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SOME OBSERVATIONS ON DEFORMED
DONALDSON-THOMAS CONNECTIONS

by Kotaro KAWAI (*)

ABSTRACT. — A deformed Donaldson-Thomas (dDT) connection is a Hermitian
connection of a Hermitian line bundle over a G2-manifold X satisfying a certain
nonlinear PDE. This is considered to be the mirror of a (co)associative cycle in
the context of mirror symmetry. It can also be considered as an analogue of a Ga-
instanton. In this paper, we see that some important observations that appear in
other geometric problems are also found in the dDT case as follows.

(1) A dDT connection exists if a 7-manifold has full holonomy G2 and the Ga-
structure is “sufficiently large”. (2) The dDT equation is described as the zero of a
certain multi-moment map. (3) The gradient flow equation of a Chern—Simons type
functional of Karigiannis and Leung, whose critical points are dDT connections,
agrees with the Spin(7) version of the dDT equation on a cylinder with respect to
a certain metric on a certain space. This can be considered as an analogue of the
observation in instanton Floer homology for 3-manifolds.

RESUME. — Une connexion déformée de Donaldson—Thomas (dDT) est une con-
nexion hermitienne d’un fibré en ligne hermitien sur une variété G X satisfaisant
une certaine EDP non linéaire. Ceci est considéré comme le miroir d’un cycle
(co)associatif dans le contexte de la symétrie miroir. On peut également le consi-
dérer comme un analogue d’un Gaz-instanton. Dans cet article, nous voyons que
certaines observations importantes qui apparaissent dans d’autres problémes géo-
métriques se retrouvent également dans le cas dDT comme suit.

(1) Une connexion dDT existe si une variété 7 posséde une holonomie compléte
G2 et que la structure Ga est « suffisamment grande ». (2) L’équation dDT est
décrite comme le zéro d’une certaine application multi-moments. (3) L’équation
de flux de gradient d’une fonctionnelle de type Chern—Simons de Karigiannis et
Leung, dont les points critiques sont des connexions dDT, concorde avec la version
Spin(7) de ’équation dDT sur un cylindre par rapport & une certaine métrique sur
un certain espace. Ceci peut étre considéré comme un analogue de ’observation en
homologie de Floer instanton pour les variétés 3.
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connections.
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1. Introduction

Let X7 be a 7-manifold with a Ga-structure ¢ € Q3(X). For the defini-
tion of Gy-structures, see for example [10, Section 2.2]. Denote by g, vol
and * the induced Riemannian metric, volume form and Hodge star oper-
ator, respectively. We use the same sign convention as the paper above. In
particular, we have the decomposition A2T*X = A2 @ A2,, where

A2 ={BeNT*X|(pAB) =28},
A ={BeNT*X|x(pAB)=-5}.
Let (L,h) — X be a smooth complex Hermitian line bundle over X. We

denote by Ap the affine space of Hermitian connections on (L, h). Given
V € Ay, we regard its curvature Fy as a v/ —1R-valued closed 2-form on X.

(1.1)

DEFINITION 1.1. — A Hermitian connection V € Ay satisfying
1
(1.2) 6 S+ FyAxp=0

is called a deformed Donaldson-Thomas (dDT) connection.

DDT connections appeared in the context of mirror symmetry. They
were introduced in [11] as “mirrors” of calibrated (associative) subman-
ifolds. Historically, deformed Hermitian Yang-Mills (dHYM) connections
were introduced first in [12] as “mirrors” of special Lagrangian submani-
folds. There is also a similar notion of dDT connections for a manifold with
a Spin(7)-structure ([8, 11]). As the names indicate, dDT connections can
also be considered as analogues of Donaldson-Thomas connections (Ga-
instantons).

Thus it is natural to expect that dDT connections would have similar
properties to associative submanifolds and Gs-instantons. We show that
it is indeed the case in [9, 10]. For example, the moduli space of dDT
connections is b'-dimensional and canonically orientable if we perturb the
Go-structure. Any dDT connection on a compact Go-manifold is a global
minimizer of the “mirror volume” and its value is topological by the “mir-
ror” of associator equality. We could also prove similar statements in the
Spin(7) case in [7, 10]. Moreover, dDT connections are given by critical
points of the Chern—Simons type functional in [6, Theorem 5.13]. The
variational characterization is known only for the G5 case, and no such
characterization is known for the Spin(7) case.

This paper is organized as follows. In Section 2, we study the existence of
a dDT connection. Known examples of dDT connections are either trivial
or constructed in [4, 13], and are very few in number. So it would be
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SOME OBSERVATIONS ON DDT CONNECTIONS 3

important to consider the existence problem. We first see that the formal
“large radius limit” of the defining equation of dDT connections is that
of Gao-instantons. Thus it is natural to expect that dDT connections for a
“sufficiently large” G-structure will behave like Go-instantons. Moreover,
it is known that any complex Hermitian line bundle admits a Ga-instanton
on a compact holonomy Gs-manifold. Then we show the following from
these facts.

