Section 6,
as we need Smith—Treumann theory to deduce it from the previous cases.
Finally, we harvest the consequences for representation theory in the last
section: block decomposition for reductive groups in Subsection 7.2 and for
quantum groups in Subsection 7.3.
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for helpful discussions and comments. I also want to thank Joel Gibson
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2. Blocks for a highest weight category

In this section, k is any field. The goal of these formal preliminaries
is to introduce two equivalence relations on the weight poset of a highest
weight category. Both relations allow us to give block decompositions of the
category, and we will show that these relations and decompositions are the
same. These results will later be applied in Sections 6 and 7 to categories
of perverse sheaves and representations. We start by briefly recalling some
properties of a highest weight category.

2.1. Recollections on highest weight categories
Let A be a highest weight category over k, with weight poset (A, <)

(cf. [28, Section 3.7] for a detailed treatment of highest weight categories).

TOME 0 (0), FASCICULE 0



12 Emilien ZABETH

In particular, we assume that each object of A has finite length and that
the vector space Hom 4(M, N) is finite dimensional for every M, N € A.
To each s € A corresponds a simple object Lg, a standard object Ay and
a costandard object V. By definition, the association s — Ls induces a
bijection between A and the isomorphism classes of simple objects of A.
For any M € A and s € A, we will denote by [M : L;] the number of times
L, appears in a composition series of M.

We denote by Tilt(.A) the full additive subcategory of A consisting of
tilting objects, i.e. those admitting both a filtration with sub-quotients be-
ing standard objects and a filtration with sub-quotients being costandard
objects. For any s € A and M € Tilt(A), we will denote by (M : V),
resp. (M : A;), the number of times Vg appears in a filtration of M
with costandard, resp. standard, sub-quotients. This number does not de-
pend on the choice of such a filtration, as one can show that it is equal
to dimy Hom 4 (As, M), resp. dimy Hom 4(M, V). Indecomposable tilting
objects are also parameterized (up to isomorphism) by A; we denote by T
the unique indecomposable tilting object such that

[Ts:Ls)=1 and VteA, [Ts:L]#0=1t<s.

We have morphisms L, Ay < T for all s € A. Finally recall that the
canonical functor

(2.1) K° Tilt(A) — Db(A)

is an equivalence of categories (cf. [28, Proposition 7.17]).

2.2. Equivalence relations on A

We are going to consider two equivalence relations on the set A. The first
one, denoted by ~1, is generated by the relation %y, defined by

8%t <= Bxtl(L,, Ly) # 0.

Here, Exti\(B, A) denotes the Ext-group of isomorphism classes of exten-
sions of B by A, for two objects A, B. Recall (cf. [33, Lemma 13.27.6]) that
this coincides with the k-vector space Hom ps(4y(B, A[1]). For all s € A,
we denote by 5 the associated equivalence class and by Az the Serre sub-
category generated by the L;’s, for t € 5.

ANNALES DE L’INSTITUT FOURIER



BLOCK DECOMPOSITION VIA GEOMETRIC SATAKE 13

PROPOSITION 2.1. — The canonical functor
€£> ,4§‘4$.A
SEA/~1

is an equivalence of categories.

Proof. — The full faithfulness comes from the fact that, for each
(M,N) € As x A; with 5 # ¢, we have Hom4 (M, N) = 0. This is ob-
vious when M and N are simple, and can be shown by induction on the
length of these objects in the general case. With this fact and another in-
duction on the length, one can also show using long exact sequences of
cohomology that

(2.2) ExtY (M, N) = 0.

It remains to show that the functor is essentially surjective. We still
proceed by induction on the length of M, the case of simple objects being
obvious. Let N C M and t € A be such that we have a short exact sequence

(2.3) 0—N-S5M-— L —0.

By the induction hypothesis, we have a canonical isomorphism
N ~ @ N,
SEN/~y

with Nz € A; for all 5. Now, let p : N — N; be the canonical projection
and M’ € A be such that we have the following commutative diagram,
with exact rows:

0 N M L 0
JP Jw Jid
0 N; M’ Ly 0.

The morphism ¢ is clearly surjective, and restricting ¢ to M" := @z N5
yields an exact sequence

0— M —M-—M —D0.

Finally, observe that M’, resp. M", belongs to A;, resp. B As, so that
ExtY (M’, M") = 0 thanks to (2.2). Thus, we have M ~ M’ @& M", and
this concludes the proof. O

TOME 0 (0), FASCICULE 0



14 Emilien ZABETH

The existence of a quasi-inverse functor allows us to define projection
functors Q3 : A — Ajz for every 5. We thus have an isomorphism of functors

(2.4) ida~ B Qs
5N/~

where there exists no non-zero morphism between the essential images of
any two distinct functors @5 and Q;. In particular, each Q5 is exact.

The second equivalence relation is denoted ~s. It is generated by the
relation %s:

sHat <= Hom 4 (Ts, Tt) # 0.

For every weight s, we denote by (s) the associated equivalence class and
by Tilt(s)(A) the additive sub-category generated by the family (73)¢c ().
Since any tilting object is a sum of indecomposable tilting objects, it is
easy to see that the canonical functor EB(S)eA/N2 Tilt(5)(A) — Tilt(A) is
an equivalence, so that we can define projection functors m(,y : Tilt(A) —
Tilt(4)(A), inducing an isomorphism of functors

idriig(a) =~ @ T(s)-
(s)EA /s
The 7(4)’s induce endofunctors of the category K® Tilt(A) (that we still
denote by m(,)), and those still induce a decomposition of the identity func-
tor. Conjugating the m,’s with the equivalence (2.1), the obtained functors
(which we still denote by () provide a decomposition

(25) idDb(A) ~ @ T(s)-

(s)eA/~s2
This isomorphism implies that each functor () preserves the sub-cate-
gory A, so we get an isomorphism id 4 ~ EB(S) 7(s)- 1t is also clear that

each 7(,) is an exact functor of the category A and that there is no non-
zero morphism between the essential images of two distinct such functors.

LEMMA 2.2. — Let s € A. For all t € A, we have isomorphisms

roy (L) = {Ls s oum = {

0  otherwise
Proof. — By the decompositions (2.4) and (2.5) and the fact that the ob-
jects Ls and Ty are indecomposable, we know that there exists a unique (t),
resp. a unique 7, such that 7(;)(Ls) # 0, resp. Q7(T) # 0, and we then have
() (Ls) =~ Ls, resp. Qz(Ts) ~ T. By exactness of the projection functors,
we have morphisms

QE(Ls)«_QE(As) — Qa(TS) and ﬂ'(u)(LS)«—TF(u)(AS) — W(u)(TS)

T, ifset

0  otherwise.
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for every u € A. If Qz(Ts) = 0, then Qz(Ls) = 0, so @ # 8. This implies
that 7 = 3. Likewise, if m(,)(Ls) # 0, then 7, (Ts) # 0, so (u) = (s),
whence (t) = (s). O

We have now all the necessary ingredients to prove the following theorem.
THEOREM 2.3. — The relations ~1 and ~9 coincide.

Proof. — Let s,t € A be such that (s) # (¢). By Lemma 2.2, we have
Exty(L¢, L) = Hompo( 4y (L¢, Ls[1]) = Hompo 4y (1) (Le), 7y (Ls[1]))-

As there is no non-zero morphism between the essential images of )
and ), the right-hand side is zero, so t%s. We have thus shown the
implication § =t = (s) = (t).

Conversely, if s,t € A are such that § # ¢, then it follows that

Hom (T3, Ts) ~ Homa(Q;(13), Q5(T5)) = 0
so t#5s, and we have the implication (s) = (t) = 5 =1. O

In the sequel, we will denote by ~ the equivalence relation on A consid-
ered in the previous theorem.

3. Recollections on (Iwahori—-Whittaker) equivariant
derived categories

In this section, we recall the construction of Iwahori—-Whittaker-equiva-
riant derived categories on some partial affine flag varieties arising from
Bruhat—Tits theory. We fix a prime number ¢ # p. Since our sheaves will
be étale, we let k be either a finite field of prime characteristic £ or a finite
extension of Q.

3.1. Notations

From now on, G will denote a semi-simple algebraic group of adjoint type
defined over an algebraically closed field F of characteristic p > 0. Choose
a Borel subgroup B C G and a maximal torus 7' C B, and let R C X
(resp. ) denote the subset of roots (resp. positive roots with respect to
the opposite Borel subgroup of B with respect to T') inside the group of
characters of T'. Each root « defines a subgroup U, C G isomorphic to the
additive group G,, and the subgroup generated by the U,’s, for o € SR
(resp. for « € —R,), is a unipotent group which we will denote by U™

TOME 0 (0), FASCICULE 0



16 Emilien ZABETH

(resp. U). We will also denote by RY C XV the set of coroots inside the
group of cocharacters of T and by XY (resp. XY ) the set of dominant
(resp. strictly dominant) cocharacters, i.e. those cocharacters which satisfy
(A, @) =0 (resp. (A, ) > 0) for any o € R

Fix an integer n > 1. We will write O,, := F["], K, := F((z")),
O := 01, K := K1 where z is an indeterminate. For any affine F-group
scheme H, we define the functors L} H := R + H(R[2"]) and L, H :
R — H(R((2™))) from F-algebras to groups, which are representable by
a F-group scheme and a F-group ind-scheme respectively. Note that these
definitions also make sense if H is only defined over O,. We will write
LT H, resp. LH, instead of LTH7 resp. L1 H. We will denote by IWI the
inverse image of UT under the evaluation map LTG — G,z — 0.

We assume that there exists a primitive p* root of unity ¢ € k, and
consider the Artin—Schreier map AS : G, — G, determined by the map
of rings # — 2P — z. This morphism is a Galois cover of group Z/pZ,
so determines a continuous group morphism 7(G,,0) — Z/pZ, where
m1(Ga, 0) is the étale fundamental group of G, with geometric base point 0.
The composition of this map with the morphism Z/pZ — k* (induced by ()
yields a continuous representation of the fundamental group, and thus a
local system on G, of rank one. We denote this local system by Lag.

3.2. The affine Weyl group and some Bruhat—Tits theory

We let Ng(T) be the normalizer of T in G. The finite Weyl group as-
sociated with (G, T') will be denoted by Wy := N (T)/T, and we consider
the affine Weyl group

W .= WO X Z%v,
which acts naturally on E := XV ®7 R via the n-dilated “box” action,
defined by
wt,op A i= w(X +nu)
for any A € XV @z R, w € Wy and p € ZRY, where we have denoted by
wt,, the element of the affine Weyl group associated with the couple (w, ut).
The closure a, of the set

a,={AeE|0<(N\a)<n, VaeR}
is a fundamental domain for this action, which stabilizes XV. Thus, a;NXY
is a fundamental domain for the action of W on the set of cocharacters.

Each root a € R defines a reflection s, € W, and we will denote by Sy
the set of simple reflections (i.e. associated with a simple root) of the finite
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Weyl group, which is known to generate Wy. It is also well known (cf. [20,
Section I1.6.3]) that the set of simple reflections

S :={(s,0),s € So} U{(s5,8)},

where 3V runs through the set of largest short roots of the irreducible
components of RV, generates W. Moreover, W is a Coxeter group, with
Coxeter generating system S, for which we will denote by [ : W — Zx the
associated length function.

It will also be useful for us to note that one can extend the translation
action of ZR" to the whole group of cocharacters XV, by putting ¢,0,A :=
A+ npu for every € E, A € XV, and that this extends the action of W
on E to an action of the extended affine Weyl group W= Wy x XV. The
subgroup W C W is normal and one can extend the length function [ to
the whole group W (cf. [5, Section 2.1] for more details), so that we can
define the subgroup

0= {wEW‘l(w)zo},

which acts on W by Coxeter group isomorphisms and induces an isomor-
phism

(3.1) Qx W =W

such that [(ww) = l(ww) = I(w) for all (w,w) € Q& x W.

The action of W on E defines a hyperplane arrangement in E, and
hence a collection of facets (cf. [13, Chapter 5, Section 1.2]). To any facet
g C a,, Bruhat-Tits theory associates a “parahoric group scheme” Pg de-
fined over O, whose generic fiber is isomorphic to G Xgpec(r) Spec(K,,) and
whose group of O,-points coincides with a subgroup of finite index of the
pointwise stabilizer of —g(® for the action of G(K,) on the Bruhat-Tits
building associated with G' Xgpec(r) Spec(Ky,). We fix such a facet g. The
partial affine flag variety associated with g will be denoted by Fl; and
defined as the fppf-quotient L, G/L;} Py, which is an ind-projective ind-
scheme over F (cf. [27] for a detailed exposition on these partial affine flag
varieties). The connected components of FI& are in bijection with the group
XV /ZRY (see [27, Theorem 0.1]), so we will denote by Flz® the connected
component associated with the neutral element. In the sequel, we will apply
these results to the cases where n = £ or n = 1; when n = 1 (which will

(5) We follow the conventions of [30, Section 4] for the facet which Pg(Or) must stabilize.
Note that the authors there defined a,, to be the opposite of our current fundamental
alcove.
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18 Emilien ZABETH

be the case until Section 6), we will write Fl¢g; (resp. Flg) instead of Flé’O
(resp. Flé).

3.3. Parity sheaves on partial affine flag varieties

Let xo : UT — G, be a morphism of F-algebraic groups which restricts
to a non-zero morphism on each subgroup U,, for a a simple root, and
let x : Iw} — G, denote the composition of yo with the evaluation map.
For any Y C Flg which is a locally closed finite union of Iw; -orbits, one
can show (cf. [14, Lemma 3.2]) that the Iw, -action on Y factors through
a quotient group of finite type J such that x factors through x;: J — Gg,
where x; is induced by x; we can then consider the (J, x% Las)-equivariant
derived category of étale k-sheaves Df’,’x; £as (Y5 k). This category is by def-
inition the subcategory of D?(Y, k) consisting of constructible complexes of
étale k-sheaves F such that there exists an isomorphism a*F ~ x5 LagXF,
where a : J x Y — Y is the action map; this definition does not depend
on the choice of J. We then define the category D%W(Flg, k) as a direct
limit of the categories Dg,xf} 245 (Y, k), indexed by finite and closed unions
of IWI -orbits Y which are ordered by inclusion. Notice that, since the tran-
sition maps are push-forwards of closed immersions, they are fully faithful
functors, and one can see this limit as an increasing union of categories.

We now recall the definition and some of the properties of parity com-
plexes on partial affine flag varieties, since those will play a major role
in the sequel. Let Y C Fl; be a finite locally closed union of IWI -orbits.
A complex F € DY,,,(Y,k) is called #-even, resp. l-even, if for any inclusion
j:Y" <Y of an Iw; -orbit Y’, the complex j*F, resp. j'F, is concentrated
in even degrees. One defines similarly *-odd and !-odd complexes and say
that a complex is even, resp. odd, if it is both *-even and !-even, resp. *-odd
and !-odd. A complex is called parity if it is a direct sum of even and odd
complexes.

Since the category D%W (Fl;, k) is defined as a direct limit, it makes sense
to talk about even and odd objects in this category, and we will denote by
ParIW(Flg,k) the additive full subcategory consisting of parity objects.
The general theory of parity complexes (from [21]) allows us to state the
following result.

PROPOSITION 3.1. — Let g C @y be a facet. For each Iw -orbit Y in
Fl; which supports a non-zero Iwahori—Whittaker rank one local system L,

ANNALES DE L’INSTITUT FOURIER



BLOCK DECOMPOSITION VIA GEOMETRIC SATAKE 19

there exists a unique indecomposable parity complex in ParIW(Flg, k) sup-
ported on 'Y whose restriction to Y is isomorphic to £[dim(Y')], and each
indecomposable parity complex is isomorphic to such an object up to a
cohomological shift. Moreover, each object in Parzyy, (Fl;7 k) is isomorphic
to a sum of indecomposable parity complexes.

