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SOME OBSERVATIONS ON DEFORMED
DONALDSON–THOMAS CONNECTIONS

by Kotaro KAWAI (*)

Abstract. — A deformed Donaldson–Thomas (dDT) connection is a Hermitian
connection of a Hermitian line bundle over a G2-manifold X satisfying a certain
nonlinear PDE. This is considered to be the mirror of a (co)associative cycle in
the context of mirror symmetry. It can also be considered as an analogue of a G2-
instanton. In this paper, we see that some important observations that appear in
other geometric problems are also found in the dDT case as follows.

(1) A dDT connection exists if a 7-manifold has full holonomy G2 and the G2-
structure is “sufficiently large”. (2) The dDT equation is described as the zero of a
certain multi-moment map. (3) The gradient flow equation of a Chern–Simons type
functional of Karigiannis and Leung, whose critical points are dDT connections,
agrees with the Spin(7) version of the dDT equation on a cylinder with respect to
a certain metric on a certain space. This can be considered as an analogue of the
observation in instanton Floer homology for 3-manifolds.

Résumé. — Une connexion déformée de Donaldson–Thomas (dDT) est une con-
nexion hermitienne d’un fibré en ligne hermitien sur une variété G2 X satisfaisant
une certaine EDP non linéaire. Ceci est considéré comme le miroir d’un cycle
(co)associatif dans le contexte de la symétrie miroir. On peut également le consi-
dérer comme un analogue d’un G2-instanton. Dans cet article, nous voyons que
certaines observations importantes qui apparaissent dans d’autres problèmes géo-
métriques se retrouvent également dans le cas dDT comme suit.

(1) Une connexion dDT existe si une variété 7 possède une holonomie complète
G2 et que la structure G2 est « suffisamment grande ». (2) L’équation dDT est
décrite comme le zéro d’une certaine application multi-moments. (3) L’équation
de flux de gradient d’une fonctionnelle de type Chern–Simons de Karigiannis et
Leung, dont les points critiques sont des connexions dDT, concorde avec la version
Spin(7) de l’équation dDT sur un cylindre par rapport à une certaine métrique sur
un certain espace. Ceci peut être considéré comme un analogue de l’observation en
homologie de Floer instanton pour les variétés 3.

Keywords: mirror symmetry, gauge theory, G2-manifold, deformed Donaldson–Thomas
connections.
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1. Introduction

Let X7 be a 7-manifold with a G2-structure φ ∈ Ω3(X). For the defini-
tion of G2-structures, see for example [10, Section 2.2]. Denote by g, vol
and ∗ the induced Riemannian metric, volume form and Hodge star oper-
ator, respectively. We use the same sign convention as the paper above. In
particular, we have the decomposition Λ2T ∗X = Λ2

7 ⊕ Λ2
14, where

Λ2
7 =

{
β ∈ Λ2T ∗X

∣∣ ∗(φ ∧ β) = 2β
}

,

Λ2
14 =

{
β ∈ Λ2T ∗X

∣∣ ∗(φ ∧ β) = −β
}

.
(1.1)

Let (L, h) → X be a smooth complex Hermitian line bundle over X. We
denote by A0 the affine space of Hermitian connections on (L, h). Given
∇ ∈ A0, we regard its curvature F∇ as a

√
−1R-valued closed 2-form on X.

Definition 1.1. — A Hermitian connection ∇ ∈ A0 satisfying

(1.2) 1
6F 3

∇ + F∇ ∧ ∗φ = 0

is called a deformed Donaldson–Thomas (dDT) connection.

DDT connections appeared in the context of mirror symmetry. They
were introduced in [11] as “mirrors” of calibrated (associative) subman-
ifolds. Historically, deformed Hermitian Yang–Mills (dHYM) connections
were introduced first in [12] as “mirrors” of special Lagrangian submani-
folds. There is also a similar notion of dDT connections for a manifold with
a Spin(7)-structure ([8, 11]). As the names indicate, dDT connections can
also be considered as analogues of Donaldson–Thomas connections (G2-
instantons).

Thus it is natural to expect that dDT connections would have similar
properties to associative submanifolds and G2-instantons. We show that
it is indeed the case in [9, 10]. For example, the moduli space of dDT
connections is b1-dimensional and canonically orientable if we perturb the
G2-structure. Any dDT connection on a compact G2-manifold is a global
minimizer of the “mirror volume” and its value is topological by the “mir-
ror” of associator equality. We could also prove similar statements in the
Spin(7) case in [7, 10]. Moreover, dDT connections are given by critical
points of the Chern–Simons type functional in [6, Theorem 5.13]. The
variational characterization is known only for the G2 case, and no such
characterization is known for the Spin(7) case.

This paper is organized as follows. In Section 2, we study the existence of
a dDT connection. Known examples of dDT connections are either trivial
or constructed in [4, 13], and are very few in number. So it would be

ANNALES DE L’INSTITUT FOURIER



SOME OBSERVATIONS ON DDT CONNECTIONS 3

important to consider the existence problem. We first see that the formal
“large radius limit” of the defining equation of dDT connections is that
of G2-instantons. Thus it is natural to expect that dDT connections for a
“sufficiently large” G2-structure will behave like G2-instantons. Moreover,
it is known that any complex Hermitian line bundle admits a G2-instanton
on a compact holonomy G2-manifold. Then we show the following from
these facts.

Theorem 1.2 (Theorem 2.2). — Suppose that (X, φ) is a compact ho-
lonomy G2-manifold. Let (L, h) → X be a smooth complex Hermitian line
bundle over X. If φ is rescaled by a sufficiently large factor, there exists
a dDT connection with respect to the rescaled φ.

In Section 3, we formulate the dDT equation in terms of a multi-moment
map. The multi-moment map is a generalization of the moment map intro-
duced in [14, 15]. The dHYM equation is described as the zero of a certain
moment map on an infinite dimensional symplectic manifold ([2, Section 2],
[1, Section 2.1]). Analogously, we show that the dDT equation is described
as the zero of a certain multi-moment map.

Theorem 1.3 (Theorem 3.4). — The dDT equation is described as the
zero of the multi-moment map defined in Theorem 3.4.

