[Distances projetées pour les modules de persistance à plusieurs paramètres]
Relying on sheaf theory, we introduce the notions of projected barcodes and projected distances for multi-parameter persistence modules. Projected barcodes are defined as derived pushforward of persistence modules onto $\mathbb{R}$. Projected distances come in two flavors: the integral sheaf metrics (ISM) and the sliced convolution distances (SCD). We conduct a systematic study of the stability of projected barcodes and show that the fibered barcode is a particular instance of projected barcodes. We prove that the ISM and the SCD provide lower bounds for the convolution distance. Furthermore, we show that the $\gamma $-linear ISM and the $\gamma $-linear SCD which are projected distances tailored for $\gamma $-sheaves can be computed using TDA software dedicated to one-parameter persistence modules. Moreover, the time and memory complexity required to compute these two metrics are advantageous since our approach does not require computing nor storing an entire $n$-persistence module.
En nous appuyant sur la théorie des faisceaux, nous introduisons les notions de code-barres projetés et de distances projetées pour les modules de persistance à plusieurs paramètres. Les code-barres projetés sont définis comme le poussé en avant dérivé des modules de persistance sur $\mathbb{R}$. Les distances projetées viennent en deux familles : les métriques intégrales de faisceaux (ISM) et les distances de convolution tranchées (SCD). Nous menons une étude systématique de la stabilité des code-barres projetés et montrons que le code-barre fibré est une instance particulière des code-barres projetés. Nous prouvons que l’ISM et la SCD fournissent des bornes inférieures pour la distance de convolution. De plus, nous montrons que les ISM $\gamma $-linéaires et les SCD $\gamma $-linéaires, qui sont des distances projetées adaptées aux $\gamma $-faisceaux, peuvent être calculées à l’aide de logiciels de TDA dédiés aux modules de persistance à un paramètre. De plus, la complexité en temps et en mémoire requise pour calculer ces deux métriques est avantageuse, car notre approche ne nécessite ni le calcul ni le stockage d’un module de persistance à $n$ paramètres.
Révisé le :
Accepté le :
Première publication :
Keywords: topological data analysis, multi-parameter persistence, sheaf theory
Mots-clés : analyse de données topologique, persistance à plusieurs paramètres, théorie des faisceaux
Berkouk, Nicolas  1 ; Petit, François  2
@unpublished{AIF_0__0_0_A40_0,
author = {Berkouk, Nicolas and Petit, Fran\c{c}ois},
title = {Projected distances for multi-parameter persistence modules},
journal = {Annales de l'Institut Fourier},
year = {2026},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
doi = {10.5802/aif.3752},
language = {en},
note = {Online first},
}
Berkouk, Nicolas; Petit, François. Projected distances for multi-parameter persistence modules. Annales de l'Institut Fourier, Online first, 62 p.
[1] A derived isometry theorem for sheaves, Adv. Math., Volume 394 (2022), 108033, 39 pages | MR | DOI | Zbl
[2] Level-sets persistence and sheaf theory (2019) | arXiv | Zbl | DOI
[3] Ephemeral persistence modules and distance comparison, Algebr. Geom. Topol., Volume 21 (2021) no. 1, pp. 247-277 | DOI | Zbl | MR
[4] Computing the interleaving distance is NP-hard (2019) | arXiv
[5] An introduction to multiparameter persistence (2022) | arXiv
[6] The theory of multidimensional persistence, Discrete Comput. Geom., Volume 42 (2007), pp. 71-93 | Zbl | MR | DOI
[7] Multiparameter persistence image for topological machine learning, Advances in neural information processing systems (Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; Lin, H., eds.), Volume 33, Curran Associates, Inc., 2020, pp. 22432-22444
[8] Betti numbers in multidimensional persistent homology are stable functions, Math. Methods Appl. Sci., Volume 36 (2013) no. 12, pp. 1543-1557 | Zbl | MR | DOI
[9] Proximity of persistence modules and their diagrams, SCG ’09: Proceedings of the 25th Annual Symposium on Computationnal Geometry (Hershberger, John; Fogel, Efi, eds.), ACM Press (2009), pp. 237-246 | DOI | Zbl
[10] Decomposition of pointwise finite-dimensional persistence modules, J. Algebra Appl., Volume 14 (2015) no. 5, 1550066, 8 pages | Zbl | DOI | MR
[11] Computational topology for data analysis, Cambridge University Press, 2022 | Zbl | DOI | MR
[12] Radon transform for sheaves (2017) | arXiv | Zbl
[13] The three cusps conjecture (2016) | arXiv | Zbl
[14] Microlocal theory of sheaves and Tamarkin’s non displaceability theorem, Homological mirror symmetry and tropical geometry (Castano-Bernard, Ricardo; Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia, eds.), Springer (2014), pp. 43-85 | DOI | Zbl
[15] Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990 | DOI | MR | Zbl
[16] Persistent homology and microlocal sheaf theory, J. Appl. Comput. Topol., Volume 2 (2018) no. 1–2, pp. 83-113 | Zbl | MR | DOI
[17] Some topological properties of convex sets, Trans. Am. Math. Soc., Volume 78 (1955) no. 1, pp. 30-45 | DOI | Zbl | MR
[18] The rank invariant stability via interleavings, Research in computational topology (Chambers, Erin Wolf; Fasy, Brittany Terese; Ziegelmeier, Lori, eds.) (Association for Women in Mathematics Series), Volume 13, Springer (2018), pp. 1-10 | Zbl | DOI | MR
[19] Interactive visualization of 2-D persistence modules (2015) | arXiv | Zbl
[20] Stratifications of real vector spaces from constructible sheaves with conical microsupport (2020) | arXiv
[21] Integral probability metrics and their generating classes of functions, Adv. Appl. Probab., Volume 29 (1997) no. 2, pp. 429-443 | DOI | Zbl
[22] On some aspects of the theory of DQ-modules, Habilitation à dirirger des recherches, Université de Paris (France), 2021
[23] Thickening of the diagonal and interleaving distance, Sel. Math., New Ser., Volume 29 (2023) no. 5, 70, 42 pages | MR | Zbl | DOI
[24] Topological function optimization for continuous shape matching, Comput. Graph. Forum, Volume 37 (2018) no. 5, pp. 13-25 | DOI
[25] Constructible sheaves and functions up to infinity (2021) | arXiv
[26] Theory of interleavings on categories with a flow, Theory Appl. Categ., Volume 33 (2018) no. 21, pp. 583-607 | Zbl | MR
[27] Unbounded convex points sets, Am. J. Math., Volume 62 (1940) no. 1, pp. 165-179 | DOI | Zbl | MR
[28] giotto-tda: a topological data analysis toolkit for machine learning and data exploration (2021) | arXiv
[29] GUDHI user and reference manual, GUDHI Editorial Board, 2022 https://gudhi.inria.fr/doc/3.5.0/
[30] Local equivalence of metrics for multiparameter persistence modules (2020) | arXiv | Zbl
Cité par Sources :