Remark 3.2. — See Proposition 4.3 below for a characterization of Iw; -
orbits which supports a non-zero Iwahori-Whittaker rank one local system.

4. Parity sheaves on partial affine flag varieties and
equivalence relations

4.1. Pushforward and pullback of indecomposable parity
complexes

Let g C @y be a facet and 7g : Fl; — Flg be the canonical projection.
In this section, we will explain what is the effect of applying the functors
Ty and mg, to the Iwahori-Whittaker-equivariant indecomposable parity
complexes that we described in Proposition 3.1.

Let us first state a lemma which will be needed below. Let (A, <) be
a finite set endowed with a partial order <, admitting a unique minimal
element )y and equipped with a function I : A — Z>( compatible with
the order < (i.e. such that A < p = I(A) < I(n)). Let also (X, (Xx)xen)
be a stratified variety over F. We make the following assumptions on the

stratification:

e for every A € A, X, is an affine space of dimension I(\) over F,
and we have X, = Ucn X

e there exist isomorphisms of F-schemes (which we fix) X ~ X, Xp
A]ZF(/\)#(AO) for every A\ € A;

e there exists a morphism of F-schemes ¢ : X — X, such that

q|x, is induced by the canonical projection on the first component

X, XF A]ZF()‘)#(AO) — X, for every A € A.
LEMMA 4.1. — We have an isomorphism in D%(X,,k):
aky = Py, [-2000) — 100)
AEA

Proof. — The proof is done by induction on the cardinality of A. First
note that the result is trivial when #A = 1, so we assume from now on
that #A > 2. Let A € A be a maximal element for <, so that we have
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an open immersion ¢ : X, < X. Denoting by j the closed immersion
X' := X\X, — X, we get a distinguished triangle

ii'ky — ky — jii'ky RN
to which we can apply the triangulated functor g;:
(4.1) qriri'kx — qkx — quiiikx .

Since q o ¢ is the projection induced by X, xf Afg()‘)_l()‘o) — X, and
i*ky ~ ky,, we have an isomorphism giiji*ky ~ kXAO[*Q(l()‘) —1(Xo))]-
On the other hand, we have j*ky ~ k., and the morphism ¢’ := goj:
X" — X, satisfies ¢'|x, = q|x, for every u # A. Thus, we can apply our
induction hypothesis to the stratified space (X', (X,)u2x) to find that

955"k =~ glky =~ Py, [-200(1) — 1))
JTEN
In particular, we see that qii1i*k y and qij17*kx only have cohomologies in
even degrees, so that the distinguished triangle (4.1) is split (recall that X,
is an affine space, so it only admits cohomology in even degrees). Therefore
we have an isomorphism

akx ~qii'ky ® @iij ky.

This concludes the proof of Lemma 4.1. O

Fix a facet g C ay. We denote by W C W the stabilizer of g for the box
action 01 and put Sg := S N Wy. It is well known that (W, Sg) is a finite
Coxeter system.(® We will denote by wg the element of maximal length in
We, and by W& the set of elements w € W for which w is maximal in the
left coset wWWg. We put wg := wyey (notice that Wy = Wygy). The set of
elements w € W which are minimal in Wyw will be denoted by ¢W, and
we put

fWE =We N, W.

The following well-known result (which is a direct consequence of [5, Lem-
ma 2.2]) will be useful throughout all the rest of this paper.

PROPOSITION 4.2. — Let w € W8. We have the following equivalences

we W = Vre Wy, wreiW.

(6) Note that Wg coincides with the stabilizer of the facet ¢ - g C a; for the dilated box
action Oy of W.
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For any w € W&, we choose a lift w of w in Ng(T)(K) (see [30, Sec-
tion 4.2] for the construction of such a lift), and denote by 2.8 the Iw,: -orbit
in Flg of the image of « under the canonical projection LG(F) — Flg(F).
We then have a stratification
(4.2) (Flg)ea = | | 28,

weWe
of the reduced ind-scheme associated with Fl;7
isomorphic to an affine space over F whose dimension is equal to the length

where each orbit 22 is

of the minimal element in wywWg. All the properties concerning this strat-
ification that we use in the sequel follow from the analogous standard facts
concerning the opposite Iwahori subgroup Iw, := woIw; 1y, cf. [2, Appen-
dix A].

PROPOSITION 4.3. — For any w € W&, the Iw, -orbit 2,8 supports
a non-zero Iwahori—-Whittaker equivariant local system if and only if
w € ¢W, which means that w € {W8.

For any w € (W&, we will denote by L%, resp. £8 € Parzy(Flg, k),
resp. V& € D%W(Flg, k), the rank one Iwahori-Whittaker equivariant local
system, resp. the indecomposable parity complex from Proposition 3.1,
resp. the costandard perverse sheaf, associated with Z.8.

Recall that mg : Flgll — Fl;. is the canonical projection, which is a proper
morphism of ind-schemes, and denote by Ng the length of wg. For any v €
tW, we write 2, (resp. L,, resp. &,, resp. V) instead of 22 (resp. L1,
resp. £21, resp. Va1). For every w € fW® and v € ¢{W, we fix isomorphisms
of F-schemes

(4.3) Ly~ APV G pllvove)

Let w € {WE. It is important to note that mg is a locally trivial fibration,
with w;l(%wc) = uzeWg Zwe, and that for any h € W, the morphism
Tg| Zugn + Zwwgh — Z.§ identifies with the canonical projection on the
first component

Lviogh =~ Lwnog X g — L.

The projection on the first component comes from the identification of
Zww, and Z.8 with an affine space of dimension [(wowwyg) thanks to (4.3);
fix h € Wy, and let us explain the first isomorphism above. For any v €
W, denote by ¥ the image of ¥ under the canonical projection LG(F) —
F13, (F). By construction we have

Lwwgh = Wolwytg - wwgh = wolwy - wowwgh.
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But thanks to our hypothesis that w € W&, we know that wwg is minimal
in wwgWyg, and our hypothesis that w € W implies that wr € (W for
all r € Wy thanks to Proposition 4.2 (in particular this holds when r €
{wg, wgh}); these facts imply that we have

l(wowwgh) = l(wo) + l(wwgh) = l(wo) + l(wwg) + (k) = l(wowwg) +I(R).

From these equalities of lengths and the fact that Iw, - T ~ A]lF(x) for any
x € W, we deduce the first isomorphism below

Iwy, ~onwgthwu - Wowwg X Iwy -h = Twytg S WWg X Iwag - woh,
and hence finally
thoIwy - wowwgh ~ ipIwytbg - Wig X Wolwytig - woh.
The right-hand side corresponds to 2w, X Zwgh-

LEMMA 4.4.

(1) The functors mg and T, send parity complexes to parity com-
plexes.
(2) For any v € W8, we have isomorphisms

e[ Ngl(EF) = & and 7€y =~ @ ES[—2(I(wow) — l(wov))].
weEWg
(3) Let w € (W, and write w = w8h for some w8 € W& h € Wj.
Then we have

gV == VB¢ [l(wgh)] if w® € (W,
Tg«Vy = 0 otherwise.

Proof. — The first (resp. third) point can be proven just as in [2, Propo-
sition A.2| (resp. [2, Lemma A.1]).

Let us prove the second point, for which we will take back most of the
arguments of [2, Lemma A.5]. The second isomorphism will arise while
proving the first one.

We first make the following observation: let us write X := |_|w€Wg Zow
and put g := mg|x, the object ¢*£8 is a rank one Iwahori-Whittaker local
system on X, whose restriction to each orbit 25, coincides with L,,, (recall
vw does belong to W thanks to Proposition 4.2). In particular, ¢*£8 is
indecomposable.

The object m3[Ng](E8) is parity by (1), with 2, open in its support and
its restriction to this stratum coinciding with £,[l(wgv)] (recall that 2, is
of dimension [(wyv) thanks to (4.3)). Therefore we can write

(4.4) m2IN(ER) ~ €, 86,
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for some object G € Parzyy(Fl; k). Since the restriction of 73[Ng](£§)
to X is the indecomposable object ¢*L&[l(wov)], it must be isomorphic to
Ev|x, because the latter is non-zero on 2.

Thus, the base change theorem implies the first isomorphism below

(mexfo)lare = 4.q” LE[H(wov)] ~ gk x @ LE[U(wov)]

(4.5) ~ P LE[-2(1(wow) — (wov))],

weEWg
the second isomorphism is implied by the projection formula (and the fact
that ¢ = ¢« because ¢ is proper), and the third isomorphism is a direct
application of Lemma 4.1. Since Z 8 is open in the support of the parity
complex 7g.&,, we get an isomorphism

(4.6) gl = P E5[-2(U(wow) — l(wov))] &G,
weWyg
for some G' € Parzyy(Flg, k). Applying mg. to (4.4) and using (4.6), we
deduce the following isomorphism of parity complexes:
T ThINGIEE = @D E5[-2(U(wow) — l(wov))] & 7g.G & G-
weWg

Now, for any parity complex £ € Parry(F12, k) and w € ;W& one may

write (following [37]):

o
g7

g|§ff =~ V(g)w Rk Elgua

where V(£),, is a finite-dimensional graded k-vector space (and one can do
likewise for any £ € Parzyy(Fl; ,k) and w € ¢W). From the description
of g as a locally trivial fibration and from the first observation that was
made at the beginning of the proof, we see that

dimy (v(w;[zvg]gg)uw) = dimy(V(£8)y), V¥ (u,w) € (WE x Wy,

where we forget the grading of our vector spaces when taking their dimen-
sion. Moreover, the same arguments that were used to prove (4.5) imply
that

dimy (v(wg*w;[Ng]eg)u) = | Wy - dimy (V(W;[Ng]é'f)u), Ve WE.
Thus we get
dimk<V(7rg*7T;[Ng]5§)u) = dim(V(F)u), Vue WE,

where F := @weWg E8[—2(l(wow) — l(wov))]. We deduce that V(1g.G)u=
V(G =0 for all u € (WS, so that 7g.G~G'~0 and Tge Ty NglES ~ F.
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This also implies that G ~ 0, and therefore we get the desired isomorphism

T [Nel(EF) = Eu. O

4.2. The antispherical module

Let H be the Hecke algebra associated with (W, .S), with standard ba-
sis (Hy,w € W), and denote by N its antispherical module (we fol-
low the notation of [31, Section 3], the antispherical module is denoted
by M#Ph in [30]), with standard basis (N, w € ¢{W) and ¢-canonical ba-
sis (N,,,w € {W). We denote by [Parzyy(F13 ,k)] the split Grothendieck
group of the additive category Parzyy(Fl; , k). We have a canonical iso-

morphism of groups

~

ch: [ParIW (Fl;l,k)} — N
defined by

ch([F]) == Z <Z dimg HomD;W(Flgl X) (F, Vw[n])v"> Ny.
werW \n€Z

The morphism ch sends the indecomposable parity complex &, onto ‘N, .
The ¢-Kazhdan-Lusztig polynomials (‘n, ,,z,y € (W) are defined by the
equality
(4.7) ‘N, = Z Ny yNo.

zceW

It makes sense to extend the definition of these polynomials to the whole
group W, simply by putting an7y = 0 whenever z or y does not belong to
¢W (this consideration will slightly simplify the statement of the first point
of Proposition 5.4). For any objects £, F € Parzyy (Flg, k), we set

Hom.D;W(Flg,k) (&, F) = EBHomD;Wm;,k)(&f[n])

neZ
It follows that we have
£ . .
(4.8) Mgy (1) = dimy HongW(Flgl ) (&y, V).
When ¢ = 0, the ¢-canonical basis coincides with the usual Kazhdan—

Lusztig basis from [31, Theorem 3.1], which is denoted by (ng ., z,y € ¢W)
there, so we have Onw,y = Ny, (this is a consequence of the fact that the
perversely shifted indecomposable parity complexes coincide with the in-
tersection cohomology complexes when £ = 0). We have the following easy
and useful observation.
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ProposiTION 4.5. — Let z,y € ¢{W. For any prime number ¢, we have
Ny (1) 2 nay(1).

Proof. — The arguments are the same as the one used in [6, Lemma 3.4],
replacing tilting objects by indecomposable parity sheaves. O

4.3. Equivalence relations on ;W&

Let g C a7y be a facet. In the sequel, we will consider a relation %z on
the set (W&, defined by

whgw' = Hom;arZW (Fiz k) (E8,E8)) #+0

for any w,w’ € (W&, The equivalence relation on (W& generated by Zg
will be denoted by ~g. The following results will be constantly used.

PROPOSITION 4.6. — Let u,v € ¢W be such that enw,(l) # 0. Then
v%#a, u. Moreover, we get the same conclusion if n,, ,(1) # 0.

Proof. — Recall that, thanks to Proposition 4.5, we have

L T .
nu,v(l) < nu,v(l) = dimy Hongw (Flgl ,k) (gva Vu)v
so that our claim is a direct consequence of [21, Proposition 2.6]. O

The relations Za, and Zg are actually equivalent on (W8,
PROPOSITION 4.7. — Let w,w’ € {WE&. We have wZgw’ iff wa, w'.

Proof. — Using Lemma 2.2, we have

. ~ . * * g
HomD;W (F12, K) (Ewy &) =~ HongW(Flg1 1) (7Tg [Ne]EE, Wg[Ng}c‘:w/)
adjunction

et EB, T EE).

L]
OMpy (Fig k) ( gw’

From Lemma 2.2, we know that wg*wgglgu, is isomorphic to a finite direct
sum of shifts of £%,, so the hom-spaces above are non-zero if and only if
Hombgw(m;,k)(é‘g,gﬁ/) is non-zero. O

Putting together the two previous propositions yields:
COROLLARY 4.8. — Let w,w’ € {W&. We have

N (1) # 0 = wZgw'.
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Remark 4.9. — Define a relation %é on W& by
W' = "Ny (1) # 0.

Then, using Proposition 4.7 together with [21, Proposition 2.6], it is not
difficult to show that the equivalence relation generated by 92’{5 is equal
to ~g.

5. Determination of the equivalence classes

The main goal of this section is to show that, when the root system
RY (or, equivalently, JR) is indecomposable and g C ay is a non-special
facet, the set (W consists of a single equivalence class for ~g (we will
eventually see that the case where the root system is not indecomposable
follows from this first case, see Proposition 5.18). As we will see in the end
(cf. Subsection 6.7), the case where g is a special facet can be deduced
from the non-special case with the help of Smith—Treumann theory, see
Proposition 6.9.

5.1. The regular case

In this short paragraph, we show that the set (W is a single equiva-
lence class for ~,,, i.e. that all the elements of ;W are in relation for ~,, .
Although this case will be included in the more general statement of The-
orem 5.21 (where a; is replaced with a facet g C @y which is not a point),
we give an independent proof here, which is much simpler since many dif-
ficulties do not appear yet.

Remark 5.1. — The result we get in Proposition 5.3 below implies (via
the discussion at the end of Subsection 1.2) that the block associated with
a “regular” dominant weight A € XY (regular means inside of an alcove) is
W e, ANXY (here we see XY as the weight poset of Repy (G")). This last
result was already much simpler to get than the general description of the
block associated with an arbitrary dominant weight, see [19, Section 2.4].

LEMMA 5.2. — Let w € {W. If w # e, then there exists w' < w such
that w' € {W and w'%a, w.
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Proof. — Writing a reduced expression for w, it is easy to see that there
exists an s € S such that ws < w. Let g be the wall fixed by s. Since
w € (W8, Proposition 4.2 implies that ws € (. By Lemma 2.2, we get

Hom.D;W (Flgl :k) (gw’ sz) = Hombgw (F]gl ,k) (nggga sz)
= Hombp, | (ig ) (65> Tae[71] V)
~ Hom; (€5, V) #0

Diyy (Fig.k)
where the second line is obtained by adjunction. So if we put w’ := ws, we

get that n, (1) # 0, and Proposition 4.6 allows us to conclude. O

It is now straightforward to conclude.