In Section 4, we study the gradient flow of the Karigiannis–Leung func-
tional introduced in [6] whose critical points are dDT connections. It is
known that the gradient flow equation of the Chern–Simons functional on
an oriented 3-manifold X3 agrees with the ASD equation on R× X3. This
is an important observation in instanton Floer homology for 3-manifolds.
We show that there is an analogous relation between dDT equations for
G2- and Spin(7)-manifolds using the Karigiannis–Leung functional. This
will establish a new link between 3, 4-manifold theory and G2-, Spin(7)-
geometry, and we might define analogues of instanton Floer homology using
dDT connections.

Theorem 1.4 (Theorem 4.3). — The gradient flow equation of a Chern–
Simons type functional of Karigiannis and Leung, whose critical points are
dDT connections, agrees with the Spin(7) version of the dDT equation on a
cylinder with respect to a metric G on a space Aac defined at the beginning
of Section 4.2.

TOME 0 (0), FASCICULE 0
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2. Large radius limit

In this section, we show the existence of a dDT connection if a 7-manifold
has full holonomy G2 and the G2-structure is “sufficiently large”.

Suppose that (X, φ) is a compact holonomy G2-manifold. Let (L, h) → X

be a smooth complex Hermitian line bundle over X. Set

A0 = {Hermitian connections of (L, h)} = ∇0 +
√

−1Ω1 · idL,

where ∇0 ∈ A0 is any fixed connection and Ω1 is the space of 1-forms on X.
Denote by GU the group of unitary gauge transformations of (L, h), which
acts on A0. Explicitly,

GU =
{

f · idL

∣∣ f ∈ Ω0
C, |f | = 1

} ∼= C∞(
X, S1)

,

where Ω0
C is the space of C-valued smooth functions, and the action GU ×

A0 → A0 is defined by (λ, ∇) 7→ λ∗∇ := λ−1 ◦ ∇ ◦ λ. When λ = f · idL for
f ∈ C∞(X, S1), we have

(2.1) λ∗∇ = λ−1 ◦ ∇ ◦ λ = ∇ + f−1df · idL .

Thus the GU -orbit through ∇ ∈ A0 is given by ∇ + KU · idL, where

(2.2) KU :=
{

f−1df ∈
√

−1Ω1 ∣∣ f ∈ Ω0
C, |f | = 1

}
.

Note that the curvature 2-form F∇ is invariant under the action of GU .
Consider the family of G2-structures{

φr := r3φ
}

r>0 ,

all of which induce holonomy G2 metrics. The defining equation of dDT
connections with respect to φr is given by

0 = Fr(∇) := 1
6F 3

∇ + r4F∇ ∧ ∗φ.

Thus, formally taking the “large radius limit”, which means the leading
behaviour of Fr(∇) as r → ∞, we obtain

F∇ ∧ ∗φ = 0.

This is exactly the defining equation of G2-instantons. Thus it is natural
to expect that dDT connections for a sufficiently large G2-structure will

ANNALES DE L’INSTITUT FOURIER



SOME OBSERVATIONS ON DDT CONNECTIONS 5

behave like G2-instantons. The following is well-known for G2-instantons
on a smooth complex Hermitian line bundle, but we give the proof for
completeness.

Lemma 2.1. — On a compact holonomy G2-manifold (X7, φ), there is
a unique G2-instanton on a smooth complex Hermitian line bundle L → X

up to the action of GU .

Proof. — For any ∇ ∈ A0, we have dF∇ = 0. So it defines a cohomology
class [F∇] ∈

√
−1H2(X,R), which is known to be equal to −2π

√
−1c1(L).

Then there exists a 1-form α ∈
√

−1Ω1 such that F∇ + dα is harmonic by
Hodge theory.

Denote by Ωk
ℓ ⊂ Ωk the subspace of the space of k-forms corresponding

to the ℓ-dimensional irreducible representation of G2. For more details,
see for example [10, Section 2.2]. Denote by Hk the space of harmonic k-
forms on X and set Hk

ℓ = Hk ∩ Ωk
ℓ . Then by [5, Theorem 10.2.4], we have

H2
7

∼= H1
7 = H1 = {0}. Thus we have

F∇+α·idL
= F∇ + dα ∈

√
−1H2 =

√
−1H2

7 ⊕ H2
14 =

√
−1H2

14,

which implies that F∇+α·idL
∧ ∗φ = 0.

If ∇′ = ∇ + (α + α′) · idL for α′ ∈
√

−1Ω1 is also a G2-instanton, we
have 0 = F∇′ ∧ ∗φ = dα′ ∧ ∗φ, which is equivalent to

−dα′ = ∗(dα′ ∧ φ) = ∗d(α′ ∧ φ).(2.3)

Since dΩ1∩d∗Ω3 = {0}, we have dα′ = 0. Since H1(X,R) = {0} by [5, The-
orem 10.2.4] again and

√
−1R-valued exact 1-forms are contained in KU ,

the G2-instanton is unique up to the action of GU . □

Using this, we can show the following.

Theorem 2.2. — Suppose that (X, φ) is a compact holonomy G2-mani-
fold. Let (L, h) → X be a smooth complex Hermitian line bundle over X.
Then for sufficiently large r > 0, there exists a dDT connection with respect
to φr.

Proof. — Define a map F : [0, 1] × A0 →
√

−1dΩ5 by

F(s, ∇) = s4

6 F 3
∇ + F∇ ∧ ∗φ.

Then F(0, ·)−1(0)/GU , which is a point by Lemma 2.1, is the moduli space
of G2-instantons with respect to φ and F(s, ·)−1(0)/GU for s ̸= 0 is the
moduli space of dDT connections with respect to φ1/s.

We want to apply the implicit function theorem to show the state-
ment. Fix a G2-instanton ∇0 ∈ F(0, ·)−1(0), whose existence is guaranteed

TOME 0 (0), FASCICULE 0
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by Lemma 2.1. Denote by the linearization (dF)(0,∇0) : R ⊕
√

−1Ω1 →√
−1dΩ5 of F at (0, ∇0). Then we have

(dF)(0,∇0)
(
0,

√
−1b

)
=

√
−1db ∧ ∗φ.

Lemma 2.3. — We have

ker(dF)(0,∇0) = R ⊕
√

−1dΩ0, Im(dF)(0,∇0) =
√

−1dΩ5.