THEOREM 1.2 (Theorem 2.2). — Suppose that (X, ¢) is a compact ho-
lonomy Go-manifold. Let (L,h) — X be a smooth complex Hermitian line
bundle over X. If ¢ is rescaled by a sufficiently large factor, there exists
a dD'T connection with respect to the rescaled .

In Section 3, we formulate the dDT equation in terms of a multi-moment
map. The multi-moment map is a generalization of the moment map intro-
duced in [14, 15]. The dHYM equation is described as the zero of a certain
moment map on an infinite dimensional symplectic manifold ([2, Section 2],
[1, Section 2.1]). Analogously, we show that the dDT equation is described
as the zero of a certain multi-moment map.

THEOREM 1.3 (Theorem 3.4). — The dDT equation is described as the
zero of the multi-moment map defined in Theorem 3.4.

In Section 4, we study the gradient flow of the Karigiannis-Leung func-
tional introduced in [6] whose critical points are dDT connections. It is
known that the gradient flow equation of the Chern—Simons functional on
an oriented 3-manifold X3 agrees with the ASD equation on R x X 3. This
is an important observation in instanton Floer homology for 3-manifolds.
We show that there is an analogous relation between dDT equations for
Go- and Spin(7)-manifolds using the Karigiannis—Leung functional. This
will establish a new link between 3, 4-manifold theory and Gs-, Spin(7)-
geometry, and we might define analogues of instanton Floer homology using
dDT connections.

THEOREM 1.4 (Theorem 4.3). — The gradient flow equation of a Chern—
Simons type functional of Karigiannis and Leung, whose critical points are
dDT connections, agrees with the Spin(7) version of the dDT equation on a
cylinder with respect to a metric G on a space A,. defined at the beginning
of Section 4.2.

TOME 0 (0), FASCICULE 0
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2. Large radius limit

In this section, we show the existence of a dDT connection if a 7-manifold
has full holonomy G5 and the Ga-structure is “sufficiently large”.

Suppose that (X, ¢) is a compact holonomy Go-manifold. Let (L, h) — X
be a smooth complex Hermitian line bundle over X. Set

Ao = {Hermitian connections of (L, h)} = Vo ++/—10Q" -id,

where Vg € Ay is any fixed connection and Q' is the space of 1-forms on X.
Denote by Gy the group of unitary gauge transformations of (L, h), which
acts on Ag. Explicitly,

Gu={f-idp|feQ, |f|=1}=C>®(X,S"),

where Q2 is the space of C-valued smooth functions, and the action Gy x
Ao — Ay is defined by (A, V) — A*V :=A"1 oV o). When \ = f-idy, for
f € C0>=(X,S!), we have

(2.1) MV =A1oVoA=V+ fldf - idy.
Thus the Gy-orbit through V € Ay is given by V + Ky - idr, where
(2.2) Ky :={f'df e v=1Q' | f€ Q¢, |f| =1}.

Note that the curvature 2-form Fy is invariant under the action of Gy .
Consider the family of G,-structures

{SDT‘ = T3g0},r‘>0 ’
all of which induce holonomy G5 metrics. The defining equation of dDT
connections with respect to ¢, is given by

1
0=F.(V):= EF% + 74Py A xp.

Thus, formally taking the “large radius limit”, which means the leading
behaviour of F,.(V) as r — oo, we obtain
Fo Axp =0.

This is exactly the defining equation of Ga-instantons. Thus it is natural
to expect that dDT connections for a sufficiently large Ga-structure will

ANNALES DE L’INSTITUT FOURIER



SOME OBSERVATIONS ON DDT CONNECTIONS 5

behave like Gs-instantons. The following is well-known for Gs-instantons
on a smooth complex Hermitian line bundle, but we give the proof for
completeness.

LEMMA 2.1. — On a compact holonomy Gsy-manifold (X7, ), there is
a unique Go-instanton on a smooth complex Hermitian line bundle L — X
up to the action of Gy .

Proof. — For any V € Ay, we have dFy = 0. So it defines a cohomology
class [Fy] € V—1H?(X,R), which is known to be equal to —2m+/—1c;(L).
Then there exists a 1-form a € v/—1Q! such that Fy + da is harmonic by
Hodge theory.

Denote by Q? C QF the subspace of the space of k-forms corresponding
to the /-dimensional irreducible representation of G. For more details,
see for example [10, Section 2.2]. Denote by H* the space of harmonic k-
forms on X and set HY = H* N QF. Then by [5, Theorem 10.2.4], we have
HZ2 = HL =H! = {0}. Thus we have

Fyiaia, = Fy +da € V=1H? = V-1H; © H, = V—1H3,,
which implies that Fyyq.a, A *¢@ = 0.