PROPOSITION 5.3. — The set (W consists of a single class for the equiv-
alence relation ~a,, .

Proof. — Let w € {W. By the previous lemma and an induction on the
length of w, we can see that w ~4, e. This concludes the proof. O

The proof of the fact that all of the elements of {/W# are in relation when
g C aj is an arbitrary non-special facet will be much more involved. This
is due to the fact that, for an arbitrary w € {W#, there is no obvious choice
of an element w’ < w in (W# such that w’ ~g w. The goal of the next
subsection is to find such relations.

5.2. Some invariance properties of the /-anti-spherical
Kazhdan—Lusztig polynomials

The following result is a generalization of Lemma 5.2.

PROPOSITION 5.4. — Let q be a facet inside ay and w € (W9,

(1) For all w' € {W, we have “nyypu (1) = “ny (1) for all 7 € Wy.
(2) Assume moreover that g C @y is a facet such that q C g. For all
wi, w2 € wWq N W8, we have wy ~g ws.

Proof.

(1). — Let w’ € (W and write w’ = uh, where u is the maximal element
in w' Wy, and h € Wq. We have the following sequence of isomorphisms(”)

(7) Notice that we forget the grading of the vector spaces in those isomorphisms.
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of k-vector spaces for all r € Wy:

Hom}$ gw; vw’r) ~ Hom$ (Fl" k) (WZ[Nq}ggv vw’r)

Dy (1, 1) Dy
adjunction
~ Homz);W (Fi2 X) (€3 (mq)«Vauhr)
L] .
N HomeIW(Flg,k) (£, V) ifue W,
0 otherwise,

where the first and last isomorphisms are consequences of the first and
third point of Lemma 2.2 respectively. Thanks to the definition of the /-
anti-spherical polynomials (see (4.7)), this means that “n,. (1) = 0 for all
7 € Wy when u ¢ (W (which trivially implies that “n, ., (1) = “nyr 0 (1)),
and Ny (1) = 1y (1) = “nyr (1) otherwise.

(2). — First notice that, since w € (W9, we have that wWq C (W
thanks to Proposition 4.2, so that
(5.1) wWg N We cCcWnNWe = W8,

Applying the previous point to w’ = w, we get that nyy (1) = 1y (1) =1
for every r € Wy, and therefore that wZ#gwr if wr € W# (which implies
that wr € {W# by (5.1)) thanks to Corollary 4.8. Thus, we have wZgw;
for ¢ € {1,2}, and we conclude by transitivity that wq ~g ws. O

The goal of the next subsection is to get a precise picture of the geom-
etry of the affine space XV ®z R. By doing so, we will be able to use the
previous relations together with the bijection between ;W& and A;‘ (the
set of dominant facets which are in Wo;g) to show that (1€ consists of a
single class for ~g (when g is not a point).

5.3. Geometry of XV ®z R

In this subsection, we follow the terminology and some of the notations(®)
of both [24, Section 1] and [31, Section 4]. The box action 0; of W on the
affine space £ := X" ®z R defines a set of hyperplanes J# (one could also
work with the dilated box action o, for some n > 1 or with e, cf. the
setting of [24, Section 1]). For any facet p (not necessarily included in ay),
we will denote by W, its stabilizer in W for the box action. We define the
set of strictly dominant elements by

Cr={ e E|(\a)>0, VaeR,}.

(8) The general reference, which is used in [24, Section 1], is [13].
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Recall that the connected components of E\ | Jy¢ ,» H are products of open
simplices called alcoves.(®) An example is

a;={peF|0<(na)<l, YaeR,},

which we call the fundamental alcove. The box action on the set of alcoves
A can be extended to an action of W, in which case the stabilizer of a;
is equal to Q@ = {w € W | I(w) = 0}. Thus, the assignment w > woja;
yields a bijection W ~ W /Q = A, so that any alcove A can be written as
A = woa; for a unique w € W. This bijection W = A allows us to definea
right action of W on A, induced by right multiplication on itself. We may
also define an order < on A, induced by the Bruhat order on W. Thus, for
any s € S and A € A, we will have that A < As if and only if I(w) < I(ws),
where w € W is such that wo;a; = A. Since As is obtained by reflecting
A along its wall which is the W-conjugate of the wall of a; fixed by s, this
means that A < As if and only if the number of hyperplanes separating A
from a; (i.e. the number of hyperplanes H € ¢ such that A and a; are
included in different connected components of E\H) is smaller than the
number of hyperplanes separating As from a; (see [24, Section 1.4]). In
the sequel, we will denote by d(A) the number of hyperplanes separating
A from ay, so that we have d(A) = l(w).

The set of dominant alcoves (i.e. those included in 4;") will be denoted
by AT: we have a bijection (W = AT, w — woa;.

For any facet g C aj, we define Ag := {woig,w € W} and Af :=
{wo1g,w € (W8}, One can show that Ag is exactly the subset of facets
of Ag which are included in %,t. Note that the map w ~ wo;g induces
a bijection between W&, resp. (W&, and Ag, resp. Ag. We will consider
the left action of W on Ag given by wh := woh for any h € Ag. Thus,
if h = uG for some v € WY, then wh = wuG, and the element of W8
corresponding to the facet wh is the maximal element of wuWg. Also note
that, by continuity of the action of W on E, if A is an alcove containing h
in its closure, then wh is the unique element of Az which is contained in
the closure of wA. Let us state and prove the following easy result, which
will be used a lot in the sequel.

PROPOSITION 5.5. — Let h be a facet containing a facet p in its closure
such that p C %, . Then we have h C 6. In particular if g C ay is the

(9) When the root system PRV is irreducible, the alcoves are open simplices. In general,
MY decomposes into a product of irreducible root systems, from which we deduce the
decomposition of any alcove into a product of open simplices (cf. Subsection 5.4).
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facet such that h € Ag, then there exists a unique element w € ¢(W*# such
that wg = h.

Proof. — By definition of 6", any facet is either included in €, or in
E\%;", the latter being a closed subset of E. If h C E\%,", then h C E\%,,
contradicting our assumption on p. Therefore h C <€0+ . The rest of the
proposition follows. O

A special facet will be a zero dimensional facet by which a maximal
number of hyperplanes passes through. An example is the point {0}, and all
the other special facets are translates of this point by elements of XV, i.e. are
of the form {A\} for A € XV (cf.[13, Chapter VI, Section 2, Proposition 3]).
For any special facet v, we will denote by W, the stabilizer of v, which is the
subgroup of W generated by the reflections with respect to the hyperplanes
passing through v. If v = {\}, then W, = t,Wyt_,. We will write wy :=
tywot_»x, which is an element of W,.

LEMMA 5.6. — Let u, v be special facets. Then wywy Is a translation.
Proof. — Write v = {\},u = {u} for some A, x € XV, then we have
WuWy = tuwot_ptaxwol_x = Wolwyul—ptxwol_x
= Wit pt—woptwort—x = tu—rtwo(r—pi)- O

Let v be a special facet, a quarter with vertex v is a connected compo-
nent of
E\ |J H

Hes#
vCH

When v = 0, one such quarter is the dominant cone ‘50"’. For a general v,
we denote by €. the quarter with vertex v which is a translate of CKJ,
and we put €, := wy%," . We will also denote by A}, resp. Ay, the unique
alcove contained in €', resp. in %, , containing v in its closure. We clearly
have Ay = wyAY. Furthermore, let 5#* be the set of hyperplanes H of 7
such that H is a wall of some %, for a special facet v, we define boxes to
be the connected components of E\ | J¢ . H. Each alcove is contained in
a unique box, and we denote by II, the box containing AY. In our context,
if v.={A} for some X € XV, we put II, := Il, and we get

(52) HA:{M€E|O<</L7>\,O¢><1, VO&GSo}.

Remark 5.7. — In [24], Lusztig defines € to be the group generated by
the orthogonal reflections through the hyperplanes of .7, which is seen as
acting on the right on F. In our context, this right action is the left action
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of W =Q on E, and the left action of W on the set of alcoves from [24] is
our right action on A.

PROPOSITION 5.8. — Let H € 7. Then, there exists a unique con-
nected component Ey of E\H that has a non-empty intersection with €."
for any special facet v. Moreover, there exists at least one special facet u
such that 6, N Ey = 0.

Proof. — Let f : E — R be a linear form (where E is seen as a real
vector space with origin 0) and z € XY such that H = z + f~1({0}).
Then the connected components of E\H are E; := z + f~*(R%}) and
Ey ==z + f~1(R"). Since f~1({0}) € o, €;" must be inside f~1(R?})
or f~1(R*).We may assume that ¢;" C f~'(R%). Let y € X and put
v := {y}, so that €, = y + %, . For any u € %", we can find r > 0 big
enough so that f(y —z + ru) > 0 (because f(u) > 0), which implies that

y+rue (y+%0) N (z+ fTHRY)) =€ NE.

So F; has a non-empty intersection with any .. On the other hand,
we have seen that f~1(R*) N %, = 0, which means that E; N €, = 0.
This shows that E; is the only connected component of F\H having the
desired property.

Finally, we want to show that there exists a special facet u such that
€, N E; = . Recall that we have

%0— = ”LU()(g—i_ = —(50+.

Since ;" C f~1(R?%), we must have 6, N f~1(R%) = 0, and therefore
%L_ NnE = 0. O

Let H € 4, then E\H consists of two connected components E
and E};. Thanks to Proposition 5.8, we can set Ej; to be the one con-
nected component that has a non-empty intersection with € for any spe-
cial facet v. Following [31, Section 4] (see also [24, Section 1.5]), we define
a partial order < on A generated by the relations

A=<syA if Ae A He#, SHACE?_},

where sy € W denotes the affine reflection associated with the hyper-
plane H. One can show (cf. the proof of [31, Claim 4.14]) that this partial
order < coincides with the usual Bruhat order < on AT. The following
result will be crucial in the sequel. We let A be an alcove, s € S and H be
the hyperplane containing the wall separating A and As.
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PROPOSITION 5.9. — Assume that A, As € A" and that there exists a
special point v such that wyA and w,As belong to AT. Then A < As if
and only if wyAs < wyA.

Proof. — Since the two orders < and < coincide on AT and As = sy A,
the fact that A < As is equivalent to As C E;}

Because the actions of W on the right and on the left on A commute, the
hyperplane H' := w, 01 H is the one separating w, As from w, A. Using the
fact that wy A, wyAs € AT, we see that wyAs < wy A if and only if w, A is
included in E;},. Thus, to conclude it is enough to show that EIJ:(’ = wy By,
or equivalently that £y, = vafI. Notice that since wVEIJ} is connected, it
equals either EE, or E;,. By Proposition 5.8, we can find a special facet u
such that €,; N E; = 0. Then we have wy6,;, NwyE;, = (. But

- _ +
WyCy = WyWyEy,

is of the
form €, for some special facet w. So €% Nwy E}; = 0, which implies that
E = wE}. O

and since wywy, is a translation (thanks to Lemma 5.6), wy %,

Following [31, Section 4, Section 5], we consider the bijection A — A,
A~ A. This bijection sends an alcove A inside of Il to the alcove wy A.
We will denote by A — A the inverse of this bijection. For any alcove
B C II := Iy, we see that B = woB. For a general alcove A, write it
uniquely as A = XA + B for some A € XV, B C II, and it follows that
A/ = A+ woB.

LEMMA 5.10. — Let A € A and write A= A+ B, with A € XV, B C IL.
We have A = X + ta,vwoB.

Proof. — For all y € I, we have that wo(u—p") € II. Thus, wo(—p" +B)
C I for any alcove B C II, so if we set C := p¥ + wo(—p" + B), we get
C = B and so

é =C= 2p\/ 4+ woeB = tzpv’woB.

The general result follows easily, since any alcove A can be written uniquely
as A= \+ B, with A € XV, B C1I, and A = \+ B. O

PROPOSITION 5.11. — Let A€ AT. Then A C p¥ + %

Proof. — Let A € AT, and write A = A + B, for A € XV, B C II. Since
Ais in AT, we must have A € €+ NXY. Indeed, if p € Il and A € XV\%'t,
then one sees using (5.2) that A\ + u ¢ 6.
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Thus, it is enough to prove the proposition for A C II. But in this case,
we have by Lemma 5.10

A= topvwod = p¥ +wo(—p” + A).
Since wo(—p"¥ + A) C II, this concludes the proof. O

We also need to define a bijection 4g — Ag,h — h for an arbitrary
facet g C az. One can do it as follows: let h € Az and A € A be such that
h C Aand A < Aw for all w € Wy (such an alcove exists and is unique,
thanks to the existence and unicity of a minimal element in a coset of a
parabolic subgroup in a Coxeter group), then we define h as the element

A~

of Ag which sits inside the closure of A.

COROLLARY 5.12. — For any h € A}, we have hcp'+%+.

Proof. — By definition, h sits inside the closure of some alcove A. No-
tice that, since A contains h in its closure, we must have A € AT thanks
to Proposition 5.5. Thus A C oY + CKOJF by Proposition 5.11, so h C
pV +ET. O

Corollary 5.12 implies in particular that the operation h — h preser-
ves Af.

PROPOSITION 5.13. — Let A € AT be such that Ar > A and Ar € A
for all r € Wg. Then, for all r € Wg, we have Ar < A and Ar € A*.

Proof. — Let v be the special point such that Ae II,. First notice that
A is included in pY + %(f thanks to Proposition 5.11. Thus, if we denote
by h the facet of Ag included in the closure of /1, we see that h C p¥ + %+
and that h is included in the closure of all the alcoves of ﬁWg, so that they
all belong to AT thanks to Proposition 5.5. Since A = wvﬁ, we can apply
Proposition 5.9 to get that As < Aforall s € Sg. From the general theory
of maximal elements in cosets of parabolic subgroups in Coxeter groups,
this implies that Aw < Aforallw e We. O

The anti-spherical ¢-Kazhdan—Lusztig polynomial “n, , will also be de-
noted by ZnB7A for the alcoves B, A corresponding to z,y € ¢W. The fol-
lowing result will be of great importance for us.

LEMMA 5.14. — For any dominant alcove A € A", we haven , ;(1) = 1.

Proof. — This is an immediate consequence of [31, Theorem 5.1] (see
also [31, Section 7]). O

LEMMA 5.15. — Let A € AT and g C ay be a facet such that Ar > A
and Ar € A" for all r € Wg. Then we have Ny, 4(1) =1 for all v € We.
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Proof. — By Lemma 5.14, we have that n, ;(1) = 1 and, by Proposi-
tion 5.4 (applied to the elements w € (W&, w’ € (W such that w'a, = A and

wa, = A) combined with Proposition 5.13, we deduce that n,, 4(1) =1
for all » € Wg. O

The following proposition will allow us to only consider facets which are
far inside of the dominant cone.

PROPOSITION 5.16. — Let g C a1 be a facet and h € Af. Denote by u,

resp. U, the elements of W& corresponding to h, resp. h (i.e. such that
ug = h, resp. ug = h). Then we have n, (1) # 0, so that
. g
HomD%W(Fl;’k) (gg,gﬂ) 7é 0.

Proof. — Recall that wg is the element of maximal length in Wy, and
set A := uwgay. Notice that A € AT thanks to Proposition 4.2 and, by
construction, A is the alcove such that h ¢ A, Ar € AT and A4 < Ar for
every r € Wy (in particular Ar < A for all r € Wy), so that h c A By
Lemma 5.15, we have that nAwg,A(l) =1 # 0, and Aw < A for every

w € Wy thanks to Proposition 5.13. In particular we deduce that wa, = A.
Thanks to Proposition 4.6, this implies that

Homb;W (Flgl ,k) (Eu, 571) 7é 0.

