Université Grenoble Alpes

ANNALES DE
LINSTITUT FOURIER

Nicolas BERKOUK & Francois PETIT

Projected distances for multi-parameter persistence
modules

Article a paraitre, mis en ligne le 26 janvier 2026, 62 p.

Article mis a disposition par ses auteurs selon les termes de la licence
CREATIVE CoMMONS ATTRIBUTION-NODERIVS (CC-BY-ND) 3.0

[@)evno |

.4 Les Annales de [Institut Fourier sont membres du
» Centre Mersenne pour I'édition scientifique ouverte
e-ISSN : 1777-5310

>

MERSENNE


http://creativecommons.org/licenses/by-nd/3.0/
https://www.centre-mersenne.org/

Ann. Inst. Fourier, Grenoble
Article & paraitre
Mis en ligne le 26 janvier 2026.

PROJECTED DISTANCES FOR MULTI-PARAMETER
PERSISTENCE MODULES

by Nicolas BERKOUK & Frangois PETIT (*)

ABSTRACT. — Relying on sheaf theory, we introduce the notions of projected
barcodes and projected distances for multi-parameter persistence modules. Pro-
jected barcodes are defined as derived pushforward of persistence modules onto R.
Projected distances come in two flavors: the integral sheaf metrics (ISM) and the
sliced convolution distances (SCD). We conduct a systematic study of the stability
of projected barcodes and show that the fibered barcode is a particular instance
of projected barcodes. We prove that the ISM and the SCD provide lower bounds
for the convolution distance. Furthermore, we show that the ~-linear ISM and the
~-linear SCD which are projected distances tailored for «-sheaves can be computed
using TDA software dedicated to one-parameter persistence modules. Moreover,
the time and memory complexity required to compute these two metrics are ad-
vantageous since our approach does not require computing nor storing an entire
n-persistence module.

RESUME. — En nous appuyant sur la théorie des faisceaux, nous introduisons
les notions de code-barres projetés et de distances projetées pour les modules de
persistance a plusieurs parameétres. Les code-barres projetés sont définis comme le
poussé en avant dérivé des modules de persistance sur R. Les distances projetées
viennent en deux familles : les métriques intégrales de faisceaux (ISM) et les dis-
tances de convolution tranchées (SCD). Nous menons une étude systématique de
la stabilité des code-barres projetés et montrons que le code-barre fibré est une
instance particuliére des code-barres projetés. Nous prouvons que 'ISM et la SCD
fournissent des bornes inférieures pour la distance de convolution. De plus, nous
montrons que les ISM ~-linéaires et les SCD ~-linéaires, qui sont des distances
projetées adaptées aux y-faisceaux, peuvent étre calculées a ’aide de logiciels de
TDA dédiés aux modules de persistance & un parameétre. De plus, la complexité en
temps et en mémoire requise pour calculer ces deux métriques est avantageuse, car
notre approche ne nécessite ni le calcul ni le stockage d’un module de persistance
a n parametres.
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1. Introduction

The theory of persistence appeared in the 2000s as an algebraic frame-
work for studying the presence of topological features in data. Its main
objects of interest are m-parameter persistence modules that are functors
from the poset category (R™, <) to the category Mod (k) of k-vector spaces
over a fixed field k, that can be compared in a meaningful way using a dis-
tance defined algebraically: the interleaving distance d;. When n = 1, the
theory is well-understood. One-parameter persistence modules are entirely
determined by a discrete summary called barcode, which can be efficiently
computed. The interleaving distance can also be computed from the bar-
codes, thanks to the bottleneck distance dg. We refer to [5, 11] for general
introductions to n-parameter persistence.

One-parameter persistence is often restrictive, in particular in applica-
tions where there is no canonical choice of filtering function on the data.
Furthermore, there are many situations in which being able to perform
machine learning on multi-parameter persistence modules is anticipated
to be fruitful [7, 19]. Nevertheless, the theory of n-parameter persistence
modules when n > 2, is far more intricate. Indeed, it has been proven that
there cannot exist, in a precise sense, an analogue of barcodes in this situ-
ation [6], and that the interleaving distance is NP-hard to compute [4]. In
this paper, relying on microlocal sheaf theory, we introduce new invariants
and distances for multi-parameter persistence modules, prove that they
enjoy several stability properties and are efficiently computable, which are
essential requirements for such notions to be useful in practice.