V' =V+(a+d)-idg for o € /10! is also a Ga-instanton, we
have 0 = Fy/ A xp = da’ A xp, which is equivalent to
(2.3) —da’ = x(da’ A @) = xd(a’ A ).

Since dQ2'Nd*Q3 = {0}, we have do/ = 0. Since H'(X,R) = {0} by [5, The-
orem 10.2.4] again and /—1R-valued exact 1-forms are contained in Ky,
the Ga-instanton is unique up to the action of Gy . O

Using this, we can show the following.

THEOREM 2.2. — Suppose that (X, ) is a compact holonomy Go-mani-
fold. Let (L,h) — X be a smooth complex Hermitian line bundle over X.
Then for sufficiently large r > 0, there exists a dD'T' connection with respect
to py.

Proof. — Define a map F : [0, 1] x Ag — +/—1dQ° by
54
6
Then F(0,-)~1(0)/Gy, which is a point by Lemma 2.1, is the moduli space

of Go-instantons with respect to ¢ and F(s,-)~1(0)/Gy for s # 0 is the
moduli space of dDT connections with respect to ¢ /.

F(s,V) = —F3 + Fy A *p.

We want to apply the implicit function theorem to show the state-
ment. Fix a Gy-instanton Vo € F(0,-)~1(0), whose existence is guaranteed

TOME 0 (0), FASCICULE 0
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by Lemma 2.1. Denote by the linearization (dF)q,vy) : R @ V=10l —
V—1dQ® of F at (0,Vy). Then we have

(dF)(0,94) (0,V=1b) = v/=1db A *¢.
LEMMA 2.3. — We have
ker(dF)(o,v,) = R&V-1dQ",  Im(dF) v, = V-1d02".

Proof. — The first equation is proved as in (2.3). For the second equa-
tion, the Hodge decomposition implies that d*Q? = d*dQ'. For any b € O,
we have

d*db = d*(db + *(p A db)) € d*QZ,
where we use the fact that ¢ is closed. Recall also the sign convention (1.1).
This implies that d*Q? = d*Q2. Then
dQ® = xd*Q? = xd*Q2 = dQ5.
Since Q3 is spanned by b A x¢ for b € Q! the proof is completed. O

By the Hodge decomposition and H'(X,R) = {0}, we have Q! = dQ°
@©d*Q?. By this and Lemma 2.3, we see that (dF)o,v)| /~14-02 1 V—1d*Q?
— /=1d€° is an isomorphism. Hence, we can apply the implicit function
theorem (after the Banach completion) and we see that F(s,-)~1(0) # ()
for sufficiently small s.

Finally, we explain how to recover the regularity of elements in

F(s,-)71(0) after the Banach completion. Since the curvature is invariant
under the addition of closed 1-forms, there exists a; € Q! such that

(*5) F (s, Vo+V—la,-id.) =0, d*as =0

for sufficiently small s. In particular, (xq) is given by dag A x¢ = d*ag = 0,
which is an overdetermined elliptic equation. Overdetermined ellipticity is
an open condition, so we see that (x,) is also overdetermined elliptic for
sufficiently small s. Hence we can find a smooth element in F(s,-)~1(0)
around (0, V) and the proof is completed. O

3. The multi-moment map

It is known that there is a moment map picture in the dHYM case. In
particular, the dHYM equation is described as the zero of a certain moment
map on an infinite dimensional symplectic manifold. See for example [2,
Section 2] or the survey article [1, Section 2.1]. Analogously, we show that
the dDT equation is described as the zero of a certain multi-moment map.
First, recall the definition of the multi-moment map in [14, 15].

ANNALES DE L’INSTITUT FOURIER



SOME OBSERVATIONS ON DDT CONNECTIONS 7

DEFINITION 3.1. — Let X be a smooth manifold and ¢ € Q3 be a closed
3-form on X. Suppose that a Lie group G acts on X preserving c. Denote
by g the Lie algebra of G and set

Py =ker (L : A’g — g) C A%g,

where L is the linear map induced by the Lie bracket. (Note that Py = A%g
if G is abelian.) Denote by u* the vector field on X generated by u € g.
For a two vector p = 3, u; Avj € A%g, set

p*zZu;/\v;, i(p*)c:Zc(u;,v;-‘,-).
J J
Denote by (-,-) : A%g* x A%2g — R the canonical pairing.
Then a map v : X — Py is called a multi-moment map if it is G-
equivariant and satisfies
d{v,p) = i(p*)c
for any p € Py.

Let X be a compact 7-manifold with a coclosed Ga-structure ¢ (dxp = 0)
and (L,h) — X be a smooth complex Hermitian line bundle over X. Let
Ay be the space of Hermitian connections of (L, h). Define a map Fg, :

A() — \/—196 by

1
.7'—G2(V) = 6 %Jro N *.