By Proposition 4.7, we get the desired result. 0

5.4. Facets which are not points

The root system RV decomposes uniquely into a disjoint union RY =
RY U---URY of irreducible root systems. This decomposition comes with
a decomposition of the affine Weyl group W = W; x - .- x W, (where each
W; is the affine Weyl group associated with SRY) and of the affine space
E = E; x --- x E; (where each E; is associated with RY). Note that one
also has dually a decomposition R = JR; U --- U R; into irreducible root
systems, and an isomorphism G x - - - x G, = G induced by multiplication
from the product of the minimal closed connected normal subgroups of G of
positive dimension over F, each G; admitting 2R; as a root system (cf. [18,
Theorem and Corollary 27.5]). The point for us is that, for every i, the
alcoves determined by the box action of W; on F; are open simplices, and
that each alcove A € A is a product of such alcoves A7 x --- x A;. More
generally, each facet h C A decomposes into a product of facets hy x- - - x hy,
with h; C A; for every i.
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In this subsection we prove that, for any facet g C ay such that each g;
is not a point (where g = g; X --- X g;), the set {/W# is single equivalence
class. We will prove in the next subsection that ¢#¥8 is a single equivalence
class exactly when each g; is a non-special facet. Let us first explain how
we can reduce ourselves to the case where the root system is irreducible;
we start with a technical lemma, where k could be taken to be any field.

LEMMA 5.17. — Let A be a local k-algebra and B be a connected k-
algebra (we do not assume A and B to be commutative). Assume that there
exists a k-algebra morphism A — k and that B is a finite dimensional k-
vector space. Then the ring A ®y B is connected.

Proof. — Denote by m the maximal ideal of A. Since we have a morphism
A — k, we get an injection A/m < k, which is in fact an isomorphism
A/m ~k as A/m is a k-vector space. Therefore we get an isomorphism

A/m®y B~ B,

from which we deduce that A/m ®yx B is a connected ring,.

Thanks to Nakayama’s lemma (cf. [22, Section 2, Proposition 4.2.3]),
a morphism of finitely generated A-modules f : M — N is surjective if
and only if

f®idjm : M/mM — N/mN

is surjective. Since A ®y B is finitely generated over A (because dimy B < 00),
we can apply this last result to any endomorphism of the finitely generated
A-module A ®y B, and deduce that an element e € A @y B is invertible if
and only if its image € under the canonical projection A®yx B — A/m®y B
is invertible.

Let e € A®x B be an idempotent, i.e. an element satisfying e(e — 1) = 0.
Then € € A/m®y B is an idempotent, from which we deduce that & € {1,0}
by connectedness of A/m®y B. If € =1, then e € (A®k B)* thanks to the
previous paragraph, so e(e — 1) =0= e =1. If € = 0, then

e—1l=ée—1=-1€(A/m®g B)*,

from which we deduce once again that e — 1 € (A ®x B)* and thus e = 0.
Therefore any idempotent of A ®y B is trivial, which means that this ring
is connected. 0

For the next result, notice that the decomposition W = Wy x --- x Wy
carries on at the level of parabolic subgroups, so that we have equalities
W& =W:8 x ... x W;8 and (W& = ;W18 x ... x (W8,
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PROPOSITION 5.18. — Let g =g X --- X g be a facet included in ax,
and w = (w1,...,w), w = (wl,...,w;) be elements of {W&. Then we have
(5.3) whgw' = w; B, w;, Vi.

Moreover there is an equality
(5.4) ln’w,w/(l) = Z”uu,w’l(l) X X Z”w7~,w;(1)-

Proof. — The isomorphism G x - - - x G, = G induces an isomorphism
from the product of the partial affine flag varieties Flg , each being relative
to G;, to the partial affine flag variety Fl; relative to GG. This morphism is
equivariant for the action of the product of the Iwahori subgroups IWT X

- x Iw} on the left (where Iw;” = LTG; NTw™ for each 4) and of Iw™ on
the right. Thus, external tensor product yields a functor

F: HDIW (Flg, . k) — D%, (FI2, k),

and one can easily check with the Kiinneth formula that F' sends tuples of
parity complexes to parity complexes.
Next, we claim that we have an isomorphism

F((€8:,... 68)) ~ €8,

w1 we

The two objects above are parity complexes and coincide when restricted
to the stratum 2°8, so we only need to check that the object F'((£8!,...
£8)) is indecomposable, which we will do by showing that its endomor—
phism ring is connected.

We claim that we have the following isomorphism of graded k-vector

spaces
we?

~ H II] gi ¢©8i
® 0 (F1g, )(5w3>gw;)'

Let us briefly explain how to obtain (5.5). Thanks to [1, Proposition 1.4.6)
(the result is stated with sheaves for the analytic topology there, but

(5:5) Homp, (., (85 8- BEE 5g3x-..m§e)

is easily translated for the étale topology), we know that for every F,
GeDY, (Flg, k) we have a natural isomorphism of graded vector spaces

H*(RT'(RHom(F,G))) ~ H*(RHom(F,G))

(5.6) ~ Hom (P )(}-’9)7
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where Hom is the internal hom functor, and H®(—) means the direct sum
of cohomology groups. Thus, we only need to show that there exists an
isomorphism

i
RHom(F, K- -RF,G K- KG,) ~ !glRHom(}"i,Qi)

for every F;,G; € DY, (Flg, k). This fact is proved in [11, Section 4.2.7 (b)]
for constructible complexes.

Next, notice that the k-algebra HomD%W(Flgi K(E8, 852) is local for each
i (because £ is indecomposable), so that

A; = Hom'D;W (Fie, X) (Elgvj_, 55,)

is also a local k-algebra as its degree zero part is local (here we apply [17,
Theorem 3.1]); moreover, restriction to the stratum 278! yields a k-algebra
morphism from A; to k. Therefore we can apply Lemma 5.17 (recall that
a local ring is connected) to deduce that the ring on the right-hand side
of (5.5) is connected. Hence we deduce that the degree zero part of the left-
hand side of (5.5) is connected (applying once again [17, Theorem 3.1]),
proving the claim.

Thus, (5.5) can be rewritten as

t
Homdy (riga (65 €5 = QoMb ey 1 (e2:.e%).

i—
Since a finite tensor product of vector spaces is non-zero if and only if each
vector space appearing in the product is non-zero, this isomorphism finishes
implies the equivalence (5.3).

Now we prove (5.4). First notice that, by compatibility of the *-pushfor-
ward with the external tensor product (cf. [11, Section 4.2.7 (a)]), we get
an isomorphism V&, ~ Vil,l K. X Vili. Next, another use of (5.6) yields
the second isomorphism below:

HOI’HB;W (Fl;,k) (51%, V,Lgu/ )

~ Hom?,,
DZW

t
~ . gi 8i
~ @ HomD%W(Flgi X) <8wi , Vw:) .
1=

Taking the dimensions in this isomorphism yields the desired equality. [

() (€8 B REE VS K- BVE)

w1

Now that we understand how to reduce the study to the case of an
irreducible root system thanks to (5.3), we treat this case in detail. We
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start with the following easy lemma (which does not require R to be
irreducible).

LEMMA 5.19. — Let A be an alcove contained in p¥ + ‘KOJF. Then there
exist alcoves
Ary Arqye Ary Ao
contained in p¥ + ‘504' such that
pv'i‘al:ArgArflg"'gAl<A0:A

and A; is obtained by reflecting A;_1 along one of its walls for each i €
[1,7—1].

Proof. — Since the order < is invariant under translation by p¥ in AT
(because it coincides with the periodic order =), it is equivalent to prove
that for any alcove A contained in €, there exist alcoves (4;)o<i<r con-
tained in %OJF such that (4,, Ag) = (a1, 4), A; < A;—1 and A; is obtained
by reflecting A;_; along one of its walls. This last condition is equivalent to
requiring that A; = A;_1s for some simple reflection s. Now if we let w be
the element of {W such that wa; = A, we know by the proof of Lemma 5.2

that there exists some simple reflection s such that w; := ws < w, with
wy € ¢W, so that we can put A; := wia;. We then conclude by induc-
tion. O

See Figure 1.1 for an illustration of Lemma 5.19 (but notice that one
needs to dilate the affine plane on the picture by £~! to find back the same
setting).

LEMMA 5.20. — Let h € Ag. Pick a facet p C h and consider h’ := vh
with v € Wp. If p C 6, then h and h' belong to .A;‘, and we have
w ~g w', where w,w’ € (W# are such that h = wg and h' = w'g.

Proof. — Since p is inside 6", the same is true for all the facets vh,
with v € W, since those contain p in their closure. In particular h and h’
belong to A; thanks to Proposition 5.5.

Let w € ¢(W#® be such that wg = h. By construction, there exists a facet
q C g such that wq = p. In particular, we get that W, = wWqw™! and,
for any v € Wy, we have

vh = vwg = wrg,

where r € Wy is such that wrw™! = v. Let u € Weg be such that wru is
maximal in wrWg. We still have wrug = h’, and since h' € Ag, we must
have wru € (W&, so w’ = wru, with ru € Wq. Thanks to the second point
of Proposition 5.4, we conclude that w ~g w’ (more precisely, if we let
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w” € {W# be the maximal element in wWq (see Figure 5.1 below), then
we have 1y, (1) # 0 and 1y v (1) # 0). O

We have now enough ingredients to conclude.

THEOREM 5.21. — Assume that R is irreducible and let g C ay be
a facet which is not a point. Then {W?# consists of a single class for the
equivalence relation ~g.

Proof. — We introduce a new notation for this proof: if h,h’ € Ag are
such that

h=wg, h=u'g

for some w,w’ € (W&, then we write h ~g h' if w ~g w’. We want to show
that Ag consists of a single equivalence class for ~g.

Figure 5.1. Lemma 5.20 in type Cy. The black dot is p, while the Wp-
conjugates of h are represented by blue lines, and the red lines are the
other walls fixed by Wp.

By Proposition 5.16, we have h ~g h for any h € Ag and, thanks to
Corollary 5.12, we know that hc pY +%€ . Thus, it is enough to show that
all the elements of Ag lying inside of p¥ + €+ are in relation. For this,
we will show that any facet satisfying this condition is in relation with the
unique representative of its W-orbit in pV + ay.

Pick h inside of p¥+%* and let A C pV+%," be an alcove containing h in
its closure. Let also A,., A,_1,..., A1, Ag := A be alcoves as in Lemma, 5.19,
and denote by s; € S the reflection such that A;s; = A;_1.

Since g is not a point and ay is a simplex (because R is indecompos-
able), the face of the simplex fixed by any s € S (which is the closure of
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the facet fixed by s) must have a nonzero intersection?) with g inside ay.
This means that for any s € S, there exists a facet q C g such that s € Wy

For i € [1,7], denote by q; a facet such that q; C g and s; € W,; for
i € {0,...,r}, denote by w; the element of {W such that w;a; = A;and put
h; := w;g, p; := w;q;. Notice that A;s; = wisiwflAi and that h; C A;.
By construction, we have the following data

p; Ch;, with hp=h and h, Cp"+ay,
h; ;= wisiwi_lhi, Vie[l,r] with wisiwi_l € Wp,.

Since the alcoves A; are inside of p¥ + CKJ‘, the facets p; are inside of %0+
for all . Thus we can apply Lemma 5.20 to get that h; ~g h;_; for every ¢,
and by transitivity h, ~g h. This concludes the proof of Theorem 5.21. [

5.5. Non-special facets which are points

In order to get the statement of Theorem 5.21 for non-special facets
which are points, we need to be able to say more about the anti-spherical
Kazhdan-Lusztig polynomials np 4. For that, we will make use of the com-
binatorial data linking the “periodic” polynomial pp 4 of [31, Remark 4.4]
(which is very closely related to Lusztig’s polynomial Qg 4 from [24]) and
the anti-spherical polynomials.

Recall the partial order < introduced in Subsection 5.3. The following
lemma will be helpful throughout all of this subsection.

LEMMA 5.22. — Let v be a special facet and C be an alcove contained
in €. Then C is maximal in W, C for <.

Proof. — If D € W,C is different from C, then there exists a hyper-
plane H passing through v which separates D from %, (one may take a
well chosen wall of ), so that D C Ey; and D < sy D, with sy D € W, D.
Assume that sy D # C, then sy D is not included in €5 (because C' is the
only alcove of Wy D contained in €,"), so that we can once again find some
alcove Dy € W, D satisfying syD < Dy. Since W, D is a finite set, we
can repeat this process a finite number of times until finding an alcove
D,, € Wy D which is contained in €, and such that D < D,, so that
D,, = C. Therefore C' is the maximal element in W, C for <. O

(10) Recall that, for a positive integer n, an n-simplex A inside of an affine space E of
dimension n is defined as the convex hull of n + 1 vertices (those vertices being n + 1
points not lying on a same hyperplane). For 0 < k < n, a k-face of A is a subset consisting
of the convex hull of k + 1 vertices of A. From these definitions, it is straightforward to
show that an (n — 1)-face of A has a non-empty intersection with any k-face, for k > 1.
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We now recall the definition of the “periodic” module P, which is the
free left Z[v*']-module with basis A, equipped with a structure of right
‘H-module satisfying

As + vA, if A< As

(5.7) VsesS, AC, =
As+v1A, if As < A,

where Cs := Hg + v (these data do define a right action of H thanks
to [31, Lemma 4.1]). One then defines the submodule P° C P as the right
‘H-submodule generated by the elements of the form

E, = Z !B (X + za;), A e XV,
zeWy

Notice that this definition parallels Lusztig’s definition of

6{)\} = Z A

AcA{N\}CcA

from [24, Section 1.7], because the set of alcoves {\+ zaj, z € Wy} is equal
to the set {A € A, {\} C A}.

Recall that a morphism f : M — N of right H-modules is called skew
linear if it satisfies f(zH,) = f(x)(Hy,-1)"t, f(zv) = f(z)v~! for every
x € M,w € W. It can be shown (cf. [31, Theorem 4.3]) that P° admits a
unique H-skew linear involution 6 : P° — P° such that Ey = E, for all
A € XV, and that for all A € A there exists a unique P, € P° which is self
dual with respect to this involution, with P, € A+ > 5 vZ[v]B. The P,
form a Z[v*!]-basis of P°, and the periodic polynomials are defined via the
formula

P,y=Y ppaB.
B
The following result follows quite directly from the constructions, but will
be of great importance for us.

LEMMA 5.23. — Let A € A and v be the special facet such that A C II,.
Then we have

pwc,A(l) =pc,a(l) forall Ce€ A and we Ws.

Proof. — Denote by Py the free left Z-module Z ®z,+1) P, where Z is
seen as a Z[vT!]-module through the map Z[v*!] — Z,v ~ 1, and let
@ : P — P1 be the morphism of Z-modules induced by sending v to 1. In
particular we have

@(P4) = pp.a(1)B.
B
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The left and right actions of W on A endow P; with a structure of left and
right Z[W]-module, and one can check with (5.7) that p(PH,) = ¢(P)w
for every w € W and P € P. In particular, ¢(PH,) belongs to the
right Z[W]-submodule generated by ¢(P), which we denote by ¢(P)Z[W].
From [31, Remark 4.4], we know that pp (1) = Qp.a(1) for every alcoves
A, B, where Qp, 4 is Lusztig’s polynomial from [24]. But D 4 := > 5 Qp aB
belongs to the right H-submodule generated by e, thanks to [24, Theo-
rem 2.15], from which we deduce that ¢(P 4) belongs to eyZ[W]. Now ey,
is invariant under the left action of W5, by construction, but since the left
and right actions of W on P; commute, we get that wP = P for every
P € ey Z[W], concluding the proof. O

For any x € W and A € A, write A = X\ + B for a unique A € XV
and B C II, and put = *x A := zA + B. We will denote by N4 the element
that we denoted by N, in Subsection 3.3, where xa; = A, and we define
(following [31, Proposition 5.2]) the Z[v*1]-linear application

res: P — N,
which sends an alcove A to N4 if A € AT, and to 0 otherwise. Finally, for

any A € A, set

altPy = Y (=1)'@P,, 4.
zeWy

The link between periodic and antispherical polynomials is made explicit
by the following result, which is [31, Theorem 5.3 (1)].

