Projected distances for multi-parameter persistence modules
[Distances projetées pour les modules de persistance à plusieurs paramètres]
Annales de l'Institut Fourier, Online first, 62 p.

Relying on sheaf theory, we introduce the notions of projected barcodes and projected distances for multi-parameter persistence modules. Projected barcodes are defined as derived pushforward of persistence modules onto $\mathbb{R}$. Projected distances come in two flavors: the integral sheaf metrics (ISM) and the sliced convolution distances (SCD). We conduct a systematic study of the stability of projected barcodes and show that the fibered barcode is a particular instance of projected barcodes. We prove that the ISM and the SCD provide lower bounds for the convolution distance. Furthermore, we show that the $\gamma $-linear ISM and the $\gamma $-linear SCD which are projected distances tailored for $\gamma $-sheaves can be computed using TDA software dedicated to one-parameter persistence modules. Moreover, the time and memory complexity required to compute these two metrics are advantageous since our approach does not require computing nor storing an entire $n$-persistence module.

En nous appuyant sur la théorie des faisceaux, nous introduisons les notions de code-barres projetés et de distances projetées pour les modules de persistance à plusieurs paramètres. Les code-barres projetés sont définis comme le poussé en avant dérivé des modules de persistance sur $\mathbb{R}$. Les distances projetées viennent en deux familles : les métriques intégrales de faisceaux (ISM) et les distances de convolution tranchées (SCD). Nous menons une étude systématique de la stabilité des code-barres projetés et montrons que le code-barre fibré est une instance particulière des code-barres projetés. Nous prouvons que l’ISM et la SCD fournissent des bornes inférieures pour la distance de convolution. De plus, nous montrons que les ISM $\gamma $-linéaires et les SCD $\gamma $-linéaires, qui sont des distances projetées adaptées aux $\gamma $-faisceaux, peuvent être calculées à l’aide de logiciels de TDA dédiés aux modules de persistance à un paramètre. De plus, la complexité en temps et en mémoire requise pour calculer ces deux métriques est avantageuse, car notre approche ne nécessite ni le calcul ni le stockage d’un module de persistance à $n$ paramètres.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3752
Classification : 55N31, 55N30, 35A27
Keywords: topological data analysis, multi-parameter persistence, sheaf theory
Mots-clés : analyse de données topologique, persistance à plusieurs paramètres, théorie des faisceaux

Berkouk, Nicolas  1   ; Petit, François  2

1 Laboratory for Topology and Neuroscience, EPFL, Lausanne (Switzerland)
2 Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), 75004 Paris (France)
@unpublished{AIF_0__0_0_A40_0,
     author = {Berkouk, Nicolas and Petit, Fran\c{c}ois},
     title = {Projected distances for multi-parameter persistence modules},
     journal = {Annales de l'Institut Fourier},
     year = {2026},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     doi = {10.5802/aif.3752},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Berkouk, Nicolas
AU  - Petit, François
TI  - Projected distances for multi-parameter persistence modules
JO  - Annales de l'Institut Fourier
PY  - 2026
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3752
LA  - en
ID  - AIF_0__0_0_A40_0
ER  - 
%0 Unpublished Work
%A Berkouk, Nicolas
%A Petit, François
%T Projected distances for multi-parameter persistence modules
%J Annales de l'Institut Fourier
%D 2026
%V 0
%N 0
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3752
%G en
%F AIF_0__0_0_A40_0
Berkouk, Nicolas; Petit, François. Projected distances for multi-parameter persistence modules. Annales de l'Institut Fourier, Online first, 62 p.

[1] Berkouk, Nicolas; Ginot, Grégory A derived isometry theorem for sheaves, Adv. Math., Volume 394 (2022), 108033, 39 pages | MR | DOI | Zbl

[2] Berkouk, Nicolas; Ginot, Grégory; Oudot, Steve Y. Level-sets persistence and sheaf theory (2019) | arXiv | Zbl | DOI

[3] Berkouk, Nicolas; Petit, François Ephemeral persistence modules and distance comparison, Algebr. Geom. Topol., Volume 21 (2021) no. 1, pp. 247-277 | DOI | Zbl | MR

[4] Bjerkevik, Håvard Bakke; Botnan, Magnus Bakke; Kerber, Michael Computing the interleaving distance is NP-hard (2019) | arXiv

[5] Botnan, Magnus Bakke; Lesnick, Michael An introduction to multiparameter persistence (2022) | arXiv

[6] Carlsson, Gunnar; Zomorodian, Afra The theory of multidimensional persistence, Discrete Comput. Geom., Volume 42 (2007), pp. 71-93 | Zbl | MR | DOI