Proof. — The first equation is proved as in (2.3). For the second equa-
tion, the Hodge decomposition implies that d∗Ω2 = d∗dΩ1. For any b ∈ Ω1,
we have

d∗db = d∗(db + ∗(φ ∧ db)) ∈ d∗Ω2
7,

where we use the fact that φ is closed. Recall also the sign convention (1.1).
This implies that d∗Ω2 = d∗Ω2

7. Then

dΩ5 = ∗d∗Ω2 = ∗d∗Ω2
7 = dΩ5

7.

Since Ω5
7 is spanned by b ∧ ∗φ for b ∈ Ω1, the proof is completed. □

By the Hodge decomposition and H1(X,R) = {0}, we have Ω1 = dΩ0

⊕d∗Ω2. By this and Lemma 2.3, we see that (dF)(0,∇0)|√−1d∗Ω2 :
√

−1d∗Ω2

→
√

−1dΩ5 is an isomorphism. Hence, we can apply the implicit function
theorem (after the Banach completion) and we see that F(s, ·)−1(0) ̸= ∅
for sufficiently small s.

Finally, we explain how to recover the regularity of elements in
F(s, ·)−1(0) after the Banach completion. Since the curvature is invariant
under the addition of closed 1-forms, there exists as ∈ Ω1 such that

F
(
s, ∇0 +

√
−1as · idL

)
= 0, d∗as = 0(∗s)

for sufficiently small s. In particular, (∗0) is given by da0 ∧ ∗φ = d∗a0 = 0,
which is an overdetermined elliptic equation. Overdetermined ellipticity is
an open condition, so we see that (∗s) is also overdetermined elliptic for
sufficiently small s. Hence we can find a smooth element in F(s, ·)−1(0)
around (0, ∇0) and the proof is completed. □

3. The multi-moment map

It is known that there is a moment map picture in the dHYM case. In
particular, the dHYM equation is described as the zero of a certain moment
map on an infinite dimensional symplectic manifold. See for example [2,
Section 2] or the survey article [1, Section 2.1]. Analogously, we show that
the dDT equation is described as the zero of a certain multi-moment map.
First, recall the definition of the multi-moment map in [14, 15].

ANNALES DE L’INSTITUT FOURIER



SOME OBSERVATIONS ON DDT CONNECTIONS 7

Definition 3.1. — Let X be a smooth manifold and c ∈ Ω3 be a closed
3-form on X. Suppose that a Lie group G acts on X preserving c. Denote
by g the Lie algebra of G and set

Pg = ker
(
L : Λ2g −→ g

)
⊂ Λ2g,

where L is the linear map induced by the Lie bracket. (Note that Pg = Λ2g

if G is abelian.) Denote by u∗ the vector field on X generated by u ∈ g.
For a two vector p =

∑
j uj ∧ vj ∈ Λ2g, set

p∗ =
∑

j

u∗
j ∧ v∗

j , i(p∗)c =
∑

j

c
(
u∗

j , v∗
j , ·

)
.

Denote by ⟨·, ·⟩ : Λ2g∗ × Λ2g → R the canonical pairing.
Then a map ν : X → P∗

g is called a multi-moment map if it is G-
equivariant and satisfies

d⟨ν, p⟩ = i(p∗)c
for any p ∈ Pg.

Let X be a compact 7-manifold with a coclosed G2-structure φ (d∗φ = 0)
and (L, h) → X be a smooth complex Hermitian line bundle over X. Let
A0 be the space of Hermitian connections of (L, h). Define a map FG2 :
A0 →

√
−1Ω6 by

FG2(∇) = 1
6F 3

∇ + F∇ ∧ ∗φ.

Then the space of dDT connections is given by F−1
G2

(0). Denote by GU the
group of unitary gauge transformations of (L, h) acting A0 canonically as
in (2.1). Since GU = C∞(X, S1), the Lie algebra gU of GU is identified with
the space

√
−1Ω0 of

√
−1R-valued functions on X. Note that Pg = Λ2g

since GU is abelian. Define a 3-form Θ ∈ Ω3(A0) on A0 by

Θ∇(α1, α2, α3) =
√

−1
∫

X

α1 ∧ α2 ∧ α3 ∧
(

1
2F 2

∇ + ∗φ

)
,

where ∇ ∈ A0 and α1, α2, α3 ∈
√

−1Ω1 = T∇A0. We first show the follow-
ing Lemma 3.2 as required in Definition 3.1. Then we show that there exists
a multi-moment map ν for (A0, Θ, GU ) and the dDT equation is regarded
as the zero of ν, where we need the coclosed assumption on φ.

Lemma 3.2. — The 3-form Θ is GU -invariant and closed.

Proof. — Take any ∇ ∈ A0, λ = f ·idL ∈ GU , where f ∈ C∞(X, S1), and
α1, α2, α3, α4 ∈

√
−1Ω1 ∼= T∇A0. Identify αj with a vector field on A0 by

(αj)∇̃ = d
dt

(
∇̃ + tαj · idL

)∣∣∣
t=0

TOME 0 (0), FASCICULE 0
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for ∇̃ ∈ A0. We first show the GU -invariance of Θ. That is,

Θλ∗∇
(
λ∗(α1), λ∗(α2), λ∗(α3)

)
= Θ∇ (α1, α2, α3) .(3.1)

By (2.1), we compute

λ∗(αj)∇ = λ∗
d
dt

(∇ + tαj · idL)
∣∣∣∣
t=0

= d
dt

(
∇ +

(
tαj + f−1df

)
· idL

)∣∣∣∣
t=0

= (αj)λ∗∇.

Since Fλ∗∇ = F∇, we obtain (3.1).
Next, we show the closedness of Θ. Note that [αi, αj ] = 0. Then it follows

that

dΘ(α1, α2, α3, α4) = α1 (Θ(α2, α3, α4)) − α2 (Θ(α1, α3, α4))
+ α3 (Θ(α1, α2, α4)) − α4 (Θ(α1, α2, α3)) .