PROPOSITION 5.24. — For any alcove A C p¥ + %, we have
N, =resalt Py.

For any special facet v and alcove A € A such that A C Il, we define

the set
Sa={C|wC=<A, Ywe W}

The next few results will help us utilize Proposition 5.24. More precisely,
our main goal in Proposition 5.28 will be to determine for which alcoves C
one has nc 4 = pc,a, where the alcove A C p¥ + %OJF is fixed. As recalled
in the lemma below, our interest for the set S4 comes from the fact that
it contains the support of P 4.

LEMMA 5.25. — Let A € A and v be the special facet such that A C II,.

(1) We have the implication pg 4 # 0= B € S4.
(2) We have

SA:{wC‘wEWv,CjAandCC‘Kj}.
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(3) Assume that there exists some facet G C aj such that A €
A¥Wy, and that v C x%," for some x € Wy\{id} (this sim-
ply means that v is inside another quarter with vertex {0} than
%57 ). Then we have

DeSs= D¢ p’+%,;.

Proof.

(1). — This is [31, Proposition 4.22].

(2). — Let us write
ng{wC}wEWv,C'jAandCC%j}.

The inclusion S4 C S’ just follows from the fact that any alcove C € A
has a W, conjugate wC inside of €. Conversely, if C' is an alcove such
that C' C €. and C < A, then we have wC =< C for every w € Wy, thanks
to Lemma 5.22, so wC' < A for every w € W,,. This proves the inclusion
S’y C Sa, and concludes the proof of the first point.

(3). — Let C C €' be an alcove such that C' < A.

We claim that C' belongs to AYW,. Since < is invariant under trans-
lations, we can translate everything by —pu, where v = {u}, so that we
are reduced to the case where v = {0}. More precisely, if we denote by
w,, € W the element such that w,a; = A{, by w € Wy the element such
that A = AJw and set w, :=t_,w,, then we get that w,a; = a; and

CA=t_,Ct_JA=t_,(wyayw) =t_,(w,wa)=w,wa;

= (wpww, " war = (w#wwlfl)al.

So now, if we set g’ := w, g, we get the inequality t_,C < w'a;, with w' =
wuww;1 € Wg. Since the alcoves ¢t_,C and w'a; belong to AT (because
they are translates by —pu of alcoves in €,}), we get that t_,C < w'ay, so
that t_,C = w”a; for some w” < w’, from which we easily deduce that
w” € Wy; this means that w” = w,uw,* for some u € W, so

C=t, (w“uwu 1)a1 =1, (w#uw;l)t_ﬂtual

= (wyu) (wﬂlt#)al = (w#u)wﬂlal = wyua; = Afu.

Denote by h the W-conjugate of g contained in /E . In particular, we
get that h belongs to both AJ and C (because C' € A¥ W, thanks to the
previous paragraph), so that C'N E # (). From this and the description of
Sa given in (2), we deduce that for any alcove D € Sy, there exists some
w € Wy such that o

DNwAy #0
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(just write D = wC for some alcove C as above). But wA} C 2%, for
any w € W, (because 2 'wAJ is an alcove containing z~'v C ‘50"’ in
its closure, so that x~'wA$ C ‘ﬁd’ thanks to Proposition 5.5), so we get
ultimately that if an alcove D € S, is contained in €, then D must have
a non-empty intersection with a hyperplane separating €, from 2%;", so
that D is not contained in p¥ + %, O

LEMMA 5.26. — Assume that the root system RV is irreducible. Let A
be a nonzero weight contained in €+ N XY, v be a special facet, C' be an
alcove contained in [[, and put A := X+ C. If AN AY # 0, we must have
C=A7.

Proof. — In order to simplify the notations, we may and will reduce
ourselves to the case where v = {0}. Let us write

C={peE|na—1<{(u,a)<ng VaecR}

for some integers n,. First notice that if o/, € R are such that a < o’

(i.e. & — « is a sum of positive roots), then we must have n, < ng.
Indeed, since C' C ,", we know that {u,a) < (u,a’) for every p € C, so
in particular we get that

na — 1 < {p,a) < (u,d) < ng,y

proving the claim.
Since C' C II, we know that n, = 1 for every a € Sy, and thus n, > 1
for every a € R, . The assumption that A Nay # () implies that we have

ne + (N, ) € {1,2} for every a € R,

Therefore we must have (A, ) € {0,1} for every o € Ry. Since A # 0,
there exists some ag € Sy such that (A, ag) > 0. So let § = ZSO cat € Ry
be the longest root (cf. [13, Chapter 6, Proposition 25], this is where we
need the assumption that R is irreducible). In particular we have ¢, > 1 for
every a € Sy, so that (X, 8) > 0, and thus ng = 1. But for every a € Ry,
we have a < 3, so we get that n, < ng, and finally n, = 1. This means
that C' = ay. O

The following corollary can be visualized on Figure 5.2 below.

COROLLARY 5.27. — Let v be a special facet, g C a3 be a non-special
facet and A € Af Wy be the alcove which is maximal in Ay Wy for <. Then
A belongs to IT,,.

Proof. — Let us first explain why A C %,F. Denote by h’ the element of
Ag which belongs to the closure of AY. We have the inclusion A{ C €,
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so we know that h’ is included in €. If C € A;‘,‘ We is an alcove which
is not included in %}, then there exists a hyperplane H of the boundary
of €7 which contains h’ and separates C' from %}, so we clearly have the
inclusion C C E;, and therefore C' < sgC. Since sy € Wy, the alcove
sgC must belong) to A W,. This shows that the maximal element in
A¥ Wy for < must be contained in €}, whence A C €f.

Now let us show that A C II,. For this we may and will assume until
the end of this proof that fR is irreducible. Assume that this inclusion does
not hold, then because A C 6,5, we can write A = A+ C for some nonzero
weight A\ € €+NXY and some alcove C C II,. But we also have AN AY #10
(both of those sets contain h’), therefore we can apply Lemma 5.26 (here
we use the assumption that 2R is irreducible) to see that C' = A{. So we
are in the following situation:

(5.8) A+ AL € AT Wy,

Let o € XV be such that {u} = v, and denote by w, € W the element such
that wya; = AY. Putting w, := t_,w, and applying t_, to (5.8), we get
that

-1
At wpa; € wya Wy = (w#Wgw“ )w“al,

and, using the fact that w,, fixes the fundamental alcove a;, we obtain
(5.9) A+a; € Wyay, with g :=w,g.

Since w,, € Q (because w,, fixes a;) and g is a non-special facet, g’ is also
a non-special facet(’ included in the closure of the fundamental alcove.
From (5.9) we deduce that g’ C A +az. But A € €+ N XY is nonzero, so
(N, B) =2 1, where 8 € R is the longest root. Since g’ C @y, we have that
(u, B) < 0 for every u € =X+ g’ (because (1, 3) < 1 for all i/ € ay);
therefore the inclusion —\ 4+ g’ C ay is possible only when (u,3) = 0 for
all w € —\+g'. Since o < 8 for all @ € R we get that

0<<u,a><<u,ﬂ>=0, vaem-l-uu’E_A_’_g/

which means that 4 = 0 and so g’ = {\}, contradicting our assumption that
g’ is not a special facet. This concludes the proof of the Corollary 5.27. [

We are now ready to prove our central result.

(11) Indeed, write C = waj for some w € W, then h/ = wg and w™lsgw € Wg, so that
spC = C(w lsgw) € CWg = AT Wg.

(12) Indeed, the action of W (and hence of Q) on E obviously permutes the set of
hyperplanes H, so it also permutes the set of special facets by construction.
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PRrROPOSITION 5.28. — Let g C a3 be a non-special facet, h € Ag be
such that h C p¥ + %+ and B C p¥ + %, be an alcove containing h in its
closure. Let also v be a special facet such that v C B, and A be the alcove
which is maximal in Af Wy for <. Then we have A C Il and

npra(l) =1, VreWs.

Proof. — Let h’ be the element of Ag which is included in A¥. By con-
struction (i.e. because v C p¥ + €T), we have that AT C p¥ + 6, so
that in particular h’ C ‘55“. Thus, applying Proposition 5.5, we know that
all the alcoves of AJWy are contained in A" (because they contain h’ in
their closure), so that the orders < and < coincide in A Wy. Therefore A

is maximal in AWy for <, so is included in II, thanks to Corollary 5.27.
By Lemma 5.24 and because A C pV + %,", we have that

(5.10) > neaNe= Y (1)) "pegares C.
C C

xeWy

Our next goal is to use this formula to show that
ng,a =pc,a forall C C pv +<50+.

For that we will prove that when the alcove C' C pY + 4, is fixed and
x € Wo\{id}, we have pc 2.4 = 0; this will follow from a careful study of
the periodic polynomials.

Fix © € Wy\{id}, and notice that z x A C I, since A C II,. We can
then apply the first point of Lemma 5.25:

PD,xxA 7£ 0= De¢ S{E*A'

But we have that zx A € Af, Wy (because x* A and A, are just translates

of A and AJ respectively, by the same translation of ZRY) and xv C %',
so Lemma 5.25(3) tells us that

D€ Spua =D ¢ p’ +%;.
This fact, combined with (5.10), implies that we have
(5.11) ne,a =pc,a, VCCp’+%6, .
On the other hand, recall the result of Lemma 5.23:
(5.12) puwc,a(l) =po,a(l), VweWs.
Thus, for any alcove C included in p¥ + 6, (5.11) and (5.12) yield
(5.13) nwe.a(l) =nc.a(l), Yw € Wy such that wC C p¥ + %,
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By construction, there exist elements w € Wy,rg € Wg such that B =
wAY and A = Arg, so that B = wArg. Since B C p¥ + %", we can
apply (5.13) to get that

np.a(l) = narya(l).

Finally, since A is maximal in AW, for <, we can apply successively the
first point of Proposition 5.4 (where the facet q from this proposition is
our current g, and where the elements w € (W8, w’ € (W are such that
wa; = A and w'a; = B) to obtain

npra(l) =npa(l) =nary,a(l) =naga(l) =1, VreWs. O

See Figure 5.2 for an illustration of the setting of the previous Proposi-
tion.

Figure 5.2. Proposition 5.28 in type Cs. The black dot is v and the
thick black lines represent the affine hyperplanes fixed by the reflec-
tions in Wy,. The red dots are the W-conjugates of h, and the set of
gray alcoves represents {Br,r € Wg}.

Remark 5.29. — Keep the notations of the previous proposition. By posi-
tivity of the coefficients of the anti-spherical Kazdhan—Lusztig polynomials,
the fact that np, 4(1) = 1 for all » € W, means that the polynomial np, 4
is always a non-zero monomial.

COROLLARY 5.30. — Let g C @j be a non-special facet, h € Al be
such that h C p¥ + %+, B C p¥ + %OJF be an alcove such that h C B, and
let v C p¥ 4+ €7 be a special facet such that v C B. If we let u € Wy, be
such that B’ := uB is included in p¥ 4+ €+ and denote by h’ the element
of Ag included in B’, then we have w' ~g w, where w',w € {W# are such
that h = wg and h/ = w'g.
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Proof. — Denote by A the alcove which is maximal in A Wy for <, and
by h” the element of Ag included in A. Recall that A C II, thanks to
Proposition 5.28, so that in particular h” € AZ. So if we let w” be the
element of 1€ which satisfies w”’g = h” and r € Wy be the element such
that Br is maximal in BWy for < (so that wa; = Br and w”a; = A), then
Proposition 5.28 tells us that

nB'r‘,A(]-) = ]-v

from which we deduce that w ~g w” thanks to Corollary 4.8. The same
reasoning (considering this time the alcove B’ containing both h’ and v in
its closure) shows that w’ ~g w”, so finally w ~g w’" by transitivity. O

We can finally complete the proof of Theorem 5.21.

THEOREM 5.31. — Assume that RY is irreducible and let g C ay be a
non-special facet. Then {W# consists of a single class for the equivalence
relation ~g.

Proof. — Thanks to Theorem 5.21, we may and will assume that g is
a point. With the notation of the proof of Theorem 5.21, recall that we
want to show that .A; consists of a single equivalence class for ~g. Also
recall from the proof of Theorem 5.21 that it is enough to show that all the
elements of Ag lying inside of p¥ 4+ €+ are in relation.

Pick h inside of p¥ 4%+ and let A C pY+%;" be an alcove containing h in
its closure. Let also A,, A, _1, ..., A1, Ag :== A be alcoves as in Lemma 5.19,
and denote by s; € S the reflection such that A;s; = A;_1.

Since R is irreducible, there exists a unique simple reflection o € S which
does not belong to the finite Weyl group Wy. Moreover, because ay is a
simplex, there is only one facet inside a7 which is a point and which is not
included in the hyperplane fixed by o: this is the special facet {0}. Thus,
since g is not special, it must be included in the wall fixed by o, or in other
words we have o € W.

For i € [0, ...,r], denote by w; the element of {W such that w;a; = A;
and put h; := w;g. Notice that A;s; = wisiwflAi and that h; C A;. By
construction, we also have

h; ; = w;s;w; *hy, Vi€[l,...,r] and hg = h.

Fix i € [1,...,7]. Now, if s; = o, then wisiwfl fixes h;, so that
h; = h; ;. So assume that s; # o, which implies that s; € W, and put
v; := w;{0}. Then we see that v; is a special facet included in A;, which
thus satisfies the inclusion v; C p¥ + €+, with w;s;w; le Wy, . Therefore
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we may apply Corollary 5.30 to see that h; ~g h;_;. By transitivity of the
relation we get h ~g h,., concluding the proof. O

Remark 5.32. — Take back the notations of the previous proof. Corol-
lary 5.30 (when g is a point) and Lemma 5.20 (when g is not a point)
actually allow us to be a bit more precise: for all ¢ € [1,...,r], there exists
an element u; € fW# (which is the maximal element in Wy, w; in Corol-
lary 5.30, and the maximal element in w; Wy, in Lemma 5.20) such that
Ny u; (1) 7 0 and ny, o, (1) # 0.

One of the advantages of our proof is that it gives an explicit way of
linking an element w € ¢{W# to the unique element v of (W& satisfying
vg C p¥ +ay. This allows us to give the following result.

COROLLARY 5.33. — Assume that RV is irreducible. Let g C ay be a
non-special facet and w,w’ be elements of {W# which are in the same equiv-
alence class for ~g. Denote by A, (resp. A,s) the alcove which contains
wg (resp. w'g) in its closure and which is minimal in A,,Wg (resp. Ay W)
for <. Then there exists a positive integer s and a chain of elements of ;W&

We = W, We—1,..., Wy =W
such that, for all i € [0, s — 1], there exists an element u; € fW*® satisfying

N, u; (1) #0  and nwi+1,uf,(1) #0,
and such that
5 < 2+d(21w - pv) +d(ﬁw/ — pv).