So far, the main invariant that has been developed for multi-parameter
persistent modules, efficiently implemented, and which enjoys the desired
stability properties, is the fibered barcode [18] (which is equivalent to the
rank-invariant [6]). Roughly speaking, the fibered barcode of a n-parameter
persistence module M corresponds to the collection of barcodes obtained
by restricting M along each affine line of positive slope in R™. One can
compare fibered barcodes by taking the supremum over all lines of positive
slopes of the line-wise bottleneck distance (corrected by a specific coeffi-
cient) between barcodes of the restrictions of the persistence modules. This
distance is called the matching distance, usually denoted dj;. The match-
ing distance between the fibered barcodes associated with two n-parameter
persistence modules is bounded above by their interleaving distance [18],
hence ensuring stability. Moreover, the fibered barcode of 2-parameter per-
sistence modules originating from point-cloud data can be computed and
visualized by the software RIVET [19].
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PROJECTED DISTANCES FOR PERSISTENCE MODULES 3

Nevertheless, there are several bottlenecks to the fibered barcode ap-
proach. First, it is easy to exhibit two persistence modules at matching
distance zero but having arbitrarily large interleaving distance (see Sec-
tion 5.1). Second, computing and storing an entire n-parameter persistence
module is time and memory costly. RIVET can currently only handle 2-
parameter persistence modules. Moreover, it cannot deal with persistence
modules originating from sublevel sets filtrations of functions (such as im-
ages or PL maps on simplicial complexes).

In this paper, we approach the study of multi-parameter persistence mod-
ules through the lens of derived, and microlocal sheaf theory of Masaki
Kashiwara and Pierre Schapira [15] as initiated in [16]. In this setting,
building upon [16], the authors have proved, in a previous work [3], that
a multi-parameter persistence module can be identified isometrically to a
~-sheaf (see equation (3.2)). Therefore, this allows us to tackle the study
of multi-parameter persistence modules via microlocal techniques without
leaving apart computational considerations.

One of the key aspects of sheaf theory is that any continuous map
f:Y — X between topological spaces induces a pair of adjoint functors
(f~L,Rf.) (inverse image and derived pushforward) between the associ-
ated derived categories of sheaves. In this language, the restriction of a
persistence module M to a line of positive slope £ C R™ is the persis-
tence module ile obtained by applying the inverse image functor of the
inclusion of £ into R™ to M. Therefore, the fibered barcode construction
can be understood as a dimension reduction technique obtained by us-
ing inverse image functors along inclusion of one-dimensional sub-spaces.
A natural question follows: what can we say about derived direct images
of n-parameter persistence modules (or, more generally, of constructible
sheaves) along projections onto one-dimensional spaces? Indeed, the push-
forward operation does not have an easy description in the language of
persistence modules, though it is natural in the sheaf setting.

In this work, we provide a detailed study of the pushforward operation
on sheaves and persistence modules, both from a theoretical and compu-
tational perspective. Following the same strategy of reducing the study
of multi-parameter persistence modules to the study of families of one-
dimensional persistence modules, we introduce the notions of §-projected
barcodes and §-integral sheaf metric (see equations (6.1) and (6.2)). The
distance between two sheaves is the supremum of the distances between
the pushforwards of the sheaves by morphisms belonging to a family §.
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Again, in a similar spirit, we introduce sliced convolution distances (see
equations (6.6) and (7.3)).

Implementing such an approach requires relating precisely the classi-
cal theory of persistence modules and sheaf theory. This has largely been
achieved thanks to several works [1, 2, 3, 13, 16, 20]. Heuristically, this
correspondence goes as follows.

Persistence theory Sheaf theory

level sets persistence modules | sheaves for the usual topology

sublevel sets persistence modules sheaves for the y-topology

interleaving distances convolution distances

tame constructible at infinity

On our way, we prove several results and provide examples that may be
of independent interest to the TDA community. In particular, we show that
increasing the number of parameters of two filtrations of topological spaces
can only increase the interleaving/convolution distance between their asso-
ciated persistence modules/sheaves. In particular, this partially invalidates
the classical saying that “multi-parameter persistence is more robust to
outliers than one-parameter persistence.”