Since

αi (Θ(αj , αk, αℓ))∇ =
√

−1 d
dt

∫
X

αj ∧ αk ∧ αℓ ∧
(

1
2F 2

∇+tαi·idL
+ ∗φ

)∣∣∣∣
t=0

=
√

−1
∫

X

αj ∧ αk ∧ αℓ ∧ dαi ∧ F∇,

we have

(dΘ)∇(α1, α2, α3, α4) =
√

−1
∫

X

d(α1 ∧ α2 ∧ α3 ∧ α4 ∧ F∇) = 0,

which implies that dΘ = 0. □

We also need the following lemma.

Lemma 3.3. — We have

Ω1 =


N∑

j=1
f j

1 df j
2

∣∣∣∣∣∣ N ∈ N, f j
1 , f j

2 ∈ Ω0

 .

Proof. — Take any 1-form α ∈ Ω1. We first show that for any x ∈ X,
there exists an open neighborhood Ux of x and smooth functions {f̃1

x,j ,

f̃2
x,j}7

j=1 on X such that

α|Ux =
7∑

j=1
f̃1

x,j d f̃2
x,j

∣∣∣
Ux

.(3.2)

Indeed, take any local coordinates (V, (x1, . . . , x7)) of x and set

α|V =
7∑

j=1
αjdxj .

ANNALES DE L’INSTITUT FOURIER



SOME OBSERVATIONS ON DDT CONNECTIONS 9

We can take a cutoff function h such that h has compact support in V

and h = 1 on an open neighborhood Ux of x. Then setting f̃1
x,j = hαj and

f̃2
x,j = hxj , which are smooth functions on X, we obtain (3.2).
Since {Ux}x∈X is an open cover of X and X is compact, there exists

x1, . . . , xN ∈ X such that {Uxp
}N

p=1 covers X. Denote by {hp}N
p=1 the

partition of unity subordinate to {Uxp
}N

p=1. Set

f1
p,j = hpf̃1

xp,j f2
p,j = f̃2

xp,j .

Then we have α =
∑N

p=1
∑7

j=1 f1
p,jdf2

p,j . Indeed, take any x ∈ X. We may
assume that x ∈ Ux1 ∩ . . . ∩ Uxk

and x ̸∈ Up for p = k + 1, . . . , N . Then∑7
j=1(f̃1

xp,j df̃2
xp,j)x = αx for p = 1, . . . , k by (3.2) and hp(x) = 0 for

p = k + 1, . . . , N . Hence
N∑

p=1

7∑
j=1

(
f1

p,jdf2
p,j

)
x

=
k∑

p=1
hp(x)

7∑
j=1

(
f̃1

xp,jdf̃2
xp,j

)
x

=
k∑

p=1
hp(x)αx

=
N∑

p=1
hp(x)αx = αx. □

Denote by Z6 the space of closed 6-forms on X. Define a map ιZ6 : Z6 →
Λ2g∗

U by

ιZ6(ξ)(f1, f2) =
∫

X

ξ ∧ 1
2(f1df2 − f2df1) =

∫
X

ξ ∧ f1df2

for ξ ∈ Z6 and f1, f2 ∈
√

−1Ω0 = gU .

Theorem 3.4. — Define a GU -invariant map ν : A0 → Λ2g∗
U by

ν(∇) = ιZ6
(√

−1FG2(∇)
)

.

Then we have d⟨ν, p⟩ = i(p∗)Θ for any p ∈ Λ2gU .

Since we assume that d ∗ φ = 0, we see that
√

−1FG2(∇) ∈ Z6 for any
∇ ∈ A0. By Lemma 3.3, ιZ6 is injective. Hence we have ν−1(0) = F−1

G2
(0).

In this sense, we can regard the dDT equation as the zero of a multi-moment
map.

Proof. — First note that the vector field f∗ generated by f ∈
√

−1Ω0 =
gU is given by

f∗
∇ = d

dt

(
etf

)∗ ∇
∣∣∣∣
t=0

= d
dt

(
∇ + e−tf detf · idL

)∣∣∣∣
t=0

= df

TOME 0 (0), FASCICULE 0



10 Kotaro KAWAI

at ∇ ∈ A0. Hence for any f1, f2 ∈
√

−1Ω0 = gU and α ∈
√

−1Ω1 = T∇A0,
we have

Θ∇
(
(f∗

1 )∇, (f∗
2 )∇, α

)
=

√
−1

∫
X

df1 ∧ df2 ∧ α ∧
(

1
2F 2

∇ + ∗φ

)
=

√
−1

∫
X

f1df2 ∧ dα ∧
(

1
2F 2

∇ + ∗φ

)
=

√
−1

∫
X

f1df2 ∧ (dFG2)∇(α),

where (dFG2)∇ :
√

−1Ω1 →
√

−1Ω6 is the linearization of FG2 at ∇ ∈ A0.
Hence we obtain

Θ∇ ((f∗
1 )∇, (f∗

2 )∇, α) = ιZ6
(√

−1(dFG2)∇(α)
)

(f1, f2)

= d
dt

ιZ6
(√

−1FG2(∇ + tα · idL)
)∣∣∣∣

t=0
(f1, f2)

= (d⟨ν, f1 ∧ f2⟩)∇ (α). □

In the dHYM case, the “J functional” defined in [2, Remark 2.15] or [1,
Lemma 2.6(ii)] is convex along geodesics and the critical points are so-
lutions of the dHYM equation. Hence it plays an important role in the
existence problem.

In the dDT case, there is a functional whose critical points are dDT
connections. See Section 4.2. However, no metric has yet been found that
makes the functional convex along geodesics. Since no such results have
been found for associative submanifolds, it might be difficult to relate the
functional to the existence problem.

However, as we see in the next section, we have an observation as in the
case of instanton Floer homology for 3-manifolds by using the functional
in Section 4.2. We might develop the theory like instanton Floer homology
using dDT connections.

4. Gradient flow of the Karigiannis–Leung functional

It is known that the gradient flow equation of the Chern–Simons func-
tional on an oriented 3-manifold X3 agrees with the ASD equation on
R × X3. See for example [3, Section 2.5.3]. This is an important observa-
tion in instanton Floer homology for 3-manifolds. We show that there is an
analogous relation between dDT equations for G2- and Spin(7)-manifolds.