Proof. — Denote by v the unique element of {W# such that vg C p¥+ay.
Let us also denote by @ the element of (W& such that wg C A, and
Ay = A\w,Ar,l,...7A,, := p¥ + a; be the alcoves of Lemma 5.19. By
Remark 5.32, we know that there exist elements w;,u; € {WW# such that
(wy, wp) = (v, W) and

w;g C A, Ny, (1) 0 and  ny,,, 0, (1) #0, Vie [0,r—1].

Therefore, the chain w,®w,ws,...,w, = v linking w to v is of length equal
to 1 plus the number of hyperplanes separating Aw from a; + pV, and this
last number is equal to the number of hyperplanes separating ﬁw —pY from
aj, i.e. to d(ﬁw — p¥). Repeating the same process for w’, we find a chain

linking w’ to v of length equal to 1+d(A, —p"), so that the concatenation
of these two chains yields the desired result. O
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6. Smith—Treumann theory and consequences
6.1. Geometric Satake equivalence

The affine Grassmannian Gr associated with G can be defined as the
fppf-quotient LG /LT G, which can be shown to be an ind-projective ind-
scheme over F. In particular, Gr coincides with the partial affine flag variety
Flgoy (cf. Subsection 3.2). For any A € XV, we denote by z* € T(O) the
image of z by A : G, (K) — T(K), and define [\] := 2*L*G. The orbit
L*TG - [N will be denoted X. Using the Cartan decomposition, one can
show that the action of LTG on Gr induces the following equality

(Gr)red: |_| X)w

AEXY

where (Gr);eq is the reduced ind-scheme associated with Gr. Moreover, each
orbit X is a smooth F-scheme of finite type and
)(7)\ = |_| XM
HEA
peXY
is a projective F-scheme, where ;1 < A means as usual that A — p is a sum
of positive coroots.

For any X which is a locally closed finite union of L*G-orbits, one can
show that the LT G-action on X factors through a quotient group of finite
type J; this quotient may and will be chosen so that the kernel of the map
L*G — J is contained in ker(LTG — G). More concretely, one can take
J to be the group representing the functor R — G(R][z]/z"), for a large
enough integer n. We can then consider the J-equivariant derived category
of constructible étale k-sheaves DY (X, k), which does not depend on our
choice of J (see [14, Section 3.3]). We are now allowed to define the category
Db, +(Gr, k) as the direct limit of the categories D% (X, k), indexed by finite
and closed unions of orbits X which are ordered by inclusion and where
the transition maps are given by direct images. This category admits a
canonical perverse t-structure, and we denote by Pervy+g(Gr, k) its heart.

For A € XY, let i* : X\ — Gr denote the inclusion and define

APM =PHO (iMk o [dim(X))]), VP i=PHO(i0ky, [dim(X))]).

The complex Aiph, resp. Vf\ph, is called the standard perverse sheaf, resp
the costandard perverse sheaf attached to A. By construction, there is a
canonical map Af\ph — Viph, and we define the intersection cohomology
complex ICiph associated with A\ as the image of this map. Intersection
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cohomology complexes cover (up to isomorphism) all of the simple objects
of the category Pervy+(Gr, k) when A runs through XY.

PROPOSITION 6.1 ([10, Proposition 12.4]). — The category Pervy+q(Gr,
k) is a highest weight category, with weight poset XY, standard objects
{AP" )X € XY} and costandard objects {V", X € XY }.

The category D%+ (Gr, k) admits a monoidal product %, which restricts
to a monoidal product on Pervy+g(Gr, k). In the following crucial result,
we denote by G the Langlands dual group of G over k, and by Rep, (G")
the category of algebraic finite dimensional k-representations of GV.

THEOREM 6.2 ([26, Theorem 14.1]). — There is an equivalence of mon-
oidal categories

(PervL+G(Gr7k)7*) — (Repk(Gv), ®k)'

Remark 6.3. — Let A € XY. It is well known that the category Repy (G")
also admits a highest weight structure, and we denote by Aj, resp. Vj,
resp. Ly, the standard object, resp. the costandard object, resp. the simple
module, associated with A. Then, the previous equivalence of categories
sends Vf\ph, resp. Af\ph, resp. ICi\ph7 on V,, resp. Ay, resp. Ly (cf. [26,
Proposition 13.1]). We will say that this equivalence is an equivalence of
highest weight categories.

6.2. Iwahori—Whittaker variant

Recall the construction of D4, (Gr, k) from Subsection 3.3. If we denote
by Yy the orbit of [A] under the action of Iw;, then we have a decomposition

(Gr)rea = | | i,
AEXV
where each Y) is a finite dimensional affine space over F. One can show
that an orbit Y) supports a non-zero Iwahori—-Whittaker local system iff A
is strictly dominant, and that in this case there exists exactly one (up to
isomorphism) such local system of rank one on Y, which we will denote
by L3g (here AS stands for Artin-Schreier).

Once again, the category D%W(Gnk) admits a canonical perverse t-
structure, and we will denote by Pervzyy(Gr, k) its heart. Thanks to the
fact that the Iw, -orbits are affine spaces over F, this category of per-
verse sheaves admits a transparent highest weight structure (cf. [12, Corol-
lary 3.6]). Namely, the weight poset is given by XY, and the standard,
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costandard and simple objects associated with some A € XY | are respec-
tively given by

Afw = ]'Aﬁj)is [dim(YX)]’ va = ji‘ﬁgs[dim(Y)\)], IC{W,

where j* : Y\ < Gr is the inclusion, and ICfW is obtained as the image
of the canonical morphism Afw — Vfw. In the sequel, we will denote by
Tiltzyy (Gr, k) the category of tilting objects associated with this highest
weight category, and by ZI" the indecomposable tilting object of highest
weight A € XY .

Although the category D%,,,(Gr, k) is not endowed with a canonical con-
volution product making it a monoidal category, it admits a right action of
the monoidal category D%JrG(Gr, k). The following result was found by the
authors of [12], and gives another incarnation of the category Repy (G").
Note that by our assumptions on G, the element p¥, defined as the half-sum
of positive coroots, belongs to XV.

THEOREM 6.4. — The functor F Vfl/v * F induces an equivalence of
highest weight categories

Pervy+g(Gr,k) — Pervyy(Gr, k).

Remark 6.5. — At this stage, we can note that the action of Gy, on Gr
by rescaling z stabilizes each Ivv;r -orbit. This allows us to consider the loop
rotation equivariant Iwahori-Whittaker derived category of k-sheaves

D%W,Gm(Gr’ k)’

which comes with a natural t-exact forgetful functor to D4,,,(Gr, k) (cf. [30,
Section 5.2]). It is then not difficult to show (cf. [30, Lemma 5.2]) that the
forgetful functor

(6.1) Pervw g, (Gr, k) — Pervzy (Gr, k)

is an equivalence of categories. These considerations will become useful in
Section 6.

6.3. Fixed points of the affine Grassmannian and connected
components

As in Subsection 3.1, we fix an integer n > 1. We denote by u,, the
finite group scheme of n*" roots of unity, which acts on LTG and LG by
rescaling the indeterminate z; in particular, u, acts on Gr. The following
fact, which will only be used with n = ¢, is one of the fundamental tools
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used by the authors of [30] (cf. [30, Proposition 4.7]). For any A € a, N XY,
we will denote by g\ C a, the facet which contains A.

PROPOSITION 6.6. — For any A € a, N XY, the map g — g - [\ factors
through an open and closed embedding

Flg:" = (Gr)H»
and the induced map

|_| Flg;" — (Gr)Hn»
AeapnxV

is an isomorphism of ind-schemes.

If we denote by Ivvj’Z the inverse image of U' under the evaluation
map LZG — G,z — 0, then we get (Iw])* = IW;e’ and the orbits
of (Gr)* under the action of ij’g are still parametrized by XV (cf. [30,
Lemma 4.8]). Thus, using the morphism ij’e — G, induced by y, we
can take back the constructions of Subsection 6.2 to define the category
D%y, (Y, k), where Y C (Gr)* is a finite locally closed union of IWI’Z—
orbits. The theory of parity complexes also adapts to the present context:
a complex F € D%Wg(y7 k) is called *-even, resp. !-even, if for any (1)
A € XY, such that (Y))** C Y the complex (j},)*F, resp. (j},)'F, is
concentrated in even degrees, where jp, : (YA)* <Y is the inclusion. The
definition for *-odd and !-odd complexes is similar and one says that a
complex is even, resp. odd, if it is both #-even and !-even, resp. *x-odd and
l-odd. As usual, a complex is called parity if it is a direct sum of even and
odd complexes.

Defining the category D%,, ((Gr)*¢ k) (resp. D%y, (Flé’o, k) for a facet
G C aj) as a direct limit, it then makes sense to talk about even and odd
objects in this category, and we will denote by Parzyy, ((Gr)#¢, k) (resp.
Parzyy, (Flé’o, k)) the additive full subcategory consisting of parity objects.
By Proposition 6.6, it is clear that the additive category Parzy, ((Gr)*¢, k)
splits into a direct sum of subcategories of the form Parzyy, (Flé’o, k), where
g runs through the facets inside ay.

It is important to note that we have a bijection g — ¢- G between facets
inside @y associated with the action o; of W on E and facets inside ap
associated with the action o, of W on E, and that a simple change of
variable (namely, replacing z with z¢) induces canonical isomorphisms of

(13) Notice that, if X\ ¢ Xi_’_, the restriction and co-restriction of F to (Y))*¢ is zero
(because this orbit supports an Iwahori-Whittaker local system only when A € Xyr+),

so that we can restrict ourselves to the case where \ € Xi+.
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. o .__ 1,0 £,0
ind-schemes Fl, := F1;° ~ Flé.g,
to Iwié-orbits in Flﬁj;. For any facet g C ay, we thus have a canonical

equivalence of categories

Iw, ~ ij; ;> sending Iw; -orbits in FIg

Dlpyy (FI3, k) = Dhyy, (Fig. k),

restricting to an equivalence between the corresponding categories of parity
complexes:

(6.2) Parpw (FIZ, k) ~ Parzy, (Flﬁzg,k).

In the sequel, we will denote by Ef;f) the indecomposable parity complex
in Parzyy, (Flﬁj;,k) corresponding to £% via the equivalence (6.2). It is
clear that, up to a shift, all of the indecomposable parity complexes in
Parzyy, (Flﬁj;, k) (coming from Proposition 3.1) arise in this way.

6.4. Smith category and the linkage principle

Since the action of Gy, on Gr stabilizes the fixed points (Gr)*¢, we can
take back the construction recalled in Remark 6.5 to define the category
D%Wz,Gm (Y, k), where Y C (Gr)"* is a locally closed finite union of IWIZ—
orbits. We will denote by D%W[,Gm (Y, k), —pert the full subcategory whose

objects are the F for which the object Res(g’;“ (F) has perfect geometric
stalks in the sense of [30, Section 3.3]. The Smith category Smzy (Y, k) on
Y is by definition the Verdier quotient

D%Wme (Y7 k)/D%Wz,Gm (Y’ k)M*Perf'

Let X C Gr be a locally closed finite union of Iw; -orbits, and iy :
(X)# — X denote the inclusion. We define the functor

i% : Pervow g, (X, k) — Smzpw ((X)", k)
as the composition of the inverse image ¢% with the canonical quotient map
Q: Dby, 6, (X)), k) — Smpw((X)", k).

A crucial result says that taking Z’X instead of % in the previous construc-
tion gives isomorphic functors (cf. [30, Section 6.2]), whence the notation.
It then takes a bit more work (cf. [30, Lemma 6.1]) to prove that, for two
locally closed finite unions of IW:, ,~orbits Z C Y, the canonical functor
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5™ Smzyy (Z,k) — Smzyy (Y, k) induced by the direct image in the cor-
responding derived categories is fully faithful, and fits into the following
commutative diagram

f
D%W(,Gm(za k) ’D%Wg,@,m(ya k)

Lo ]

Smjw(Z, k) —_— szw(K k),

where the vertical arrows are the quotient maps. One can thus define the
category Smrw ((Gr)¢, k) as a direct limit indexed by finite closed unions
of IW;; ,~orbits, and consider the functor

it : Pervry g, (Gr, k) — Smzyy((Gr)*, k).
The following statement is [30, Theorem 7.4].

THEOREM 6.7. — The composition of functors

Remark 6.5
_—

Pervzy (Gr, k) Pervrywy g, (Gr, k) 7i> Smzw ((Gr)#¢, k)

restricts to a fully faithful functor ® : Tiltzyy (Gr, k) — Smzw ((Gr)He, k).

We can now reformulate the proof of the linkage principle from [30,
Theorem 8.5]. Thanks to the decomposition of (Gr)#¢ into its connected
components from Proposition 6.6, we deduce from Theorem 6.7 above that
two strictly dominant weights A and p which are not in the same orbit for
the box action cannot be in relation for %5 (seen as a relation on the weight
poset XY, of the highest weight category Pervryy(Gr, k), cf. Section 2).
Indeed, let §, resp. 7y, be the element of WoyA N ag, resp. of Woyu N ag.
We have

HOmTiltzw(Gr,k) (%IW7 'ZLIW)
~ Hogmy,y ((Gryee 1o (B(TY), @(707)),

and since the object ®(F"), resp. ®(FY), is indecomposable (thanks
to the full faithfulness of ®), its support must be contained in a single
connected component of (Gr)#¢, which is easily seen to be the parametrized
by &, resp. 7, in the isomorphism of Proposition 6.6 applied to the case
n =~

Thanks to Theorem 6.4, this implies that two dominant weights N, u
which are not in the same orbit for the dot action cannot be in relation for
%> (where we now consider the highest weight category Pervy+q(Gr, k)).

!
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Finally, the geometric Satake equivalence (Theorem 6.2) and Theorem 2.3
allow to prove the linkage principle for G¥ (cf. [20, Corollary 6.17, Part I1]):

(6.3) VX, €XY suchthat We, X # W ey,
we have Extgy (Ly, L) = 0.

6.5. Consequences on equivalence relations

Recall the definition of the “dot” action of W, which acts on XV by
w e = wo(p+p¥) = pY,
for any w € W, p € XV. Let € X¥ Nay and g, be the facet (for o)

containing p. Therefore, £~ - g, C ay is a facet for o;. The assignment
w — wogpt, Tesp. w — w e, (i — p¥), induces a bijection

(6.4) fWéil'g“ — Wopn XY, resp. fWéil'g“ = Wey(u—pY)NXY

(this follows from the fact that, if we denote by Wg, o, C W the stabilizer
of g, for oy, then we have an equality Wy, o, = Wy-1.4 ).

In the sequel, we will want to determine an exact description of the
blocks in XY, (seen as the weight poset of Pervzy(Gr,k)) for %o (cf.
Subsection 2.2). The following results will help us to do so (cf. the proof
of [30, Theorem 8.9]).

PROPOSITION 6.8. — Let u € XVNay, g, be the facet (for o;) containing

—1
w, and w,w’ be elements of W* 8« We have an isomorphism

W W ~ ] gu 8u
HomTiltzw(Gnk) (wa“u y’w’Dgu) - Homparle (Flé’:,k) (5£,wa 5z,w’) :

Proof. — This is a direct consequence of [30, Proposition 8.11] and of the
equivalence of highest weight categories Rep, (G") ~ Pervzyy (Gr, k), which
sends the indecomposable tilting module of highest weight w e, (u — p),
resp. w' oy (1 —p¥), to T2V, resp. TIW . O

Let A € a; N XY. Note that, thanks to the equivalence (6.2), we have

k) w » Cw

Parzw (FIZL gy’

~ ° gx gx
~ HomParIWe (FIL® ) (Eé’w, 5@,10') )
Therefore Proposition 6.8 yields

(6.5) Vw,w €Wt e WRp—1.g, W = (W) A2 (w'OrN).
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6.6. Dilating weights by /

Smith—Treumann theory allows us to understand the effect of dilating
dominant weights by £ on the equivalence relation ~.