1.1. Structure of the paper

Section 2. We review classical constructions of sheaf theory, such as
integral transforms and kernel compositions. We recall the definition of
the convolution distance between (derived) sheaves of k-vector spaces on a
finite-dimensional real vector space, as developed by Kashiwara—Schapira
in [16] and provide proof about some properties of the convolution distance
that are well-known to the experts but do not appear anywhere (to the
best of our knowledge) in the literature. We recall the lemma, proved by
Petit and Schapira, stating that the pushforward by a C-Lipschitz map is
again C-Lipschitz for the convolution distance [23]. We end this section by
exposing the notion of constructible sheaves up to infinity, recently defined
by Schapira in [25].

Section 3. We review the notion of y-sheaves, and recall the precise rela-
tionship between this type of sheaves and persistence modules [3]. We then
strengthen one of our previous results, asserting that the interleaving dis-
tance between persistence modules equals the convolution distance between
their associated y-sheaves. Next, we recall the notion of graded-barcodes
for constructible sheaves on R and how we can compute the convolution

ANNALES DE L’INSTITUT FOURIER
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distance between two such sheaves from their graded-barcode, thanks to
the derived isometry theorem [1]. We end the section by providing a purely
sheaf-theoretic formulation of the fibered barcode.

Section 4. This section is devoted to the study of linear dimensionality
reduction of sheaves on a finite-dimensional real vector space V through
pushforwards along linear forms. Using projective duality, we prove that a
sheaf F' on V is zero if and only if its pushforwards with compact support
by all linear forms on V are all zero (Proposition 4.4). We then restrict our
attention to pushforwards of y-sheaves, which corresponds in our setting to
persistence modules. We recall the definition of Kashiwara—Schapira of the
sublevel sets persistence sheaf PH(f), associated with a continuous map
valued in V. Importantly, we prove in Lemma 4.19 that under a positivity
assumption on the linear form u and mild hypothesis on the continuous
function f: S — V, one has

Ru, PH(f) ~ PH(u o f).

We emphasize that the right-hand side is nothing but the sublevel sets
persistence of the real-valued function u o f, which can be computed with
already existing software packages dedicated to TDA. Then, we provide
a counter-example to the above isomorphism when the positivity assump-
tion is not met (Proposition 4.21). This counter-example shows that post-
composing a sublevel set filtration with a linear map is not, in general, a
stable operation. The identification of the necessity of the positivity hy-
pothesis is made transparent, again, thanks to the sheaf formalism.
Finally, we carefully study the pushforward of vy-sheaves along linear
forms close to the boundary of the polar cone. This allows us to prove
an unexpected result (Corollary 4.27), unknown to the best of our knowl-
edge, stating that increasing the number of parameters in a sublevel sets
filtration can only increase the interleaving distance. More precisely, given
(fi,-.-, fn): X — R" and (g1,...,9,): ¥ — R™ continuous maps from
compact good topological spaces to R™, one has for every 1 < ¢ < n:

distR(PH(fi),PH(gi)) < distgn (PH(f),PH(g)).
This result raises several questions regarding the behavior of multi-para-

meter persistence modules with respect to outlier.

Section 5. In this section, we elaborate on our study of the pushfor-
ward operation and introduce in Definition 5.1 the notion of §-projected
barcodes, associated to a family § of subanalytic functions up to infinity
from V to R. We motivate the introduction of this concept by studying

TOME 0 (0), FASCICULE 0



6 Nicolas BERKOUK & Francois PETIT

the classic example of the two persistence modules having the same fibered
barcode but being at a strictly positive interleaving distance. We show
that these two modules can be distinguished through their pushforward
via a linear form onto R. We then study several fundamental continuity
properties of the linear and 4-linear projected barcodes (Proposition 5.4
and 5.8). Finally, we prove in Proposition 5.13 that the fibered barcode
can be expressed as a projected barcode.