Let X7 be a 7-manifold with a G2-structure φ and (L, h) → X7 be a
smooth complex Hermitian line bundle over X7. Let {∇t}t∈R be a family of
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Hermitian connections of (L, h) → X7. We identify this with a connection
∇̃ of π∗L → R × X7, where π : R × X7 → X7 is the projection. If we set

∇t = ∇0 +
√

−1at · idL,

where at ∈ Ω1(X7), we have ∇̃ = π∗∇0+
√

−1π∗at ·idπ∗L and the curvature
F∇̃ of ∇̃ is given by

F∇̃ =
√

−1dt ∧ ∂π∗at

∂t
+ π∗F∇t .

4.1. The Spin(7)-dDT condition on R × X7

The product R×X7 admits a canonical Spin(7)-structure. We write down
the condition that F∇̃ is a Spin(7)-dDT connection, a dDT connection for
a manifold with a Spin(7)-structure. For simplicity, set

ȧt := ∂π∗at

∂t
, Et := −

√
−1π∗F∇t

.

Lemma 4.1. — The connection ∇̃ is a Spin(7)-dDT connection if and
only if

(4.1) − ∗φ ∧ Et + 1
6E3

t −
(

1 − 1
2 ∗

(
φ ∧ E2

t

))
∗ ȧt

+ ∗(ȧt ∧ Et ∧ φ) ∧ ∗Et = 0

(4.2) 1
2φ ∧ ∗E2

t − ȧt ∧ Et ∧ φ = 0.

Proof. — Denote by ∗8 and ∗ = ∗7 the Hodge star operators on R × X7

and X7, respectively. Then, ∇̃ is a Spin(7)-dDT connection (in the sense
of [8, Definition 1.3]) if and only if〈

F∇̃ + 1
6 ∗8 F 3

∇̃
, dt ∧ b + i(b♯)φ

〉
= 0,〈

F 2
∇̃

, dt ∧ i(b♯) ∗ φ − b ∧ φ
〉

= 0
(4.3)

for any b ∈ Ω1(X7) by [8, Lemma 3.4]. Since

1
6 ∗8 F 3

∇̃
= −

√
−1
6 ∗8

(
3dt ∧ ȧt ∧ E2

t + E3
t

)
=

√
−1

(
−1

2 ∗
(
ȧt ∧ E2

t

)
− 1

6dt ∧ ∗E3
t

)
,
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(4.3) is equivalent to〈
ȧt − 1

6 ∗ E3
t , b

〉
+

〈
Et − 1

2 ∗
(
ȧt ∧ E2

t

)
, i(b♯)φ

〉
= 0,(4.4) 〈

2ȧt ∧ Et, i(b♯) ∗ φ
〉

−
〈
E2

t , b ∧ φ
〉

= 0.(4.5)

We compute〈
Et, i(b♯)φ

〉
= ∗(Et ∧ ∗(i(b♯)φ)) = ∗(Et ∧ b ∧ ∗φ) = ⟨∗φ ∧ Et, ∗b⟩

and〈
−1

2 ∗
(
ȧt ∧ E2

t

)
, i(b♯)φ

〉
= −1

2 ∗
(
ȧt ∧ E2

t ∧ i(b♯)φ
)

= −1
2 ∗

(
i(b♯)

(
ȧt ∧ E2

t

)
∧ φ

)
= −1

2 ∗
(
E2

t ∧ φ
)

· ⟨ȧt, b⟩ + ∗
(
ȧt ∧ Et ∧ (i(b♯)Et) ∧ φ

)
.

Since i(b♯)Et = − ∗ (b ∧ ∗Et), we have

∗
(
ȧt ∧ Et ∧ (i(b♯)Et) ∧ φ

)
= ⟨ȧt ∧ Et ∧ φ, b ∧ ∗Et⟩
= −⟨∗(ȧt ∧ Et ∧ φ) ∧ ∗Et, ∗b⟩.

Then, we see that (4.4) is equivalent to (4.1). Similarly, since〈
2ȧt ∧ Et, i(b♯) ∗ φ

〉
= −2 ∗ (ȧt ∧ Et ∧ b ∧ φ) = 2⟨ȧt ∧ Et ∧ φ, ∗b⟩,

−
〈
E2

t , b ∧ φ
〉

= − ∗
(
b ∧ φ ∧ ∗E2

t

)
= −

〈
φ ∧ ∗E2

t , ∗b
〉

,

we see that (4.5) is equivalent to (4.2). □

Hence, eliminating ∗(ȧt ∧ Et ∧ φ) from (4.1) by (4.2), we obtain

(4.6) − ∗φ ∧ Et + 1
6E3

t + 1
2 ∗

(
φ ∧ ∗E2

t

)
∧ ∗Et

=
(

1 − 1
2 ∗

(
φ ∧ E2

t

))
∗ ȧt.

Remark 4.2. — If 1 − ∗(φ ∧ E2
t )/2 ̸= 0, (4.1) and (4.2) are equivalent

to (4.6) by Proposition A.3.

4.2. The Karigiannis–Leung functional

Karigiannis and Leung [6] introduced the functional whose critical points
are dDT connections. We first review it.
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Let X7 be a compact 7-manifold with a coclosed G2-structure φ (d∗φ=0)
and let (L, h) → X7 be a smooth complex Hermitian line bundle. Denote
by A0 the space of Hermitian connections of (L, h). Define a 1-form Θ on
A0 by

Θ∇
(√

−1b
)

=
∫

X

√
−1b ∧

(
1
6F 3

∇ + F∇ ∧ ∗φ

)
for ∇ ∈ A0 and

√
−1b ∈

√
−1Ω1 = T∇A0. Then we see that Θ∇ = 0 if

and only if ∇ is a dDT connection. We can show that Θ is closed as in the
proof of Lemma 3.2. Since A0 is contractible, there exists F : A0 → R such
that dF = Θ. Hence we see that dDT connections are critical points of F .

Now, we study the relation between Spin(7)-dDT connections on R×X7

and the Karigiannis–Leung functional F . Set

Aac :=
{

∇ ∈ A0

∣∣∣∣ 1 + 1
2 ∗

(
φ ∧ F 2

∇
)

> 0
}

.

