Some observations on deformed Donaldson–Thomas connections
[Quelques observations sur les connexions de Donaldson–Thomas déformées]
Annales de l'Institut Fourier, Online first, 21 p.

A deformed Donaldson–Thomas (dDT) connection is a Hermitian connection of a Hermitian line bundle over a $G_2$-manifold $X$ satisfying a certain nonlinear PDE. This is considered to be the mirror of a (co)associative cycle in the context of mirror symmetry. It can also be considered as an analogue of a $G_2$-instanton. In this paper, we see that some important observations that appear in other geometric problems are also found in the dDT case as follows.

(1) A dDT connection exists if a 7-manifold has full holonomy $G_2$ and the $G_2$-structure is “sufficiently large”. (2) The dDT equation is described as the zero of a certain multi-moment map. (3) The gradient flow equation of a Chern–Simons type functional of Karigiannis and Leung, whose critical points are dDT connections, agrees with the $\operatorname{Spin}(7)$ version of the dDT equation on a cylinder with respect to a certain metric on a certain space. This can be considered as an analogue of the observation in instanton Floer homology for 3-manifolds.

Une connexion déformée de Donaldson–Thomas (dDT) est une connexion hermitienne d’un fibré en ligne hermitien sur une variété $G_2$ $X$ satisfaisant une certaine EDP non linéaire. Ceci est considéré comme le miroir d’un cycle (co)associatif dans le contexte de la symétrie miroir. On peut également le considérer comme un analogue d’un $G_2$-instanton. Dans cet article, nous voyons que certaines observations importantes qui apparaissent dans d’autres problèmes géométriques se retrouvent également dans le cas dDT comme suit.

(1) Une connexion dDT existe si une variété 7 possède une holonomie complète $G_2$ et que la structure $G_2$ est « suffisamment grande ». (2) L’équation dDT est décrite comme le zéro d’une certaine application multi-moments. (3) L’équation de flux de gradient d’une fonctionnelle de type Chern–Simons de Karigiannis et Leung, dont les points critiques sont des connexions dDT, concorde avec la version $\operatorname{Spin}(7)$ de l’équation dDT sur un cylindre par rapport à une certaine métrique sur un certain espace. Ceci peut être considéré comme un analogue de l’observation en homologie de Floer instanton pour les variétés 3.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3753
Classification : 53C07, 58E15, 53D37
Keywords: mirror symmetry, gauge theory, $G_2$-manifold, deformed Donaldson–Thomas connections
Mots-clés : symétrie miroir, théorie de jauge, variété $G_2$, connections de Donaldson–Thomas déformées

Kawai, Kotaro  1 , 2

1 Beijing Institute of Mathematical Sciences, and Applications, No. 544, Hefangkou Village, Huaibei Town, Huairou District, Beijing, 101408 (China)
2 Department of Mathematics, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 (Japan)
@unpublished{AIF_0__0_0_A41_0,
     author = {Kawai, Kotaro},
     title = {Some observations on deformed {Donaldson{\textendash}Thomas} connections},
     journal = {Annales de l'Institut Fourier},
     year = {2026},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     doi = {10.5802/aif.3753},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Kawai, Kotaro
TI  - Some observations on deformed Donaldson–Thomas connections
JO  - Annales de l'Institut Fourier
PY  - 2026
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3753
LA  - en
ID  - AIF_0__0_0_A41_0
ER  - 
%0 Unpublished Work
%A Kawai, Kotaro
%T Some observations on deformed Donaldson–Thomas connections
%J Annales de l'Institut Fourier
%D 2026
%V 0
%N 0
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3753
%G en
%F AIF_0__0_0_A41_0
Kawai, Kotaro. Some observations on deformed Donaldson–Thomas connections. Annales de l'Institut Fourier, Online first, 21 p.

[1] Collins, Tristan C.; Shi, Yun Stability and the deformed Hermitian-Yang–Mills equation, Differential geometry, Calabi–Yau theory, and general relativity. Part 2 (Surveys in Differential Geometry), Volume 24, International Press, 2022, pp. 1-38 | DOI | Zbl

[2] Collins, Tristan C.; Yau, Shing-Tung Moment maps, nonlinear PDE and stability in mirror symmetry. I: Geodesics, Ann. PDE, Volume 7 (2021), 11, 73 pages | MR | DOI | Zbl

[3] Donaldson, Simon K. Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics, 147, Cambridge University Press, 2002, viii+236 pages (with the assistance of M. Furuta and D. Kotschick) | MR | DOI | Zbl

[4] Fowdar, Udhav Deformed G 2 -instantons on 4 ×S 3 , Proc. Am. Math. Soc., Volume 153 (2025) no. 6, pp. 2621-2638 | Zbl | MR | DOI

[5] Joyce, Dominic D. Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, 2000 | DOI | MR | Zbl

[6] Karigiannis, Spiro; Leung, Naichung C. Hodge theory for G 2 -manifolds: intermediate Jacobians and Abel–Jacobi maps, Proc. Lond. Math. Soc. (3), Volume 99 (2009) no. 2, pp. 297-325 | MR | DOI | Zbl

[7] Kawai, Kotaro; Yamamoto, Hikaru Deformation theory of deformed Donaldson–Thomas connections for Spin (7)-manifolds, J. Geom. Anal., Volume 31 (2021) no. 5, pp. 12098-12154 | MR | DOI | Zbl

[8] Kawai, Kotaro; Yamamoto, Hikaru The real Fourier–Mukai transform of Cayley cycles, Pure Appl. Math. Q., Volume 17 (2021) no. 5, pp. 1861-1898 | MR | DOI | Zbl

[9] Kawai, Kotaro; Yamamoto, Hikaru Deformation theory of deformed Hermitian Yang–Mills connections and deformed Donaldson–Thomas connections, J. Geom. Anal., Volume 32 (2022) no. 5, 157, 51 pages | MR | DOI | Zbl

[10] Kawai, Kotaro; Yamamoto, Hikaru Mirror of volume functionals on manifolds with special holonomy, Adv. Math., Volume 405 (2022), 108515, 69 pages | MR | DOI | Zbl

[11] Lee, Jae-Hyouk; Leung, Naichung C. Geometric structures on G 2 and Spin (7)-manifolds, Adv. Theor. Math. Phys., Volume 13 (2009) no. 1, pp. 1-31 | DOI | Zbl

[12] Leung, Naichung C.; Yau, Shing-Tung; Zaslow, Eric From special Lagrangian to Hermitian-Yang–Mills via Fourier–Mukai transform, Adv. Theor. Math. Phys., Volume 4 (2000) no. 6, pp. 1319-1341 | MR | DOI | Zbl

[13] Lotay, Jason D.; Oliveira, Gonçalo Examples of deformed G 2 -instantons/Donaldson–Thomas connections, Ann. Inst. Fourier, Volume 72 (2022) no. 1, pp. 339-366 | MR | DOI | Zbl

[14] Madsen, Thomas B.; Swann, Andrew Multi-moment maps, Adv. Math., Volume 229 (2012) no. 4, pp. 2287-2309 | MR | DOI | Zbl

[15] Madsen, Thomas B.; Swann, Andrew Closed forms and multi-moment maps, Geom. Dedicata, Volume 165 (2013), pp. 25-52 | MR | DOI | Zbl

Cité par Sources :