Section 6. We develop the theory of F-Integral Sheaf Metrics (F-ISM),
which are well-behaved distances between §-projected barcodes, obtained
by taking the supremum over each function in f € § of the pushforward
(possibly with proper support) by f of two sheaves. When all functions in §
are 1-Lipschitz, we prove in Proposition 6.8 that the §-ISM provides lower
bounds for the convolution distance. We then give two detailed examples of
§-ISM: the distance kernel ISM and the linear ISM. Finally, we introduce
the sliced convolution distances, obtained by integrating the p-th power of
the distance between the pushforwards of two sheaves over the unit dual
sphere.

Section 7. We apply our previous results to the case of n-parameter
persistence modules (seen as v-sheaves over R™). In particular, we show
that the y-linear ISM can be obtained by optimizing an almost everywhere
differentiable functional whose values and gradient can be evaluated using
only one-parameter persistence software packages. We end the section by
showing some concrete computations of ISM for multi-parameter persis-
tence modules.

Acknowledgments

The authors would like to thank the anonymous referee for their com-
ments and suggestions which greatly improved the paper.

2. Sheaves

This section introduces the necessary background on sheaf theory, con-
volution distance, and its links with persistence. The main reference for
general results on sheaves is [15]. The convolution distance for sheaves has
been introduced in [16] and generalized in [23]. A useful notion for our pur-
pose is the one of constructible sheaves up to infinity, which was introduced
recently by Schapira in [25].

ANNALES DE L’INSTITUT FOURIER
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Recall that a topological space is good if it is Hausdorff, locally compact,
countable at infinity and of finite flabby dimension.

Let k be a field and let X be a good topological space. We denote by
D(kx) the derived category of sheaves of k-vector space on X, by DP(kx)
its bounded counterpart, that is, the full subcategory of D(kx) whose ob-
jects are the F' € D(kx) such that there exists n € N such that for every
k € Z with |k| > n, H*(F) = 0. We write D‘gomp(kx) for the full subcate-
gory of DP(kx) spanned by the objects with compact support.

In this text, we will freely make use of techniques from micro-local sheaf
theory, for which we refer the reader to [15]. Nonetheless, micro-local tech-
niques will mostly appear in proofs and not in the results themselves. Hence
a reader only interested in the results may ignore them. Let M be a smooth
manifold.

e We denote by ory; its orientation sheaf and by wjy; its dualizing
sheaf. Recall that wys = orps[dim M]. We will also need the duality
functors

DSV[(') = ijomkM("kM)’
Dy () = RAomy,, (-,wr).

e If Z is a locally closed subset of M, we denote by ky the sheaf
associated to the locally closed subset Z.

e We write T*M for the cotangent bundle of M and set T*M =
T*M \ Opr, with 0y the zero section of T*M.

e For F € DP(ky,), we denote by SS(F) the micro-support of F. It
is a closed conical co-isotropic subset of T*M. We refer the reader
to [15, Chapter V] for a detailed presentation of this notion.

o Following [15, Section 6.1], let V' be a subset of T*M. We define
the full subcategory DY (kas) of DP(kys) by setting:

Ob(DY (kar)) = {F € Ob(D(ka)) | SS(F) C V}.
o Let Q=T*M\V, we set
D" (kas; ©2) = D(kar)/ Ob(DY (kar))

for the localization of D(kps) with respect to the null system gen-
erated by the object of DY (kys). The category DP(kps; Q) is a tri-
angulated category.

o We will meet the technical notion of cohomologically constructible
sheaf for which we refer the reader to [15, Section 3.4].

TOME 0 (0), FASCICULE 0
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2.1. Composition of kernels and integral transforms

In this section, we set up a few notations and present an associativity
criterion for non-proper composition of kernels.

Given topological spaces X; (i =1, 2, 3), we write X;; for X; x X;, X123
for X; x Xo x X3, pi: X — X; and py;: X123 — X5 for the projections.
One defines the composition of kernels for K;; € D"(kx,,) as

K129 K3 1= Rp13) (p15 K12 @ pag Kas),
K1z nngzz = Rp13.(p12 K12 ® pyg Kas).
To a sheaf K € DP(kx,,), one associates the following functor
Py DP(ky,) — DP(ky,), F — Rpay(K ®@p;'F).