Then the space of dDT connections is given by ]-'521 (0). Denote by Gy the
group of unitary gauge transformations of (L, h) acting Ag canonically as
n (2.1). Since Gy = C*°(X, S1), the Lie algebra gy of Gy is identified with
the space v/—19Q" of v/—1R-valued functions on X. Note that P, = A%g
since Gy is abelian. Define a 3-form © € Q3(Ap) on Ag by

1
Ov (a1, s, a3) = \/—1/ oy Aag Aas A (QF% + *gp) ,
X

where V € Ay and o1, as, a3 € vV—1Q! = Ty Ay. We first show the follow-
ing Lemma 3.2 as required in Definition 3.1. Then we show that there exists
a multi-moment map v for (Ag, ©,Gy) and the dDT equation is regarded
as the zero of v, where we need the coclosed assumption on .

LEMMA 3.2. — The 3-form © is Gy-invariant and closed.

Proof. — Take any V € Ay, A = f-idy, € Gy, where f € C*°(X, S'), and
a1, a0, a3, a4 € /—1Q! =2 Ty Ay. Identify o with a vector field on 4y by

()5 = % (V +tay ~idL)L

TOME 0 (0), FASCICULE 0



8 Kotaro KAWAI

for V € Ag. We first show the Gy-invariance of ©. That is,

(3.1) Oxv (A(a1), Ai(az), A(as)) = Oy (o1, a2, a3) .
By (2.1), we compute
d d
Alag)y = A o (Vttay-idp)| - = = (V+ (ta; + f7hdf) -idp)
0

t= t=0

= (a)rv-
Since F)\+v = Fy, we obtain (3.1).
Next, we show the closedness of ©. Note that [a;, ;] = 0. Then it follows
that
dO(ay, az, az, as) = a1 (O(az, a3, 04)) — a2 (O(a, a3, )
+ a3 (O(a1, az,a4)) — aq (O(ar, a2, a3)) .

Since

d 1
a; (O(aj, ap,ap))g = V—1 % a; Aoy Aoy A (2F%+tai‘idb + *gp)
X

t=0
= \/jl/Xaj ANag N\ ap Nda; A Fy,
we have
(dO)v (a1, a2, a3, 04) = \/jl/X dlar ANas Aag Aag A Fy) =0,
which implies that d© = 0. g
We also need the following lemma.

LEMMA 3.3. — We have

N
Q' =Y Hdff [ NeNf, f]eq’
j=1
Proof. — Take any 1-form « € Q'. We first show that for any z € X,
there exists an open neighborhood U, of x and smooth functions {f, ;,
;27]- ]7:1 on X such that

7
(3.2) aly, => fr;df2;
j=1

Uz

L. .,27) of z and set

7
aly = E ajdz’.
i=1

Indeed, take any local coordinates (V, (x

ANNALES DE L’INSTITUT FOURIER



SOME OBSERVATIONS ON DDT CONNECTIONS 9

We can take a cutoff function h such that h has compact support in V
and h =1 on an open neighborhood U, of z. Then setting fl = ha; and
2 j = hx;, which are smooth functions on X, we obtain (3.2).
Since {U,}rex is an open cover of X and X is compact, there exists
z1,...,ox € X such that {U,,})_, covers X. Denote by {h,})_; the
partition of unity subordinate to {U, p}p_l Set

71 _ 72
p,J =h f Tp,J PJ fmpv]

Then we have o = Zp 1 ZJ 1 f;jde Indeed, take any € X. We may
assume that x € Uy, N...NU,, and x € U, for p =k +1,...,N. Then
237:1( 2y :f j)z = ag for p = 1,....k by (3.2) and hy(z) = 0 for
p=k+1,... N Hence

o

7
Z ( Tp,J 1[)7])1

Jj=1

Il
3
] Mw

I
=

p(x)anc

S
Il
_

I
WE

hp(z)o = 0. O

S
Il
—

Denote by Z° the space of closed 6-forms on X. Define a map tzs : Z6 —
A*gy; by

O ) = [ €ng(hdfa ) = [ €n s

for € € Z% and fi, f2 € V=100 = gu-
THEOREM 3.4. — Define a Gy-invariant map v : Ay — A?g}; by
V(V) = lge (\/—1]:02(V)) .

Then we have d(v,p) = i(p*)© for any p € A%gy.

Since we assume that d * ¢ = 0, we see that /—1Fg,(V) € Z6 for any
V € Ay. By Lemma 3.3, 1z is injective. Hence we have v=1(0) = .7:521 (0).
In this sense, we can regard the dDT equation as the zero of a multi-moment
map.

Proof. — First note that the vector field f* generated by f € /—1Q° =
gy is given by

=Sy S @) —af

t=0 dt t=0

TOME 0 (0), FASCICULE 0



10 Kotaro KAWAI

at V € Ag. Hence for any fi, f» € vV/—1Q° = gy and a € vV/—1Q' = Ty Ay,

we have

Ov((f)v, (f5)v,a)
:ﬁ/delAdeAaA (;F%er)

= ﬁ/x fidfy Ada A (;F% +*<,0> = ﬁ/x fidfe A(dFg,)v(a),

where (dFg,)v : vV—1Q! — /=105 is the linearization of Fg, at V € Ay.
Hence we obtain

Ov (f1)v, (f3)v. @) = tz6 (V-1(dFa.)v(a)) (f1. f2)

d .