[7] Carrière, Mathieu; Blumberg, Andrew Multiparameter persistence image for topological machine learning, Advances in neural information processing systems (Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; Lin, H., eds.), Volume 33, Curran Associates, Inc., 2020, pp. 22432-22444

[8] Cerri, Andrea; Di Fabio, Barbara; Ferri, Massimo; Frosini, Patrizio; Landi, Claudia Betti numbers in multidimensional persistent homology are stable functions, Math. Methods Appl. Sci., Volume 36 (2013) no. 12, pp. 1543-1557 | Zbl | MR | DOI

[9] Chazal, Frédéric; Cohen-Steiner, David; Glisse, Marc; Guibas, Leonidas J.; Oudot, Steve Y. Proximity of persistence modules and their diagrams, SCG ’09: Proceedings of the 25th Annual Symposium on Computationnal Geometry (Hershberger, John; Fogel, Efi, eds.), ACM Press (2009), pp. 237-246 | DOI | Zbl

[10] Crawley-Boevey, William Decomposition of pointwise finite-dimensional persistence modules, J. Algebra Appl., Volume 14 (2015) no. 5, 1550066, 8 pages | Zbl | DOI | MR

[11] Dey, T. K.; Wang, Y. Computational topology for data analysis, Cambridge University Press, 2022 | Zbl | DOI | MR

[12] Gao, Honghao Radon transform for sheaves (2017) | arXiv | Zbl

[13] Guillermou, Stéphane The three cusps conjecture (2016) | arXiv | Zbl

[14] Guillermou, Stéphane; Schapira, Pierre Microlocal theory of sheaves and Tamarkin’s non displaceability theorem, Homological mirror symmetry and tropical geometry (Castano-Bernard, Ricardo; Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia, eds.), Springer (2014), pp. 43-85 | DOI | Zbl

[15] Kashiwara, Masaki; Schapira, Pierre Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990 | DOI | MR | Zbl

[16] Kashiwara, Masaki; Schapira, Pierre Persistent homology and microlocal sheaf theory, J. Appl. Comput. Topol., Volume 2 (2018) no. 1–2, pp. 83-113 | Zbl | MR | DOI

[17] Klee, Victor L. Some topological properties of convex sets, Trans. Am. Math. Soc., Volume 78 (1955) no. 1, pp. 30-45 | DOI | Zbl | MR

[18] Landi, Claudia The rank invariant stability via interleavings, Research in computational topology (Chambers, Erin Wolf; Fasy, Brittany Terese; Ziegelmeier, Lori, eds.) (Association for Women in Mathematics Series), Volume 13, Springer (2018), pp. 1-10 | Zbl | DOI | MR

[19] Lesnick, Michael; Wright, Matthew Interactive visualization of 2-D persistence modules (2015) | arXiv | Zbl

[20] Miller, Ezra Stratifications of real vector spaces from constructible sheaves with conical microsupport (2020) | arXiv

[21] Müller, Alfred Integral probability metrics and their generating classes of functions, Adv. Appl. Probab., Volume 29 (1997) no. 2, pp. 429-443 | DOI | Zbl

[22] Petit, François On some aspects of the theory of DQ-modules, Habilitation à dirirger des recherches, Université de Paris (France), 2021

[23] Petit, François; Schapira, Pierre Thickening of the diagonal and interleaving distance, Sel. Math., New Ser., Volume 29 (2023) no. 5, 70, 42 pages | MR | Zbl | DOI

[24] Poulenard, Adrien; Skraba, Primoz; Ovsjanikov, Maks Topological function optimization for continuous shape matching, Comput. Graph. Forum, Volume 37 (2018) no. 5, pp. 13-25 | DOI

[25] Schapira, Pierre Constructible sheaves and functions up to infinity (2021) | arXiv

[26] de Silva, Vin; Munch, Elizabeth; Stefanou, Anastasios Theory of interleavings on categories with a flow, Theory Appl. Categ., Volume 33 (2018) no. 21, pp. 583-607 | Zbl | MR

[27] Stoker, J. J. Unbounded convex points sets, Am. J. Math., Volume 62 (1940) no. 1, pp. 165-179 | DOI | Zbl | MR

[28] Tauzin, Guillaume; Lupo, Umberto; Tunstall, Lewis; Pérez, Julian Burella; Caorsi, Matteo; Reise, Wojciech; Medina-Mardones, Anibal; Dassatti, Alberto; Hess, Kathryn giotto-tda: a topological data analysis toolkit for machine learning and data exploration (2021) | arXiv

[29] The GUDHI Project GUDHI user and reference manual, GUDHI Editorial Board, 2022 https://gudhi.inria.fr/doc/3.5.0/

[30] Vipond, Oliver Local equivalence of metrics for multiparameter persistence modules (2020) | arXiv | Zbl

Cité par Sources :