Example 2.1. — Let V be a real vector space of dimension n + 1. We
set V:= V\ {0} and R* for the multiplicative group R\ {0}. We consider
Pn = V/ R* the projective space of dimension n. The dual projective space
P*" is defined similarly with V replaced by V* := Homy (V, k). We consider
the subset

(2.1) A={(z,y) e P* x P } (z,y) =0}
and the sheaf k 4. The integral transform associated to the kernel k 4
@y, : DP(P") — DP(P*"), F+—ksoF
induces an equivalence of categories
®y, : DP(P™, T*P") —s DP (P, T*P*").

This is a consequence of [15, Theorem 7.2.1] and we refer the reader to [12]
for a detailed study.

The proper composition of kernel — o — is associative. This is not the
np 2 .
case of the non-proper one — o - Nonetheless, we have the following
result.

THEOREM 2.2 ([23, Theorem 2.1.8]). — Let X; (i = 1,2,3,4), be four
C°°-manifolds and let K; € D"(kx,,,,) (i = 1,2,3). Assume that K
is cohomologically constructible, q; is proper on supp(K7) and SS(K;) N
(T, X1 x T*X5) C T, X12. Then

K1 HCQJP(KQ ngp K3) ~ (Kl n(23p Kg) ngp K3.

ANNALES DE L’INSTITUT FOURIER
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2.2. Convolution distance

It is possible to equip the derived categories of sheaves on a good metric
space (X, dx) with a pseudo-metric [23]. This pseudo-metric generalizes
the convolution distance of [16] from normed finite dimensional real vector
spaces to good metric spaces. Hence, we will also refer to this extension
as the convolution distance. The definition of a good metric space and the
construction of this pseudo-metric on DP(ky) are involved and we do not
need them explicitly. Hence, we do not recall them here and only review
the definition of the convolution distance in the special case of sheaves on
a normed finite dimensional real vector space. Nonetheless, we will state
and prove some of the results at the level of generality of sheaves on a good
metric spaces.

We consider a finite dimensional real vector space V endowed with a norm
I - |I. We equip V with the topology induced by the norm || - ||. Following [16],
we briefly present the convolution distance. We introduce the following
notations:

$:VxV-—V, s(z,y)=z+y,
Di: VxV-—YV (’L: 1a2)7 pl(xay) =, p2(w7y) =Y.

The convolution bifunctor x: DP(ky) x DP(ky) — DP(ky) and the non-
proper convolution bifunctor » : DP(ky) x DP(ky) — DP(ky) are defined
as follows. For F, G € DP(ky), we set

F+G:=Rs(FRG),
FXF =Rs,(FRGQ).

We consider the morphism
w:VxV—V, (z,y)—z—y.

We will need the following elementary formula relating non-proper convo-
lution and non-proper composition.

LEMMA 2.3. — Let F, G € D"(ky). Then,
() (w'F) 3G ~F¥a;
(i) v 'F 'S u"1G ~ u_l(FrfG).

Proof. — We will only prove (i), the proof of (ii) being similar. We define
the maps (u,p2): VXV — VXV (resp. (s,p2)) by (u,p2)(x,y) = (u(x, Y), y)

TOME 0 (0), FASCICULE 0
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(resp. (s,p2)(x,y) = (s(z,y),y)). These two continuous maps are invert-
ible, inverse of each other:

uT'F'S G~ Rpy, (u”'F @ p;'G)

~ Rpy, ((u, p2) 'p7 " F @ (u,p2) " 'p3 ' G)

~ Rp1,(u,p2) " (FRG)

~ Rpl*R(S5p2)*(F X G)

~ FXG. O
For r > 0, we set B, = {& € V| ||z < r}, and Int(B,) = {z €

V | |lz|| < r}. For all € R, we define the following sheaf:
KT — kB,. lf T 2 0,
kit (B_,)[dim(V)]  otherwise.

The following proposition is proved in [16].

PROPOSITION 2.4. — Let r,7’ € R and F € DP(ky). There are functo-
rial isomorphisms

(Kp*x K )*xF ~K,1.xF and KoxF ~F.

If r > ' > 0, there is a canonical morphism y,, : K, — K,» in DP(ky).
It induces a canonical morphism X, ,» x F': K, x F' — K, % F. In particular
when r’ = 0, we get

(2.2) XroxF: K. xF — F.
Following [16], we recall the notion of c-isomorphic sheaves.