= &Lze (\/71fGQ(V+tQ~1dL)) (fl,fg)

t=0

(d@, f1 A f2))g (@) m
In the dHYM case, the “J functional” defined in [2, Remark 2.15] or [1,
Lemma 2.6 (ii)] is convex along geodesics and the critical points are so-

lutions of the dHYM equation. Hence it plays an important role in the
existence problem.

In the dDT case, there is a functional whose critical points are dDT
connections. See Section 4.2. However, no metric has yet been found that
makes the functional convex along geodesics. Since no such results have
been found for associative submanifolds, it might be difficult to relate the
functional to the existence problem.

However, as we see in the next section, we have an observation as in the
case of instanton Floer homology for 3-manifolds by using the functional
in Section 4.2. We might develop the theory like instanton Floer homology
using dDT connections.

4. Gradient flow of the Karigiannis—Leung functional

It is known that the gradient flow equation of the Chern—Simons func-
tional on an oriented 3-manifold X3 agrees with the ASD equation on
R x X3. See for example [3, Section 2.5.3]. This is an important observa-
tion in instanton Floer homology for 3-manifolds. We show that there is an
analogous relation between dDT equations for G- and Spin(7)-manifolds.

Let X7 be a 7-manifold with a G-structure ¢ and (L,h) — X7 be a
smooth complex Hermitian line bundle over X 7. Let {V; };cr be a family of

ANNALES DE L’INSTITUT FOURIER



SOME OBSERVATIONS ON DDT CONNECTIONS 11

Hermitian connections of (L, h) — X7. We identify this with a connection
Vof 7L — R x X7, where 7 : R x X7 — X7 is the projection. If we set

Vi=Vo+v—1la;-idyg,
where a; € Q1(X7), we have V= *Vo++v—1n*a;-id;«, and the curvature
Fs of V is given by
orn*ay;
ot

—‘r’ﬂ'*th.

F% =+v—1dt A

4.1. The Spin(7)-dDT condition on R x X7

The product Rx X7 admits a canonical Spin(7)-structure. We write down
the condition that F is a Spin(7)-dDT connection, a dDT connection for
a manifold with a Spin(7)-structure. For simplicity, set

Gy = om at, E, = —v—-1n"Fy,.
ot
LEMMA 4.1. — The connection V is a Spin(7)-dDT connection if and

only if

1 1
(4.1) —*cp/\Et—l—éEf’— (1—2*(<p/\Et2)> * 1y

+*(dt/\Et/\(p)/\*Et:0

1
(4.2) igo/\*Ef—at/\Et/\goz().

Proof. — Denote by *g and~* = %7 the Hodge star operators on R x X7
and X7, respectively. Then, V is a Spin(7)-dDT connection (in the sense
of [8, Definition 1.3]) if and only if

1 .
(Fo+ g o R, atAb+i)0) =0,

<F§,dtm(bﬁ)w—bmp> =0

(4.3)

for any b € Q1(X7) by [8, Lemma 3.4]. Since
1 v—1
6

E*SF%:_

xs (3dt Ay A B} + EY)

1 1
=+/-1 <2 * (dt A Et2) — édt/\ *Et?’) ,

TOME 0 (0), FASCICULE 0



12 Kotaro KAWAI

(4.3) is equivalent to
(4.4) <at - % * Ef’,b> + <Et - % « (ar N E}) ,i(bﬁ)gp> =0,
(4.5) (24, N By, i(b) % ) — (B2, b A @) = 0.
We compute

(B i(0)p) = #(By Ax(i(0F)p)) = +(Ey Ab A xp) = (xp A By, #b)
and

1. Y,
—5* (ae N E7) i(bY)p

= ——* (ar A B} Ni(bP)p)

—_

 (i(0%) (ar A EF) A )

N = DN — N

= —— % (B2 A @) - (ag, b) +* (ae A By A (0 Ep) A ).

Since i(b*)E; = — * (b A *E}), we have
s (ag ANEy A (i(W)Ep) A ) = (ar A By A, b A *Ey)
= —(x(a; N Ey A p) A *Ey, +b).
Then, we see that (4.4) is equivalent to (4.1). Similarly, since
(241 N By i(b) % @) = =2 (ay A By AD A @) = 2(a A By A, xb),
—<Etz,b/\<p>:—*(b/\ga/\>kEt2) :—<<p/\>kEt2,>(<b>,
we see that (4.5) is equivalent to (4.2). O
Hence, eliminating *(a; A Ey A ¢) from (4.1) by (4.2), we obtain
(4.6) —xpANE + éEf + % x (@ ANxE7) A *Ey
= (1—;* (<p/\Et2)> * Q.