This type of the subset is also considered in the dHYM case. For example,
see the survey article [1, Definition 2.1]. By the mirror of the associator
equality in [10, Theorem 5.1], it will be natural to call a Hermitian con-
nection ∇ satisfying 1 + ∗(φ ∧ F 2

∇)/2 > 0 almost calibrated as in the
dHYM case.

Define a metric G on Aac by

G∇
(√

−1a,
√

−1b
)

=
∫

X

⟨a, b⟩∇

(
1 + 1

2 ∗
(
φ ∧ F 2

∇
))

vol

where ∇ ∈ Aac,
√

−1a,
√

−1b ∈
√

−1Ω1 = T∇Aac, vol is the induced vol-
ume form from φ, and ⟨·, ·⟩∇ is the induced metric on the space of dif-
ferential forms from (idT X +(−

√
−1F∇)♯)∗φ. Here, (−

√
−1F∇)♯ is an en-

domorphism of TX defined by g((−
√

−1F∇)♯(u), v) = −
√

−1F∇(u, v) for
u, v ∈ TX, where g is the induced metric (on TX) from φ. Note that
(−

√
−1F∇)♯ is skew-symmetric with respect to g. Explicitly, if we denote

by g∇ the induced metric (on TX) from (idT X +(−
√

−1F∇)♯)∗φ, we have
g∇ = (idT X +(−

√
−1F∇)♯)∗g and ⟨·, ·⟩∇ is the induced metric from g∇.

The following is the main theorem of this paper.

Theorem 4.3. — The gradient flow equation of F with respect to G
on Aac agrees with the Spin(7)-dDT equation on R × X7.

Proof. — We first deduce the gradient flow equation and compare it with
the computation in Section 4.1. Take any ∇ ∈ Aac and b ∈ Ω1. Set

E∇ = −
√

−1F∇ ∈ Ω2.
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Denote by ⟨·, ·⟩ the induced metric on the space of differential forms from φ.
Then we compute

(dF)∇
(√

−1b
)

=
∫

X

√
−1b ∧

(
1
6F 3

∇ + F∇ ∧ ∗φ

)
=

∫
X

〈
b, ∗

(
1
6E3

∇ − E∇ ∧ ∗φ

)〉
vol .

(4.7)

By Proposition A.1, we have

∗
(

1
6E3

∇ − E∇ ∧ ∗φ

)
=

((
idT X −

(
E♯

∇
)2

)−1
)∗

η∇,

where

η∇ = ∗
(

− ∗ φ ∧ E∇ + 1
6E3

∇ + 1
2 ∗

(
φ ∧ ∗E2

∇
)

∧ ∗E∇

)
∈ Ω1.

Since

idT X −
(
E♯

∇
)2 =

(
idT X −E♯

∇
)(

idT X +E♯
∇

)
= t

(
idT X +E♯

∇
)(

idT X +E♯
∇

)
,

where t(idT X +E♯
∇) is the transpose of idT X +E♯

∇ with respect to g, we
have

(4.8)
〈

b, ∗
(

1
6E3

∇ − E∇ ∧ ∗φ

)〉
=

〈
b,

((
idT X −

(
E♯

∇
)2

)−1
)∗

η∇

〉
=

〈((
idT X +E♯

∇
)−1

)∗
b,

((
idT X +E♯

∇
)−1

)∗
η∇

〉
= ⟨b, η∇⟩∇ .

Then by (4.7) and (4.8), the gradient vector field of F with respect to G is
given by

Aac ∋ ∇ 7−→
√

−1η∇

1 − 1
2 ∗ (φ ∧ E2

∇)
∈

√
−1Ω1.

Thus a family {∇t}t∈R ⊂ Aac satisfies the gradient flow of F with respect
to G if and only if

ȧt = η∇t

1 − 1
2 ∗

(
φ ∧ E2

∇t

)
=

∗
(
− ∗ φ ∧ Et + 1

6 E3
t + 1

2 ∗
(
φ ∧ ∗E2

t

)
∧ ∗Et

)
1 − 1

2 ∗ (φ ∧ E2
t )

,

(4.9)

where ∇t = ∇0 +
√

−1at · idL, at ∈ Ω1, ȧt = ∂at/∂t and Et = E∇t =
−

√
−1F∇t

. Then we see that (4.9) is equivalent to (4.6). By Remark 4.2,
this is equivalent to the Spin(7)-dDT equation on R × X7. □
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By Theorem 4.3, we will have to consider the deformation theory of the
Spin(7)-dDT connections on R×X7 next for the analogue of instanton Floer
homology for 3-manifolds. Deformations of Spin(7)-dDT connections on a
compact manifold with a Spin(7)-structure are studied in [7, Theorem 1.2],
but there are some technical assumptions. We will have to deal with more
technical issues, including these, to develop the deformation theory on a
cylinder.

Appendix A. Algebraic Computations

In this appendix, we give some algebraic computations needed in the
proof of Theorem 4.3.

Set V = R7 and let g be the standard inner product on V . Denote by
∗ the standard Hodge star operator on V . For a 2-form F ∈ Λ2V ∗, define
F ♯ ∈ End(V ) by

g(F ♯(u), v) = F (u, v)

for u, v ∈ V . Then, F ♯ is skew-symmetric, and hence, det(I + F ♯) > 0,
where I is the identity matrix. We also have

det
(
I − (F ♯)2)

= det
(
I + F ♯

)
det

(
I − F ♯

)
= det

(
I + F ♯

)
det

(
I + tF ♯

)
=

(
det

(
I + F ♯

))2
> 0,

where tF ♯ is the transpose of F ♯ with respect to g. Define a 3-form φ ∈
Λ3V ∗ by

φ = e123 + e145 + e167 + e246 − e257 − e347 − e356,

where {ei}7
i=1 is a standard oriented basis of V with the dual basis {ei}7

i=1
of V ∗ and ei1...ik is short for ei1 ∧ · · · ∧ eik . The stabilizer of φ is known
to be the exceptional 14-dimensional simple Lie group G2. The elements
of G2 preserve the standard inner product g and volume form vol. The
group G2 acts canonically on ΛkV ∗, and Λ2V ∗ is decomposed as Λ2V ∗ =
Λ2

7V ∗⊕Λ2
14V ∗, where Λ2

ℓV ∗ is a ℓ-dimensional irreducible subrepresentation
of G2 in Λ2V ∗. For more details, see for example [10, Section 2.2]. Set

F = F7 + F14 = i(u)φ + F14 ∈ Λ2
7V ∗ ⊕ Λ2

14V ∗

for u ∈ V .
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Proposition A.1. — For a 2-form F ∈ Λ2V ∗, set ξ = −∗φ∧F +F 3/6 ∈
Λ6V ∗. Then we have(

I − (F ♯)2)∗ ∗ ξ = ∗
(

ξ + 1
2 ∗

(
φ ∧ ∗F 2)

∧ ∗F

)
.