DEFINITION 2.5. — Let F,G € DP(ky) and let ¢ > 0. The sheaves
F and G are c-isomorphic if there are morphisms f: K, x F — G and
g: K. G — F such that the diagrams

Koy
Ky s F—2 K G g P
X2r,0%F
Ko, i
Koy G—29 g & F ! G,

X2r,0xG

are commutative. The pair f, g is called a pair of r-isomorphisms.

ANNALES DE L’INSTITUT FOURIER
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DEFINITION 2.6. — For F,G € DP(ky), their convolution distance is
disty (F,G) = inf({r > 0| F and G are r-isomorphic} U {oo})

It is proved in [16] that the convolution distance is, indeed, a pseudo-
extended metric, that is, it satisfies the triangular inequality. The following
properties of the convolution distance are well-known to the specialists. We
include them with proofs for the convenience of the reader, as we do not
know any references for them.

LEMMA 2.7. — Let (V,||-||) be a real finite dimensional normed vector
space. Let F,G € DP(ky).

(i) LetveV,and 7,: V=V, . — x — v. Then,
disty(7y F, 7. G) = disty (F, G).
(ii) Let A€ R and hy: V=V, z — Az. Then,
disty (hr, F, by G) = |A] disty (F, G).
The functors T, and hy, are exact, hence we do not need to derive them.
Proof.
(i). — For F € DP(kx), there are the following natural isomorphisms
K, % Ty F ~Rsi(id x7_,) (K, X F)
= T (K % F).

Let F,G € DP(ky) and assume that they are c-isomorphic. Let f: K, xF —
G and g: K, * G — F be a pair of c-isomorphisms. Then, we have the
morphisms

[ Ky *7y F ~1, (K, xF) SALEN TG,

g Ky x 7y, G = 7y (K, x G) SUEEN T .
It is straightforward to verify that (f’,¢’) is a pair of c-isomorphisms. One
shows similarly that if 7, F and 7,,G are c-isomorphic, then F' and G are
c-isomorphic.

(if). — We first observe that
By (K, % F) =~ h;/lAK,« *x hy F
~ K\Mr *hA*F.

Then, we notice that A, (xr0) = Xar,0 Which concludes the proof. d

We now recall several key inequalities for the convolution distance.

TOME 0 (0), FASCICULE 0
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PROPOSITION 2.8 ([16, Proposition 2.6)).
(i) Let F,G € DP(ky), then

disty (Dv(F),Dv(G)) < disty(F,G).
(ii) Assume that disty(F;, G;) < a; (i = 1,2). Then one has
disty (F} * Fa, G1 x G2) < a1 + as.
LEMMA 2.9. — For F,G € D} (kvy), disty (Dv(F), Dy(G))=disty(F, G).
Proof. — By Proposition 2.8, we have that
disty (Dv(F),Dv(G)) < disty(F,G).
As F and G are constructible, it follows from [15, Proposition 3.4.3], that
Dy (Dy(F)) ~ F
and similarly for G. It follows that

distv(F'7 G) = disty (DV (Dv(F)) , Dy (Dv(G))>

< disty (Dy(F), Dy(G)).
Hence, disty(F, G) = disty (Dv(F), Dv(G )) O
Let X be a topological space, (V,|-||) be a normed finite dimensional

real vector space and f1, fo: X — V be two continuous maps. We set
I1f1 = folloo = sup || f1(z) — fa(@)]]-
zeX

THEOREM 2.10 ([16, Theorem 2.7]). — Let X be a good topological

space and fi1, fo: X — V be two continuous maps. Then for any F €
DP(kx), we have:

o disty(Rf1,F,Rf2 F) < || f1 — f2lloo;
b dlStV(Rfl*FvaQ*F) g Hfl - f2||oo

THEOREM 2.11 ([23, Corollary 2.5.9.]). — Let (X,dx) and (Y,dy) be
two good metric spaces and f: X — Y a K-Lipschitz map. Then, for every
F, G e Db (kx),

disty (RAF,RAG) < K disty (F,G).

If moreover X and Y are finite dimensional vector spaces and dx and dy
are Euclidean distances, then one also has

disty (Rf.F,Rf.G) < K distx (F,G).