Remark 4.2. — If 1 — x(¢ A E?)/2 # 0, (4.1) and (4.2) are equivalent
to (4.6) by Proposition A.3.

4.2. The Karigiannis—Leung functional

Karigiannis and Leung [6] introduced the functional whose critical points
are dDT connections. We first review it.

ANNALES DE L’INSTITUT FOURIER



SOME OBSERVATIONS ON DDT CONNECTIONS 13

Let X7 be a compact 7-manifold with a coclosed Go-structure ¢ (d*p=0)
and let (L,h) — X7 be a smooth complex Hermitian line bundle. Denote
by Ay the space of Hermitian connections of (L, k). Define a 1-form © on
A() by

Ov (V-1b) = /X V=1bA (éF% + Fg A w)

for V. € Ay and /—1b € /—1Q" = Ty Ag. Then we see that Oy = 0 if
and only if V is a dDT connection. We can show that © is closed as in the
proof of Lemma 3.2. Since Ay is contractible, there exists F : Ay — R such
that dF = ©. Hence we see that dDT connections are critical points of F.

Now, we study the relation between Spin(7)-dDT connections on R x X7
and the Karigiannis-Leung functional F. Set

Aac = {V S Ao

1+;*(<p/\F%)>O}.

This type of the subset is also considered in the dHYM case. For example,
see the survey article [1, Definition 2.1]. By the mirror of the associator
equality in [10, Theorem 5.1], it will be natural to call a Hermitian con-
nection V satisfying 1 + #(¢ A F&)/2 > 0 almost calibrated as in the
dHYM case.

Define a metric G on A, by

s (V10 v=10) = [

1
X(a,b)v (1 + 3 * (A F%)) vol

where V € Auc,vV—1a,/—1b € v/—1Q! = Ty Ay, vol is the induced vol-
ume form from ¢, and (-,-)v is the induced metric on the space of dif-
ferential forms from (idpx +(—v/—1Fv)#)*p. Here, (—y/—1Fy)* is an en-
domorphism of TX defined by g((—v—1Fy)%(u),v) = —v/—1Fy(u,v) for
u,v € TX, where g is the induced metric (on TX) from ¢. Note that
(—v/—1Fy)* is skew-symmetric with respect to g. Explicitly, if we denote
by gv the induced metric (on TX) from (idrx +(—v—1Fv)*)*¢, we have
gv = (idrx +(—v—1Fy)%)*g and (-,-)v is the induced metric from gy.
The following is the main theorem of this paper.

THEOREM 4.3. — The gradient flow equation of F with respect to G
on Aqg. agrees with the Spin(7)-dDT equation on R x X7,

Proof. — We first deduce the gradient flow equation and compare it with
the computation in Section 4.1. Take any V € A, and b € Q. Set

Ev = —vV—1Fy € Q2.
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14 Kotaro KAWAI

Denote by (-, -) the induced metric on the space of differential forms from .
Then we compute

(dF)v (V-1b) = /X V=1b A (éFé + Fy A w)

:/ <b7*<1E%—Ev/\*4p>>vol.
X 6

By Proposition A.1, we have

(4.7)

1 -1\
*(6E%Ev/\*§0) = <(1de(EﬁV)2) ) nv,

where
1

1
GE% + = x (P AXES) A *EV> € Qb

nvz*(—*ap/\Ev-i- 3
Since
idrx —(E%)? = (idrx —E%) (idpx +E%)
= "(idrx +Eﬁv) (idrx +Eﬁv)7
where *(idrx —+—Eﬁv) is the transpose of idryx +Eﬁv with respect to g, we
have

(4.8) <b, * (éE% —Ey A *s0>>
- <b, ((idTX —(E%)Q)l)* 77v>

= <((1dTX +Eﬁv)_1> b, ((ldTX +Eﬁv)_1) ’I]V> = <b, T]v>v .
Then by (4.7) and (4.8), the gradient vector field of F with respect to G is

given by

v-—1
Age DV — i v 5 e v—10%
Thus a family {V;}icr C Aqc satisfies the gradient flow of F with respect
to G if and only if

nv.
1-— % * ((p A Egvt)
*(—x o ANEy+ B} + 5 % (@ AN*xEF) A*Ey)
1—1x(pAE}) ’
where V; = Vo + v—1la; -idp, ay € QY a; = da;/0t and E; = By, =
—V/—1Fy,. Then we see that (4.9) is equivalent to (4.6). By Remark 4.2,
this is equivalent to the Spin(7)-dDT equation on R x X”. O

ay =

(4.9)
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By Theorem 4.3, we will have to consider the deformation theory of the
Spin(7)-dDT connections on Rx X7 next for the analogue of instanton Floer
homology for 3-manifolds. Deformations of Spin(7)-dDT connections on a
compact manifold with a Spin(7)-structure are studied in [7, Theorem 1.2],
but there are some technical assumptions. We will have to deal with more
technical issues, including these, to develop the deformation theory on a
cylinder.