PROPOSITION 6.9. — Let A\, u € X_VH_. We have an isomorphism
HomTiltIW(Gnk) (%Ig/\i’ %IHW) = HomTilth(Gnk) (‘%\IW? ‘ZLIW)

Proof. — First recall that, by full-faithfulness of ®, we have an isomor-
phism
(6.6) Homriiey,, i) (73, 75))

~ Homgu gy (Gryee k) (B(Z0R), R (T77)).
Next, notice that we have an embedding
LiG/L;G — (Gr)H

thanks to [30, Remark 4.8], and that the left-hand side identifies (via Propo-
sition 6.6) with the union of the connected components Flé’f7 with A running
through a;N¢-XY. Moreover, the L;G—orbits in LG/ L;G are parametrized
by £-XY, and a simple change of variable z — 2* together with (6.1) induce
an equivalence of categories

R: Tﬂtzw(GL k) >~ TﬂtIWth (LzG/LZG7 k),

which sends ﬂAIW (resp. ZLIW) to the indecomposable tilting object asso-
ciated with £- A (resp. £- ). Therefore, the indecomposable tilting objects in
Tiltzw, 6. (LeG/L; G, k) are parity complexes (see [12, Proposition 4.12]),
so that we can take back the same arguments as in the proof of [30, Theo-
rem 7.4] to show that restricting the functor

Q : D7w, g, ((Gr)** k) — Smzyy((Gr)"*, k)
to LG/ LZG and composing it with R yields a fully-faithful functor
Q o R : Tiltzyy(Gr, k) — Smow (LeG/Lf G k),
which satisfies the following isomorphisms:
Qo R(FDY) = 0(TRY) md Qo R(TPY) = a(T2Y).

The desired result thus follows from comparing (6.6) with the following
isomorphism

Hom (77, 7PW) ~ Hom(Q o R(ZY),Q 0 R(Z,PY)). O
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In the next corollary, we consider the equivalence relation ~ on the set
XY, , seen as the weight poset of the highest weight category Pervzyy (Gr, k)
(cf. Subsection 2.2).

COROLLARY 6.10. — For any v € XY, denote by 7 the equivalence
class of y for the equivalence relation ~. Then we have

ViaeXY,, (-AcCl-\

Proof. — This is a direct consequence of Proposition 6.9 and of the fact

that ~ is generated by %> (cf. Section 2). O
COROLLARY 6.11. — Let A\, n € XY . We have an equality
(70 5 92%) = (72 < VEL).

Proof. — For any v € XY, let us denote by n(v) the number of elements
v € XY such that v < 7. We may and will assume that 1 < A to prove the
desired equality, and proceed by induction on n(¢- u). Standard arguments
on highest weight categories (and the fact that Verdier duality sends ALY,
resp. 7V, to VEW, resp. Z1W, for all v € XY | ; namely, we use the same
arguments as the one used in [3, Section 6.2]) imply that we have

6.7) (H: ng) = dimy Hom (7", %IW)
- Y (V) (5P YY),
u<u,l/€XiJr
Now when n(f - u) = 0, we get that n(u) = 0 and so
(%\ZW : Vﬁw) = dimy Hom(ﬂ)\zw7 %IW)

= dimy Hom(ezg.I)\W7 %IIZ/V)

= (ZR Vi),
where the second equality is due to Proposition 6.9. This proves the first
step of the induction. The induction step still follows from using (6.7) and
Proposition 6.9, together with the fact that for any v € XY such that

(FEY - VIW) # 0, we have that v € £- XY, (this is because we must have
v € Wog(¢ - ) by the linkage principle). O

6.7. The general case for equivalence relations on (W&

In this subsection, we apply the equivalence (6.5) and Proposition 6.9 to
finish the study of Section 5 by treating the case of special facets. The ar-
guments that we have used until now do not apply when g is a special facet
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(notice that Corollary 5.27 is false in this case). With good reason: we are
going to see that the set {18 splits into infinitely many classes when some
component of g is a special facet. As in Subsections 5.4 and 5.5, we are
first going to deal with the case where the root system is irreducible before
generalizing.

Let g C a7 be a facet, w € (W%, and recall that if g special, then wg
can be written as wg = {A\} for a unique coweight A\. We will denote by @
the equivalence class of w for ~g, and define rg(w) to be equal to —1 if g
is not special, and to be the unique (non-negative) integer such that

A e reWXV\reWFIXY - with wg = {\}
if g is special. For any positive integer r, we also define the group W) :=
Wo & £7ZRY, which is a subgroup of W isomorphic to it, with W(© = W

Finally, notice that for any A € XV and positive integer r, we have £" -
Wogh = W o, (07 - \). We start with an easy lemma.

LEMMA 6.12. — Let v € a;NXY, g C ay be the facet containing v, w €
¢W#® and r be a positive integer. If we set A := woyv, then the application
W — XY, u — ung(€ - v) induces a bijection

(WOwWe) 0 w® = whoy (¢ 3) NXY,.

Proof. — Notice that -\ = woy(¢ - v), so that WMgy(£ - \) = W)
wog (- v). The desired isomorphism then follows from the fact that Wy is
the stabilizer of £-v for o, and from the well-known fact that u — uz(¢-v)
induces a bijection

(W8~ Wo(0-v)nXY,. O
PROPOSITION 6.13. — Assume that RV is irreducible. For any facet

g C a; and w € W&, we have

_ ) H{w} if g is special and char(k) =0
(Wre@+DyWe) N¢W?e  otherwise.

Proof. — If g is not special, then we have rg(w) = —1 by definition and
(W(Tg(w)+l)ng) N fWg =Wn fWg = fWg,

which does coincide with @ thanks to Theorem 5.31. So we assume from now
on that g is a special facet. We will first treat the case where char(k) = ¢.

Let w,v € W8, v € XY Nay be such that g = {v}, and put wG = {A},
vg = {u}. Notice that wop(€-v) = £- X, vog(€ - v) = £ - pu, and recall that,
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thanks to Proposition 6.8 coupled with (6.2), we have

HomTilth(Gr;k) (‘ZiW? ‘%Iu ) Houmrzw (Flg,k) (81%7 55)’

which implies that w#gv < (€ - \)Z2({ - ). Moreover, recall that by the
geometric linkage principle ([30, Theorem 8.5]) we have
VyeXY,, (0-N&yy=v€Woil-\),
so that in particular
(6.8) (- N Ry =y € l-XY,

Therefore, Lemma 6.12 (applied to r = rg(w) + 1) implies that our claim
on w is equivalent to showing that

X =Wy, (. ) N XY,
where £ - X denotes the equivalence class of £\ for the equivalence relation
~on XY |
By definition of 7g(w) and 7g(v), we know that there exist ',/ € XY
such that £7s(®) . X = X and ¢"&(*) ./ = p. Assume (without any loss of

generality, up to switching the roles of A and p) that rg(v) > rg(w), so
that Proposition 6.9 yields

W W
(6.9)  Homriy,,(cri) (T 7))
= HomTlltIW Gr,k) (%l ‘%T‘g(ﬂ) rg(w) .y )

If we denote by g’ C @y the facet (for o) containing the element of Woy\'N
ay, then (=1 . g’ is a facet (for o;) contained in @y which is not special
(because otherwise we could write g’ = {£- A"} for some weight \”, and
N = w'g(l-N') = £ (w'o1A\") for some w”’ € W, contradicting the
definition of rg(w)). So thanks to (6.5) and Theorem 5.31 we get

N = WoN NXY,.

In particular, if 74(v) > rg(w), then we easily see that ¢7s(")=7e(w) .,/ ¢
WogX', so the right-hand side in (6.9) is non-zero only if rg(v) = rg(w).
This observation, together with (6.9) and (6.8), allows us to deduce that
fre(w)+1 .\ c (re(W)+1.37 The reversed inclusion 7&(®) 1.\ ¢ fra(w)+1. )/
is obtained by applying Corollary 6.10. We finally get the desired equality:

7 X = pre(w)+1 . )y — gre(w)+1 N7
= (T e N N XY,
= W) g, (0. 2) N XY, .
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Now we pass to the case char(k) = 0. We want to show that for any
w’ € {W8 such that w’ # w, we have

(6.10) Homz)%w(ma’k) (E8,,E8) = 0.

We claim that there exists w €  such that w{0} = g. Indeed, the map
u +— u{0} is actually a bijection from Q to ag NXY thanks to the first point
of the remark in [13, Chapter VI, Section 2.3]. We then have an isomorphism
LT Py ~wL*TGw™!, and conjugation by & yields an isomorphism

Fl?o} >~ Fl; .
+

u

Since w belongs to 2, conjugation by w preserves Iw
equivalence of categories

(6.11) Dby, (FIS, k) ~ Dby, (Flgo}, k) .

This equivalence implies that we only need to prove (6.10) with g replaced
by {0}. Now, recall that Flgp; ~ Gr and let A\, € XY, be such that
wg = {A}, w'g = {\'}. By [12, Remark 3.5], the complex &,, is isomorphic
to ICL"Y when char(k) = 0 (which denotes the intersection cohomology

so that we get an

complex on Gr associated with A, cf. Subsection 6.2). Therefore in charac-
teristic zero we have an isomorphism

H [ ]

oMpy (F12,.
But we know from [12, Section 3.2] that we have an equivalence of triangu-
lated categories D%,,,(Gr, k) ~ D Pervzy(Gr, k), and that Pervzyy (Gr, k)
is semi-simple when char(k) = 0 thanks to [12, Corollary 3.6]. Therefore
the right-hand side above is zero when A # A’ and char(k) = 0, which is

equivalent to w # w’.(14 O

) (Eurs€u) = Homby (1c57,1¢97).

This last result coupled with Proposition 5.18 now enables us to deal
with the case where RY splits into irreducible root systems, inducing de-
compositions W =W x --- x W, and g = g1 X - -+ X g, (see the beginning
of Subsection 5.4).

THEOREM 6.14. — Assume that char(k) = ¢. For any facet g C a7 and
w = (wy,...,w,) € W&, we have

\
@ = [[ w0 Wy, 0 wE

i=1

(14) Instead of using the equivalence (6.11), we could have argued by saying that Flg is

a connected component of Gr.
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When char(k) = 0 and r(w;) > 0 for some 4, one replaces the i’th compo-
nent in the above product by {w;}.

7. Applications to representation theory
7.1. Preliminaries on alcoves

Just as in Subsection 5.3, the action ey of W on FE defines a hyperplane
arrangement %, where the shift by pV induces a bijection between 5"
and 7. We will call a connected component of E\.#" an alcove for e, and
a facet contained in the closure of an alcove for e, will be called a facet
for e,; once again shifting by p¥ induces a bijection between facets for e,
and facets for oy, and composing this bijection with the dilation by =1 gives
a bijection with facets for o;. We put Cy := a; — p¥. The bijection between
sets of alcoves allows us to define right and left actions of W on these sets,
together with the Bruhat order < and the periodic order =<, by transport
of structure from the set of alcoves for o; (or equivalently, by seeing every
alcove for ey, resp. for oy, as a W-translate of Cy, resp. of ay). Note that
if A,B are two alcoves for e,, then we have A < B & A 1 B, where
the order 1 is defined in [20, Section 6]: this is an immediate consequence
of [20, Chapter II, Section 6.6, (4)] (which says that 1 is invariant under
translation) together with [4, Section II, Lemma 10.1] (which implies that
1 coincides with the Bruhat order inside of 6" — p¥, and thus with <). For
any alcove C' for e;, we define the alcove C for o, resp. the integer d(C),
by transport of structure using once again the bijection between alcoves
for e, and oy (notice that d(C) is then the number of hyperplanes of .7
separating C' from Cy).

For any facet h for e;, we will denote by Why,e, C W the stabilizer of h
for ey. One can easily check that we have

Whie, = Whipv o, = Wf_l'(h-i-Pv)’

where the second and third sets denote stabilizers for o, and o; respectively.
Let A € XY and h C E be the facet for e, containing A, which is of the
form

h:{,uEE

for suitable integers n, and a partition Ry = RY (h) URL (h). If we let Cy
be the alcove for e, defined by the integers (no)aem, , then C) is the only

(n+pY,a) =Ll ng, VaeR(h),
C-(ne —1) < (u+pY,a) <l n, YaecRi(h)
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alcove satisfying
e Cy = {peE | t-(na—1)<{u+p’,a) <l na, VaeR}

The set Cy (which is denoted by Cy in [20]) is called the upper closure
of Cy. The alcove C) can be characterized as the only alcove containing
h in its closure which is minimal in Wy ., ¢¢ C for the order < (cf. 20,
Section 6.11]). Now, let us denote by p the element of W e, A contained in
Cy, by g’ C @y the facet containing j+ p"¥ and by w the element of fol'g/
such that woe(u + p¥) = A+ p¥ (cf. the first isomorphism of (6.4)). Then
the alcove A := p¥ + C), is the only alcove for o, containing A + p¥ in its

closure which is minimal in
Whipv,o, A = Wayg o, A= AWy o,

for <. Likewise, the alcove A, := £=! - A is the only alcove (for o) con-
taining ¢! - (h+ p") in its closure which is minimal in A, W, for <, where
g :=(~1.g'. By definition of the operation”on the set of alcoves for e;, we
have Cy = £- A, —pY, and so Cy —L-pV =1t (Aw —pY)—p". In particular
(once again by definition of the application d(-) on the set of alcoves for ),
we have

(7.1) d(éA ¢ pv> - d(ﬁw - pv).

7.2. A new proof of Donkin’s Theorem

As an application of the study that was made in the previous sections,
we can give a new proof of the description of blocks of Repy (G"). Unless
specified otherwise, GG is assumed to be a semi-simple algebraic group of
adjoint type over F (so GV is simply connected). For any A € XV, we define
r(A) to be the unique non-negative integer such that

= ET(}\) . XV\gT(A)-ﬁ-l XV,

If we let A’ be the W-conjugate (for the action oy) of A contained in ay,
gy C ag be the facet containing X, put g := £~! - g, and let w be the
unique element of {WW¢€ such that wo,\ = A (cf. (6.4)), then one can easily
check that
r(N) = rg(w) + 1,

where 7g(w) is as it was defined in Subsection 6.7.

We take back the setting of the beginning of Subsection 5.4 for the next
statement: since GV is semi-simple and simply connected, we get a decom-
position G¥ = GY x - - - x G into simply connected simple algebraic groups,
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each GY admitting R) as a root system; this decomposition induces a de-
composition of the root system, affine Weyl group and dominant characters
attached to G'. Moreover, for every i, we will denote by py € X', the half
sum of positive coroots relative to GY and, for any positive integer r, we
will denote by Wi(r) the subgroup of W; whose translation part has been
dilated by ¢ (cf. Subsection 6.7 for the precise definition).

THEOREM 7.1. — Let p = (p1,...,pur) € XY = [[; X}, and denote
by @ the equivalence class of u for the equivalence relation ~ (cf. Section 2)
on XY (seen as the weight poset of Repy (G")). We have

”
_ it Y
o= HWZ(T(“ P )) o i ﬂXinF‘
i=1
Proof. — Recall that thanks to the geometric Satake equivalence (The-
orem 6.2) and Theorem 6.4, we have an equivalence of highest weight cat-
egories

(7.2) Repy (GY) — Pervryy (Gr, k)

sending a tilting module 7}, to the tilting Iwahori-Whittaker perverse sheaf
,%IW, where X\ := u + pV. Therefore, proving the claim is equivalent to
showing that for any A € XY, = XY + p¥ = [[,(X/, + p)'), we have the
equality

(7.3) =W aonnxy, .
=1

where A\ now denotes the equivalence class of A\ = (\y,...,\,) for the
equivalence relation ~ on XY , seen as the weight poset of Pervzy (Gr, k).