Proof. — Since (I − (F ♯)2)∗ ∗ ξ = ∗ξ − ((F ♯)2)∗ ∗ ξ, we only have to
compute ((F ♯)2)∗ ∗ ξ. Set

Fij = F (ei, ej).

We have F ♯ =
∑

i,j Fijei ⊗ej , which implies that (F ♯)2 =
∑

i,j,k FijFjkei ⊗
ek. Then we compute(

(F ♯)2)∗ ∗ ξ =
∑
i,j,k

FijFjk ∗ ξ(ek) · ei = −
∑

j

⟨i(ej)F, ∗ξ⟩ · i(ej)F.

Since

⟨i(ej)F, ∗ξ⟩ = ∗ (∗ξ ∧ ∗(i(ej)F )) = − ∗
(
∗ξ ∧ ej ∧ ∗F

)
=

〈
ej , ∗(∗ξ ∧ ∗F )

〉
, i(ej)F = − ∗

(
ej ∧ ∗F

)
,

we have (
(F ♯)2)∗ ∗ ξ = ∗ (∗ (∗ξ ∧ ∗F ) ∧ ∗F )

= ∗
(

∗
(

∗
(

− ∗ φ ∧ F + F 3

6

)
∧ ∗F

)
∧ ∗F

)
.

(A.1)

Lemma A.2. — We have

(∗F 3) ∧ ∗F = 0, ∗
(
φ ∧ ∗F 2)

= −6i(u)F.

Proof. — We can prove the first equation as in [9, Lemma C.2]. For any
v ∈ V , set

v♭ = g(v, ·) ∈ V ∗.

We compute

v♭ ∧ (∗F 3) ∧ ∗F = (∗F 3) ∧ ∗(i(v)F ) = F 3 ∧ i(v)F = i(v)(F 4/4) = 0,

which implies the first equation. Similarly, for any v ∈ V , we have

v♭∧φ∧∗F 2 = ∗(v♭∧φ)∧F 2 = −i(v)∗φ∧F 2 = ∗φ∧i(v)F 2 = 2i(v)F ∧F ∧∗φ.

Since F ∧ ∗φ = i(u)φ ∧ ∗φ = 3 ∗ u♭ by for example [9, Lemma B.1], we
obtain

v♭ ∧ φ ∧ ∗F 2 = 6
〈
u♭, i(v)F

〉
vol = 6

〈
v♭ ∧ u♭, F

〉
vol = −6

〈
v♭, i(u)F

〉
vol,

which implies the second equation. □
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Then by (A.1), Lemma A.2 and the equation F ∧∗φ = i(u)φ∧∗φ = 3∗u♭,
we obtain (

(F ♯)2)∗ ∗ ξ = ∗
(
∗ (∗ (− ∗ φ ∧ F ) ∧ ∗F ) ∧ ∗F

)
= ∗

(
∗
(
−3u♭ ∧ ∗F

)
∧ ∗F

)
= 3 ∗ ((i(u)F ) ∧ ∗F )

= −1
2 ∗

(
∗
(
φ ∧ ∗F 2)

∧ ∗F
)

and the proof is completed. □

Proposition A.3. — For a 1-form a ∈ V ∗ and a 2-form F ∈ Λ2V ∗

such that 1 − ∗(φ ∧ F 2)/2 ̸= 0,

(A.2) − ∗φ ∧ F + 1
6F 3

−
(

1 − 1
2 ∗

(
φ ∧ F 2))

∗ a + ∗(a ∧ F ∧ φ) ∧ ∗F = 0,

(A.3) 1
2φ ∧ ∗F 2 − a ∧ F ∧ φ = 0

if and only if

− ∗ φ ∧ F + 1
6F 3 + 1

2 ∗
(
φ ∧ ∗F 2)

∧ ∗F =
(

1 − 1
2 ∗

(
φ ∧ F 2))

∗ a.(A.4)

Proof. — Eliminating a ∧ F ∧ φ from (A.2) by (A.3), we obtain (A.4).
Conversely, (A.4) implies (A.3) by the following Lemma A.4. By (A.4), the
left hand side of (A.2) is computed as

− 1
2 ∗

(
φ ∧ ∗F 2)

∧ ∗F + ∗(a ∧ F ∧ φ) ∧ ∗F

= ∗
(

−1
2φ ∧ ∗F 2 + a ∧ F ∧ φ

)
∧ ∗F,

which vanishes by (A.3). □

Lemma A.4. — For any 2-form F ∈ Λ2V ∗, we have

∗
(

− ∗ φ ∧ F + 1
6F 3 + 1

2 ∗
(
φ ∧ ∗F 2)

∧ ∗F

)
∧ F ∧ φ

= 1
2

(
1 − 1

2 ∗
(
φ ∧ F 2))

φ ∧ ∗F 2.
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Proof. — Fix any v ∈ V and set

J1 = v♭ ∧ ∗
(

− ∗ φ ∧ F + 1
6F 3

)
∧ F ∧ φ,

J2 = v♭ ∧ ∗
(

1
2 ∗

(
φ ∧ ∗F 2)

∧ ∗F

)
∧ F ∧ φ.