Appendix A. Algebraic Computations

In this appendix, we give some algebraic computations needed in the
proof of Theorem 4.3.
Set V = R” and let g be the standard inner product on V. Denote by
* the standard Hodge star operator on V. For a 2-form F' € A?V*, define
F* € End(V) by
9(F*(u),v) = F(u,v)

for u,v € V. Then, F* is skew-symmetric, and hence, det(I + F*) > 0,
where [ is the identity matrix. We also have
det(I — (F*)?) = det (I + F*) det (I — F*)
= det (I + F*) det (I + "F¥)
— (det (T + F*))* >0,
where *F* is the transpose of F* with respect to g. Define a 3-form ¢ €
A3V* by
@ = 123 4 o145 | (167 | (246 257 _ 347 _ ;356
where {e;}7_; is a standard oriented basis of V with the dual basis {e'}7_;
of V* and e®% is short for et A --- A e’. The stabilizer of ¢ is known
to be the exceptional 14-dimensional simple Lie group G3. The elements
of G5 preserve the standard inner product g and volume form vol. The
group G acts canonically on A¥V*, and A2V* is decomposed as A2V* =
A2V*®A3,V*, where A2V* is a (-dimensional irreducible subrepresentation
of Gy in A2V*. For more details, see for example [10, Section 2.2]. Set

F=F;+Fy=i(u)p+ Fiy € A2V O ALV*

forueV.
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PROPOSITION A.1. — Fora 2-form F € A2V* set £ = —xpAF+F3/6 €
ASV*. Then we have

* ].
(I—(F"?) x&=x (54—2* (o N *F?) /\*F) .
Proof. — Since (I — (F*)2)* x & = & — ((F*)2)* % ¢, we only have to
compute ((F#)2)* x £. Set
Fij = F(ei,ej).
We have F¥ = >, Fije' @ej, which implies that (FH)2 =3
er. Then we compute

(FD) &= FijFx&(er) - € ==Y (i(e;)F,E) -i(e;)F.

.5,k J

N
W5,k FijFjre'®

Since
(i(ej) F, %) = * (+& A x(i(e;)F)) = — * (x§ N e? AxF)
= (e, %(xE N*F)) i(e;)F = — = (¢! AxF),
we have
((FH)2)" % & = # (x (x A xF) A ¥F)

(A1) :*(*(*<—*<p/\F+}:>/\*F)/\*F)-

LEMMA A.2. — We have
(*F3) A*F =0, « (p AxF?) = —6i(u)F.

Proof. — We can prove the first equation as in [9, Lemma C.2]. For any

v eV, set

v =g(v,-) e V*.

We compute

VA (3 F3 A «F = (xF3) Ax(i(0)F) = F3 Ni(v)F = i(v)(F*/4) =0,
which implies the first equation. Similarly, for any v € V| we have
VApAxF? = 5 (P AQ)AF? = —i(0)xpAF? = xoNi(v)F? = 2i(v) FAF Ax¢.

Since F' A ¢ = i(u)p A xp = 3 % u” by for example [9, Lemma B.1], we
obtain

VAo AxF? = 6<ub, z(v)F> vol = 6<v" A ub,F> vol = 76<vb, z(u)F> vol,

which implies the second equation. O
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Then by (A.1), Lemma A.2 and the equation F Axp = i(u)pA*p = 3xu’,
we obtain

(F$)2)" %€ = %(x (x (— % o A F) A xF) A +F)
((=3u” A*F) A xF)
((i(u) F) A*F)

Il
wW ¥

( (<p A *FZ) A *F)

*
1
2
and the proof is completed. O

PROPOSITION A.3. — For a I-form a € V* and a 2-form F € A2V*
such that 1 —x(p A F?)/2 # 0,

1
(A.2) —*@AF+6F3
1
- <12*(@AF2))*a+*(aAFMD)A*F—07

1
—pAxF2—aAFANp=0

(A.3) >

if and only if

(A.4) f*ga/\F+%F3+%*(ga/\*F2)/\*F: <1;*(<p/\F2))*a

Proof. — Eliminating a A F' A ¢ from (A.2) by (A.3), we obtain (A.4).
Conversely, (A.4) implies (A.3) by the following Lemma A.4. By (A.4), the
left hand side of (A.2) is computed as

1
—5*((p/\*FQ)/\*F—i—*(a/\F/\cp)/\*F
1
:*<—2go/\*F2+a/\F/\<p>/\*F,

which vanishes by (A.3). O

LEMMA A.4. — For any 2-form F € A2V*, we have

1 1
*(—*(p/\F—&—6F3—|—2*(<p/\*F2)/\*F>/\F/\(p

1 1
:2(1_2*(¢/\F2)>¢/\*F2.