Denote by X the unique W-conjugate (for the dilated box action op)
of A which is contained in ag, by gy C ay the facet containing X, put
g := (1. gy C ay and let w the element of {W# such that wo,\ = A.
Recall that {W&o, N = Wo, N NXY, . By (6.5), we have

(woeX') ~ (W'op) <= w ~g W', YV w,w' € W8,
and by Proposition 5.18 we have
W g W= Wy g, W, Y,

where w = (wy,...,w,), w = (w},...,w.).
On the other hand, the linkage principle tells us that

(wog\) ~ = p € Woe\,
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from which we deduce (also using Lemma 6.12) that proving (7.3) is equiv-
alent to proving that

w = [ W w W, 0w,
i=1
But this last equality was proved in Theorem 6.14 (because r()\;) =
g, (w;) + 1 for all 7). O

We can also apply our Corollary 5.33 to give a bound on the length of
a minimum chain linking two weights in the same block. We start with a
lemma.

LEMMA 7.2. — Let \,p € XY, r € Zzq, and put X' :=£"- (A +p") —p",
o= (p+pY) —p¥. We have
(T)\/ : V#/) = (TA : Vﬂ)

Proof. — By the geometric Satake equivalence (Theorem 6.2) coupled
with Theorem 6.4, we have an equivalence of highest weight categories

Repy (GY) = Pervyy (Gr, k),

sending T’, to 97 v for every v € XY. We can thus apply Corollary 6.11:

(T,\/ : V#/) = (%%(M;\+pv) : V%X\(}#+pv))

Corollary 6.11
TR (A Vi) = (T V). O

PROPOSITION 7.3. — Assume that GV is a simple and simply connected
algebraic group over k. Let A\, X" be two elements of XY in the same equiv-
alence class for ~, and denote by Y (resp. )T’) the unique element of XY
which satisfies A + p¥ = " - (X +pY) (resp. N+ pY =" - (N + p¥)), where
r=r(ApV) (notice that A = X whenr = 0). Also denote by C5 (resp. Cy,)
the alcove containing Py (resp. N ) in its upper closure. Then there exists a
chain of dominant characters

Xs = A Aoty Ao = N

such that, for all i € [0,s — 1], there exists an indecomposable GV -module
M; satisfying

[M; : Ly #0 and [M;:Ly,,]#0
and such that

s<24d(Cr—t-pY) +d(Cx — £ pY),
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Proof. — Denote by p the W-conjugate (for e;) of A which is included
in Cy. We will first deal with the case where r = 0, which means that the
facets (for op) containing A + p¥ and X + pV are not special (notice that,
since A and )\ are in the same equivalence class, we must have r(A+p¥) =
r(N + p¥) thanks to Theorem 7.1).

We denote by g, C ag the facet containing p + pV, put g := ¢! - g,
and let w,w’ be the elements of (W satisfying wog(p + p¥) = X + pV,
w'og(p+pY) = N +pY. The facet g for 0; is a non-special facet included in
the closure of a7. Let us also denote by A,,, resp. A,,, the alcove containing
wg, resp. w'g, in its closure and which is minimal in A, Wg, resp. A, Wy,
for the order <. Thus, we can apply Corollary 5.33, and pick a chain of
elements of (W&

We = W, We—1,..., Wy =W
as in this corollary, with s < 2+ d(A,, — p¥) + d(Au — p¥). Thanks to the
equation (7.1), we have that d(A, —pV) = d(Cx—£-p¥) and d(Ay —p¥) =
d(CA*N — ¢ - pY), so that s is bounded by the desired integer. This same
corollary tells us that for all 7 € [0, s — 1], there exists an element u; € (W8
satisfying
nwmui(l) 7é 0 and nwi+17ui(1) 7é 0.

By Proposition 4.5, we can replace n with ‘n in the above, so that the
character formula of tilting modules given in [30, Theorem 8.9] yields

(Tuz‘zu : vwi.lﬂ) 7& 0 and (Tui'zu : va»l'ZH) 7é 07
which implies that
[Tui.ﬁﬂ : Lwi'eﬂ] 75 0 and [Tuﬂeli : Lwi+1'£ll«] 7& 0.

So we get the result by putting A; = w; e, p and M; = Ty, e,p-

Now we assume that r > 0. Since (A + p) = r(N + p) = 0, we can apply
the previous step and find two sequences of dominant characters (), (7;)
of the desired length such that A, = A\, \g = X and

(Tf,i : Vj\l) # 0 and (T’[,7 : v;\i+1) # 0.
By Lemma 7.2, we see that if we put v; = (" - (i +p) —p and A; =
- (N + p) — p, we get:

(T, :Va) = (T, : V5,) #0 and (Ty, : Va,,) = (T3, : V5,,,) #0,
from which we deduce that
[T, : L] #0 and [T, :Ly,,]#0.
This concludes the proof of Proposition 7.3. O
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We will now use the process described in [20, Section I1.7.3] to deduce
from Theorem 7.1 the block decomposition of Repy (G"Y) in the general case
where GV is a reductive group'® | starting with a lemma.

LEmMMA 7.4. — Let Hy, Hs be reductive algebraic groups over k, with
Ty C Bi, resp. To C Bs, a maximal torus and a Borel subgroup of Hy,
resp. of Ho, and ¢ : Hi — Hs a central isogeny such that o(T1) = T,
©(B1)=DBsy. Denote by X(T1)4+ C X(T1) (resp. X(T3)+ C X(13)) the domi-
nant characters and characters associated with Ty C By (resp. To C Bs).

Then ¢ induces an injective morphism X(T3)4 — X(71), and the blocks
of Hy are the blocks of Hy contained in X(Ts)4.

Proof. — Since ¢ is a central isogeny, the morphism induced on root data
identifies the root systems of Hy and Ha, (cf. [20, Section I1.1.17]). There-
fore, the injection X(T) — X(71) (induced by ¢|r,) induces an injection
X(T2)+ <= X(T1)+. On the other hand, pulling back by ¢ induces a fully-
faithful functor ¢* : Repy (Hs2) — Repy (H1), which sends an indecompos-
able tilting module of highest weight A to the indecomposable tilting mod-
ule of same highest weight (cf. [20, Section E.7]), and such that there exists
no non-zero morphism between an indecomposable tilting module in the
essential image of ¢* and an indecomposable tilting module of Rep, (H)
which is not in this essential image. The conclusion follows easily, thanks
to the description of blocks via tilting modules (cf. Theorem 2.3). O

COROLLARY 7.5. — Assume that G is a general reductive group. Denote
by DGV the derived subgroup of G, by Ty the reduced part of the neutral
connected component of the centre of GV and let Hy, ..., H; be the simply
connected covers of the minimal closed connected normal subgroups of
positive dimension of DG". For each i € [1,t], also denote by T, the split
maximal torus of H; determined by the split maximal torus of GV which
is Langlands dual to T, by W; (resp. by X, resp. by p)') the affine Weyl
group (resp. the set of dominant characters of T, determined by RY, resp.
the half-sum of positive roots) associated with H;, seen as a subgroup of
the affine Weyl group associated with DGV, and by X(T3) the group of
characters of T,. Then there is a central isogeny

(P:DGVXTQ—)GV,

(15) We warn the reader that the statement (3) given in [20, Section II.7.3] is wrong,
since one needs to assume the semi-simple group of loc. cit. to be simple for it to be
correct.
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which induces an injection XY — [], XY, x X(T) and such that, for every
A= (A1, A ) € XY

we have
t \2
X _ HWi(r(/\iJrPi )) o )\i HXXJF X {)\t+1}~
i=1

Proof. — The fact that ¢ exists follows from [20, Section II1.1.18]. More-
over, we know that DGV is a semi-simple algebraic group, so that we have
a central isogeny Hi X ---x H — DGV, where H{,..., H, are the minimal
closed normal subgroups of positive dimension of DGV, which are simple
algebraic groups. We then get a central isogeny H; x --- x Hy — DGV by
replacing each H/ with its simply connected cover. Therefore, Lemma 7.4
and Theorem 7.1 tell us that for any dominant character A\’ of the maximal
torus T NDGY of DGV, the associated block of Rep, (DGY) is equal to

t ’ \2
H Wi(T(AHrPi )) o )\; N XXJF,
=1

where we see A as the element (A7, ..., A;) of [ ], XY, (notice that the above
set is included in the set of dominant characters of TNDGY, because each
W, is a subgroup of the affine Weyl group associated with DGV).

Finally, since T3 is a torus (in particular, the category Repy (T%) is semi-
simple), one can easily check that the block of A in DGV x Ty is equal to
the product of blocks associated to (A1,...,A;) and A1 in Repy (DGY)
and Repy (T2) respectively, i.e. to

T r(tel))
[Tw: 7 e hin XYy x e}
=1

This concludes the proof by Lemma 7.4, since the above set is included
in Xi O

Remark 7.6. — We take back the context of Corollary 7.5, and let A, \’
be dominant characters in the same equivalence class. The result of Propo-
sition 7.3 can also be generalized to the case where GV is a general reductive
group. Indeed, using the central isogeny DGV x Ty — GV, one is reduced
to proving it for DGV, and since DGV is a central isogeny of the product
of ¢t simple subgroups (because DG is semi-simple), we can further re-
duce to the case where GV is a product of simply connected simple groups
Hy x -+ x Hy. Finally, the equality (5.4) of Proposition 5.18 allows us to
bound the length of a minimum chain linking two weights (A1,..., ;) and
(Af,...,A}) in the same block by max{s;, € [1,t]}, where s; is the bound
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obtained in Proposition 7.3 for the length of a minimum chain linking );
and L.

7.3. Block decomposition for a quantum group

In this subsection, G is semi-simple of adjoint type. We assume that
char(k) = 0, and that there exists a primitive £*" root of unity ¢ in k. More-
over, we assume that £ is odd, greater than the Coxeter number of RV and
not equal to 3 if R has a component of type G2. We then denote by Uy x
Lusztig’s quantized enveloping algebra specialized at ¢ and associated with
GV (we take the conventions of [20, Appendix H]). The category of finite
dimensional representations of Uy k, which we will denote by Rep(U, x),
has many features in common with the category Rep(G).,), where Gy, de-
notes the Langlands dual group of G over some field k’ of characteristic £.
In particular, Rep(Uy k) is a highest weight category with weight poset XY ;
for any A € XY, we will denote by T,()), resp. V4()), the indecomposable
tilting module, resp. the costandard object, with highest weight A.

We fix a weight A € C,NXY, let g’ be the facet for o, containing A+p" and
w,w’ be elements of (W&, where g := ¢~1 - g’ (recall the bijections (6.4)).
Most importantly for us, the multiplicity of costandard objects in tilting
objects is known.

PROPOSITION 7.7. — We have
(Ty(wep ) : Vy(w' o X)) =Ny n(1).
Moreover, we have that (T,(w e, ) : V4(X')) = 0 whenever X' ¢ W e, \.

Proof. — The second claim is due to the linkage principle for quantum
groups, see [8, Section 8].

Let us denote by W(g) the subset of W consisting of elements w which
are minimal in wWWj, and recall that the action of Iw by left multiplication
on F1; | resp. on Gr°, yields stratifications

ap’
(Flgl)red = |_| X, (Gro)red: |_| Yy,

uceW veW (g

where Y,, := Iw- 1, resp. X, := Iw-0, is an affine F-space of dimension I(u),
resp. [(v). Moreover, the canonical projection 7 : F1; — Gr° is ind-proper,
Iw-equivariant and satisfies 771(Y,,) = |—|z€W0 Xy for every w € Wg). We
denote by Perv iy (Flg . k), resp. Perv(yy,)(Gr®, k), the category of perverse

sheaves on Fl;l, resp. Gr°, constant along the Iw-orbits, and by Repg(Uy k)
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the Serre subcategory of Rep(Uy k) generated by the simple objects whose
highest weight belongs to W e, 0N XY (the fact that Reps(Ugx) is truly a
block will follow from Proposition 7.10).

Thanks to [9], we have an equivalence of highest weight categories

Repg(Uqx) ~ Perv(lw)((}ro, k),

sending T,(z e, 0) (resp. V,(y o, 0)) to the indecomposable tilting object
TQEI,VZ) (resp. to the costandard object V;val)) associated with z, for any
x € (W (resp. y € {W).(16)

For any u € W, let us denote by .7, € Perv(iy)(Fl3 , k) the indecom-
posable tilting object associated with wu; by [38, Proposition 3.4.1], we have
an isomorphism 7.7, ~ TSW) for any w € W(g). Therefore, combining [38,
(3.4.1)] with [38, Theorem 5.3.1], we get

(Tqﬁlw’ : V,EIW)) = > (D) Ohy (1), Vv e W),
zeWp

where (hy ,, z,y € W) denotes the ordinary Kazhdan-Lusztig polynomials
associated with W, as described in [31]. Using [31, Proposition 3.4] together
with the fact that hy , = hy-1 -1 for all z,y € W (which is a consequence
of the fact that the anti-automorphism ¢ from the proof of [31, Theorem 2.7]
commutes with the involution d : H — H defined in loc. cit.) show that the
right-hand side in the above equation coincides with n,-1,-1(1). So we get
(Ty(wep0): Vy(w e,0)) = (Tgfﬁ) : VSX)I) = Ny (1),
which proves our claim in the case where A = 0. Using the second point
of [31, Remark 7.2], one can deduce from this the general case. 0

Remark 7.8. — The character formula of Proposition 7.7 was originally
stated as a conjecture in [31, Conjecture 7.1], and proved in [32] for £ > 33.

In particular, the second assertion of Proposition 7.7 tells us that @ C
W e, for any p e XY.

COROLLARY 7.9. — We have an equality

dimk HomRep(Uq,k) (Tq(’w oy )\), Tq(w/ oy )\))

T . g
= dlmk Homparzw (Fl;,k) (81%7 gw’ ) .

(16) Notice that w ~ w~! induces a bijection W ~ W (q.
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Proof. — Proposition 7.7 and standard arguments (see [3, Section 6.2])
show that we have

(7.4) dimy Hompep (v, ) (Ty(weed), Ty(w' e X)) = > 1y0p(1)-ny (1)
yesWe

But we also know that

dimy Hom'D%W(Flé,k) (é‘f, V%) =ny (1), Vaz,yeWe

thanks to (4.8) together with Lemma 2.2. So by [21, Proposition 2.6] the
right-hand side in (7.4) coincides with

. [ ] g g
dimy Homg, (Fiz k) (€8.E%)). O
Therefore, we get a very similar situation as the one in Subsection 6.5:
werA~w ep\ = wr~gw.

For any p € XY, recall the definition of r(x) from Subsection 7.2, and put

5(4) i {1 if r(p) =0

0 othewise.

We define W to be equal to W when § = 1, and to {id} otherwise. The next
result is obtained from Theorem 6.14 in the same way that Theorem 7.1
was, from which we take back the notations.

PROPOSITION 7.10. — Let p = (p1,...,p,) € XY = [[; XY, and de-
note by [i the equivalence class of y in XY (seen as the weight poset of
Rep(Uy k)) for the equivalence relation ~ from Section 2. We have

T
_ ) iJriv
u=||Wi(” ) ag N xY, .

i=1
Remarks 7.11.

(1) The proof of the previous proposition does not require Smith—
Treumann theory (because the proof of Theorem 6.14 does not
require it when char(k) = 0).

(2) One can use Corollary 5.33 to give a bound for the length of a min-
imal chain linking two weights in the same block for Rep(U, x),
of the same kind as Proposition 7.3.

(3) Another proof of Proposition 7.10 was found in [34] (under the
same assumptions on ¢). However, the results of loc. cit. use the
proof of Donkin from [15], so it does not allow to give a bound as
in the previous point.
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