We compute J1 and J2. We have

J1 = ∗
(

i(v)
(

∗φ ∧ F − 1
6F 3

))
∧ ∗(2F7 − F14)

= i(v)
(

∗φ ∧ F − 1
6F 3

)
∧ (2F7 − F14)

=
(

−3 ∗ (v♭ ∧ u♭) − 1
2 i(v)F ∧ F 2

)
∧ (2F7 − F14),

where we use ∗φ ∧ F = 3 ∗ u♭. We also have

−3 ∗
(
v♭ ∧ u♭

)
∧ (2F7 − F14) = −3

〈
v♭ ∧ u♭, 2F7 − F14

〉
vol

= −3
〈
v♭, i(u)F

〉
vol

as i(u)F7 = i(u)i(u)φ = 0, and(
−1

2 i(v)F ∧ F 2
)

∧ (2F7 − F14)

= −1
2 i(v)F ∧

(
F 2

7 + 2F7 ∧ F14 + F 2
14

)
∧ (2F7 − F14)

= −1
2 (i(v)F7 + i(v)F14) ∧

(
2F 3

7 + 3F 2
7 ∧ F14 − F 3

14
)

= −1
2

{
i(v)F7 ∧

(
3F 2

7 ∧ F14 − F 3
14

)
+ i(v)F14 ∧

(
2F 3

7 + 3F 2
7 ∧ F14

)}
,

where we use

i(v)F7 ∧ F 3
7 = i(v)

(
F 4

7 /4
)

= 0 and i(v)F14 ∧ F 3
14 = i(v)

(
F 4

14/4
)

= 0.

By [9, (B.7)], we have

F 3
7 = 6|u|2 ∗ u♭.(A.5)

Then

3i(v)F7 ∧ F 2
7 ∧ F14 = i(v)F 3

7 ∧ F14 = −6|u|2 ∗
(
v♭ ∧ u♭

)
∧ F14

= 6|u|2
〈
v♭, i(u)F

〉
vol,

2i(v)F14 ∧ F 3
7 = 12|u|2i(v)F14 ∧ ∗u♭ = 12|u|2

〈
F14, v♭ ∧ u♭

〉
vol

= −12|u|2
〈
v♭, i(u)F

〉
vol .
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Hence we obtain

(A.6) J1 =
(
−3 + 3|u|2

) 〈
v♭, i(u)F

〉
vol

+ 1
2

(
i(v)F7 ∧ F 3

14 − 3i(v)F14 ∧ F 2
7 ∧ F14

)
.

Next, we compute J2. By Lemma A.2, we have

J2 = v♭ ∧ ∗ (−3i(u)F ∧ ∗F ) ∧ ∗(2F7 − F14)
= 3 ∗ (i(u)F ∧ ∗F ) ∧ ∗

(
i(v)(−2F7 + F14)

)
= 3i(u)F ∧ ∗F ∧ i(v)(−2F7 + F14).

Since

i(u)F ∧ ∗F = i(u)F14 ∧
(

1
2F7 ∧ φ − F14 ∧ φ

)
= 1

2 (i(u)(F14 ∧ F7 ∧ φ) − F14 ∧ F7 ∧ i(u)φ) − 1
2 i(u)F 2

14 ∧ φ

= −1
2F 2

7 ∧ F14 − 1
2

(
i(u)

(
F 2

14 ∧ φ
)

− F 2
14 ∧ i(u)φ

)
= 1

2

(
|F14|2 ∗ u♭ − F 2

7 ∧ F14 + F7 ∧ F 2
14

)
,

we have

J2 = 3
2

(
−F 2

7 ∧ F14 + F7 ∧ F 2
14

)
∧ i(v) (−2F7 + F14)

+ 3
2 |F14|2 ∗ u♭ ∧ i(v)(−2F7 + F14).

We compute(
−F 2

7 ∧ F14 + F7 ∧ F 2
14

)
∧ i(v)(−2F7 + F14)

= 2i(v)F7 ∧ F 2
7 ∧ F14 − 2i(v)F7 ∧ F7 ∧ F 2

14

− i(v)F14 ∧ F 2
7 ∧ F14 + i(v)F14 ∧ F7 ∧ F 2

14.

By (A.5), it follows that

2i(v)F7 ∧ F 2
7 ∧ F14 = 2

3 i(v)F 3
7 ∧ F14 = 4|u|2

〈
v♭, i(u)F

〉
vol .

Since −2i(v)F7 ∧ F7 ∧ F 2
14 = −i(v)F 2

7 ∧ F 2
14 = F 2

7 ∧ i(v)F 2
14 = 2i(v)F14 ∧

F 2
7 ∧ F14, we have

−2i(v)F7 ∧ F7 ∧ F 2
14 − i(v)F14 ∧ F 2

7 ∧ F14 = i(v)F14 ∧ F 2
7 ∧ F14.

We also have

i(v)F14 ∧ F7 ∧ F 2
14 = 1

3 i(v)F 3
14 ∧ F7 = −1

3F 3
14 ∧ i(v)F7

TOME 0 (0), FASCICULE 0



20 Kotaro KAWAI

and
3
2 |F14|2 ∗ u♭ ∧ i(v)(−2F7 + F14) = 3

2 |F14|2
〈
−2F7 + F14, v♭ ∧ u♭

〉
vol

= −3
2 |F14|2

〈
v♭, i(u)F

〉
vol .

Hence we obtain

(A.7) J2 =
(

6|u|2 − 3
2 |F14|2

) 〈
v♭, i(u)F

〉
vol

+ 3
2 i(v)F14 ∧ F 2

7 ∧ F14 − 1
2 i(v)F7 ∧ F 3

14.

Then by (A.6) and (A.7), we obtain

J1 + J2 = 3
(

−1 + 3|u|2 − 1
2 |F14|2

) 〈
v♭, i(u)F

〉
vol

= 3
(

−1 + 1
2 ∗

(
φ ∧ F 2)) 〈

v♭, i(u)F
〉

vol,

where we use ∗(φ ∧ F 2) = ∗ (F ∧ ∗(2F7 − F14)) = 2|F7|2 − |F14|2 = 6|u|2 −
|F14|2 by [9, Lemma B.1]. Then it follows that

∗
(

− ∗ φ ∧ F + 1
6F 3 + 1

2 ∗
(
φ ∧ ∗F 2)

∧ ∗F

)
∧ F ∧ φ

= 3
(

−1 + 1
2 ∗

(
φ ∧ F 2))

∗ (i(u)F ).

Since φ ∧ ∗F 2 = −6 ∗ (i(u)F ) by Lemma A.2, the proof of Lemma A.4 is
completed. □
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