TOME 0 (0), FASCICULE 0



18 Kotaro KAWAI

Proof. — Fix any v € V and set

1.
le"/\*<*ga/\F+6F‘3> ANF Ao,
b 1 2
Jo =0 A % 5*(<pA>kF YJA*EF ) AF A .
We compute J; and Jy. We have
1
Jy = * (i(v) (w ANF — 6F3>> A *(2F; — Fuy)
. 1 .
:Z(’U) *(p/\F—gF /\(2F7—F14)
1
— (-3 s (0” Au’) — (V) F A F2> A (2F; — Fiy),

where we use *p A F = 3 % u”. We also have
-3 % (vb A ub) A (2F; — Fiy) = —3<vb A, 2F, — F14> vol
= —3<vb, i(u)F) vol
as i(u)Fr = i(u)i(u)p = 0, and

1
= =i F A (F? + 2F; A Fuy+ F,) A (2F; — Fua)

1. .
=-3 (i(v)Fr +i(v)F14) A (2F73 + 3F72 ANFy — F134)

= —% {i(v)F7 A (BFF A Fry — FYy) +i(v)Fia A (2F2 + 3F7 A Fiy) },
where we use
i(V)Fr ANF2 =i(v) (F7/4) =0 and i(v)Fiq A FY =i(v) (F}4/4) = 0.
By [9, (B.7)], we have
(A.5) F3 = 6]ul? «u’.
Then
3i(v)Fr A F2 A Fry = i(v)F2 A Fiy = —6[ul® x (0" Au’) A Fig
= 6\u|2<vb, i(u)F) vol,
2i(v) Fiq A F? = 12|u|2i(v)F14 A s’ = 12|u\2<F14,vb A ub> vol
= —12\u|2<vb, i(u)F) vol.
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Hence we obtain
(A.6) Ji = (-3+3|ul’) <vb,i(u)F> vol
1
+3 (i(v)Fr A FYy — 3i(v)Fia A F? A Fiy) .
Next, we compute Jo. By Lemma A.2, we have
Jo =" A s (=3i(u)F A*F) A*(2F; — Fig)
=3 (i(w)F A xF) A x(i(v)(—2F; + F14))
= 3i(u)F' A «F Ni(v)(—2F7 + Fia4).

Since

1
i(w)F A *F =i(u)Fiq A <2F7 ANp—Fig A <p>
1

. . 1.
(i(u)(Fia N Fr Ap) — Fia A Fr Ni(u)p) — §Z(u)F124 A

T2
1 1, ;
= —§F72 A Fig— 5 (i(u) (FEy A 9) = Fiy Ai(u)p)
1
=5 (|F14\2 xu’ — F2 A Fiy+ Fy /\F124) ;
we have
3 2 2 :
= 5 (=F A Fa+ Fr A Fy) Ai(o) (<2F7 + Fa)

3 .
+ S Fuaf? s’ A i(0)(=2F; + Fua).
We compute
(=F7 A Fia+ Fr ANFE) Ni(v)(—2F; + Fuy)
= 2i(v)F; A F2 A Fiy — 2i(v)Fy A Fr A F}

—i(v)Fia A FZ A Fig+i(v)Fig A Fr A FYy.
By (A.5), it follows that

2

2i(v)Fs NF2NFyy = gz(v)F73 ANFiy = 4\u|2<vb, i(u)F) vol .

Since —2i(v)Fy A Fr A F = —i(0)F2 A FE = F2 Ni(v)FRy = 2i(v) Fig A
F72 A F14, we have

—2i(v)Fy A Fy A F2) —i(v)Fig A F2 A Fry = i(v)Fig A F2 A Fyy.
We also have

, 1 1 _
i(v)Fiu N Fy ANFE = gz(v)F& AFy = —§F134 Ni(v)Fy
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and

3 . 3
§|F14|2 *u’ A i(v)(—2F; + F14) = §|F14|2<—2F7 + Fy, WA ub> vol

3 .
= —§|F14|2<vb,z(u)F> vol.

Hence we obtain
3
(A7) Jo = (6|u|2 — 2|F14|2) <vb,i(u)F> vol

3 1
+ §’L'<’U)F14 A\ F72 A\ F14 — §Z(U)F7 A\ F134

Then by (A.6) and (A.7), we obtain

1
Ji+J=3 <1 + 3ul® — 2|F14|2> <vb,i(u)F> vol

=3 (—1 + % * (o A F2)> <vb,i(u)F> vol,

where we use (@ A F2) =« (F A x(2F; — Fiy)) = 2|F7|? — | F14]? = 6[u]? —
|F14]? by [9, Lemma B.1]. Then it follows that

1 1
>k(—*g@/\F+6F3+2*(<p/\*F2)/\*F>/\F/\(p

_3 (1 i (@AFQ)) s (i(w)F).

Since ¢ A *F? = —6 * (i(u)F) by Lemma A.2, the proof of Lemma A.4 is
completed. O
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