Abelian equals A-finite for Anderson A-modules
[Abélien est égal à A-fini pour les A-modules d’Anderson]
Annales de l'Institut Fourier, Online first, 46 p.

Anderson introduced $t$-modules as higher dimensional analogs of Drinfeld modules. Attached to such a $t$-module, there are its $t$-motive and its dual t-motive. The $t$-module gets the attribute “abelian” when the $t$-motive is a finitely generated module, and the attribute “$t$-finite” when the dual $t$-motive is a finitely generated module. The main theorem of this article is the affirmative answer to the long standing question whether these two attributes are equivalent. The proof relies on an invariant of the $t$-module and a condition for that invariant which is necessary and sufficient for both being abelian and being $t$-finite. We further show that this invariant also provides the information whether the t-module is pure or not. Moreover, we conclude that also over general coefficient rings A, i.e. for Anderson A-modules, the attributes of being abelian and being A-finite are equivalent.

Anderson a introduit les $t$-modules en tant qu’analogues de dimension supérieure des modules de Drinfeld. Attachés à un tel $t$-module, il y a son $t$-motif et son t-motif dual. Le $t$-module obtient l’attribut « abélien » lorsque le $t$-motif est un module de génération finie, et l’attribut « $t$-fini » lorsque le $t$-motif dual est un module de génération finie. Le théorème principal de cet article est la réponse affirmative à la question de longue date de savoir si ces deux attributs sont équivalents. La preuve repose sur un invariant du $t$-module et une condition pour cet invariant qui est nécessaire et suffisante pour être à la fois abélien et $t$-fini. Nous montrons en outre que cet invariant fournit également l’information si le $t$-module est pur ou non. De plus, nous concluons que également sur les anneaux de coefficients généraux A, c’est-à-dire pour les A-modules d’Anderson, les attributs d’être abélien et d’être A-fini sont équivalents.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3754
Classification : 11G09, 11J93, 16W60
Keywords: abelian, $t$-module, $t$-motive, skew field, Newton polygon
Mots-clés : abélien, $t$-module, $t$-motif, corps gauches, polygone de Newton

Maurischat, Andreas  1

1 RWTH Aachen University (Germany)
@unpublished{AIF_0__0_0_A42_0,
     author = {Maurischat, Andreas},
     title = {Abelian equals {A-finite} for {Anderson} {A-modules}},
     journal = {Annales de l'Institut Fourier},
     year = {2026},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     doi = {10.5802/aif.3754},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Maurischat, Andreas
TI  - Abelian equals A-finite for Anderson A-modules
JO  - Annales de l'Institut Fourier
PY  - 2026
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3754
LA  - en
ID  - AIF_0__0_0_A42_0
ER  - 
%0 Unpublished Work
%A Maurischat, Andreas
%T Abelian equals A-finite for Anderson A-modules
%J Annales de l'Institut Fourier
%D 2026
%V 0
%N 0
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3754
%G en
%F AIF_0__0_0_A42_0
Maurischat, Andreas. Abelian equals A-finite for Anderson A-modules. Annales de l'Institut Fourier, Online first, 46 p.

[1] Anderson, Greg W. t-motives, Duke Math. J., Volume 53 (1986) no. 2, pp. 457-502 | DOI | MR | Zbl

[2] Anderson, Greg W.; Brownawell, W. Dale; Papanikolas, Matthew A. Determination of the algebraic relations among special Γ-values in positive characteristic, Ann. Math. (2), Volume 160 (2004) no. 1, pp. 237-313 | DOI | MR | Zbl

[3] Chang, Chieh-Yu A note on a refined version of Anderson–Brownawell–Papanikolas criterion, J. Number Theory, Volume 129 (2009) no. 3, pp. 729-738 | DOI | MR | Zbl

[4] Chang, Chieh-Yu; Papanikolas, Matthew A. Algebraic independence of periods and logarithms of Drinfeld modules, J. Am. Math. Soc., Volume 25 (2012) no. 1, pp. 123-150 (With an appendix by Brian Conrad) | DOI | MR | Zbl

[5] Chang, Chieh-Yu; Papanikolas, Matthew A.; Thakur, Dinesh S.; Yu, Jing Algebraic independence of arithmetic gamma values and Carlitz zeta values, Adv. Math., Volume 223 (2010) no. 4, pp. 1137-1154 | MR | DOI | Zbl

[6] Chang, Chieh-Yu; Papanikolas, Matthew A.; Yu, Jing Frobenius difference equations and algebraic independence of zeta values in positive equal characteristic, Algebra Number Theory, Volume 5 (2011) no. 1, pp. 111-129 | MR | DOI | Zbl

[7] Chang, Chieh-Yu; Yu, Jing Determination of algebraic relations among special zeta values in positive characteristic, Adv. Math., Volume 216 (2007) no. 1, pp. 321-345 | MR | DOI | Zbl

[8] Cohn, Paul M. Skew fields. Theory of general division rings, Encyclopedia of Mathematics and Its Applications, 57, Cambridge University Press, 1995 | DOI | MR | Zbl

[9] Hartl, Urs T.; Juschka, Ann-Kristin Pink’s theory of Hodge structures and the Hodge conjecture over function fields, t-Motives: Hodge Structures, Transcendence, and Other Motivic Aspects (EMS Series of Congress Reports), European Mathematical Society, 2020, pp. 31-182 | Zbl

[10] Jacobson, Nathan The Theory of Rings, Mathematical Surveys and Monographs, 2, American Mathematical Society, 1943 | DOI | MR | Zbl

[11] Maurischat, Andreas Prolongations of t-motives and algebraic independence of periods, Doc. Math., Volume 23 (2018), pp. 815-838 | MR | DOI | Zbl

[12] Maurischat, Andreas Algebraic independence of the Carlitz period and its hyperderivatives, J. Number Theory, Volume 240 (2022), pp. 145-162 | MR | DOI | Zbl

[13] Maurischat, Andreas Periods of t-modules as special values, J. Number Theory, Volume 232 (2022), pp. 177-203 (Special Issue: David Goss Memorial Issue) | MR | DOI | Zbl

[14] Mishiba, Yoshinori Algebraic independence of the Carlitz period and the positive characteristic multizeta values at n and (n,n), Proc. Am. Math. Soc., Volume 143 (2015) no. 9, pp. 3753-3763 | DOI | MR | Zbl

[15] Mishiba, Yoshinori On algebraic independence of certain multizeta values in characteristic p, J. Number Theory, Volume 173 (2017), pp. 512-528 | MR | DOI | Zbl

[16] Namoijam, Changningphaabi Algebraic relations among hyperderivatives of periods and logarithms of Drinfeld modules, Algebra Number Theory, Volume 19 (2025) no. 7, pp. 1259-1311 | MR | Zbl | DOI

[17] Namoijam, Changningphaabi; Papanikolas, Matthew A. Hyperderivatives of periods and quasi-periods for Anderson t-modules, Memoirs of the American Mathematical Society, 1517, American Mathematical Society, 2024 | Zbl | DOI

[18] Ore, Øystein Theory of non-commutative polynomials, Ann. Math. (2), Volume 34 (1934), pp. 480-508 | Zbl

[19] Papanikolas, Matthew A. Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms, Invent. Math., Volume 171 (2008) no. 1, pp. 123-174 | MR | Zbl | DOI

Cité par Sources :