ANNALES DE L’INSTITUT FOURIER
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2.3. Constructible sheaves up to infinity

We review in this section the notion of sheaves constructible up to in-
finity, which was recently introduced by Schapira in [25]. The geometric
setting is the following. Let (V.|| -||) be a real vector space of dimension n
endowed with a norm. We denote by P the projectivization of V. That is,
we consider the n dimensional projective space P*(V @ R). We also write
P* for the projectivization of V*. We have the open immersion:

j:V—P  z+—[z1].

In particular, j is an open embedding of real analytic manifolds, whose
image is relatively compact.

PROPOSITION 2.12 ([25, Lemma 2.7]). — Let F € D2_(ky). The follow-
ing are equivalent.
(i) The micro-support SS(F') is subanalytic in T*P.
(ii) The micro-support SS(F) is contained in a locally closed R -conic
subanalytic isotropic subset of T*P.
(iif) jiF € DR (k).
(iv) Rj.F € D2 (kp).

DEFINITION 2.13. — If F € DR _(ky) satisfies any (hence all) of the
conditions above, we say that F' is constructible up to infinity. We denote
by D2, (ky_ ) the full triangulated subcategory of D} _(ky) whose objects
are sheaves constructible up to infinity.

The following is a special case of [25, Definition 2.5].

DEFINITION 2.14. — Let V and W be two finite dimensional real vector
spaces, and P and P’ their respective projectivization. A map f:V — W is
subanalytic up to infinity if its graph I'y C V x W is subanalytic in P x P’

Notation 2.15. — We write:

(i) A(V) for the set of morphism of analytic manifolds from V to R
which are subanalytic up to infinity;

(ii) SC(V) for the set of continuous maps from V to R which are
subanalytic up to infinity.

Let V and W be two finite dimensional real vector spaces, P and I their
respective projectivization and f: V — W an element of SC(V,).

PROPOSITION 2.16. — Let F € D2 (ky_) and G € DE_(kw_. ). Then,
the sheaves f~'G, f'G, Rf.F, and RfiF are constructible up to infinity.
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Proof. — This follows immediately from [25, Lemma 1.1] and [25, Corol-
lary 2.1°]. O

COROLLARY 2.17 ([25, Corollary 2.13]). — With the same notations,
one has Rf.F ~ DwRfiDyF and f'G ~ Dy f~'DywG.

3. v-sheaves

The interplay between sheaves on a real vector space and persistence
theory necessitates the use of a topology on a vector space introduced by
Kashiwara and Schapira [15], called the 7-topology. In this section, we
first recall the basic definitions associated to the ~-topology. There is a
notion of interleaving distance between sheaves on the y-topology, which
the authors proved to coincide under some properness hypothesis with the
convolution distance [3, Corollary 5.9]. Here, we strengthen this result by
removing the properness assumption. We then recall some results specific
to the dimension one case, where ~y-sheaves have a graded-barcode [1]. We
end the section with the notion of fibered barcode which was introduced
in [8] for persistence modules, that we translate in our y-sheaf setting.

Let V be a finite dimensional real vector space. We write a: x — —xz for
the antipodal map. If A is a subset of V, we write A® for the image of A
by the antipodal map. A subset « of the vector space V is a cone if:

(i) 0 €

(ii) Rso-y C 7.
A convex cone 7 is proper if v* Ny = {0}. The polar cone 7° of a cone
v C V is the cone of V*:

v ={¢eV*| Vven, (£v) >0}
From now on, we assume that
(3.1) v is a closed proper convex cone with non-empty interior.

We say that a subset A of V is ~y-invariant if A = A + ~. The set of -
invariant open subsets of V is a topology on V called the y-topology. We will
generically designate topology of this type by cone topology. We denote by
V., the vector space V endowed with the vy-topology. We write ¢,: V =V,
for the continuous map whose underlying function is the identity.

We set, following [16],

(3.2) DY.a(kv) = {F € D"(ky) | SS(F) CV x y*}.

We call an object of DE’/O,Q (kvy) a 7y-sheaf. This terminology is motivated by
the following result.
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THEOREM 3.1 ([16, Theorem 1.5]). — Let v be a proper closed convex
cone in V. The functor R¢,, : DY.(ky) — DP(ky, ) is an equivalence of
triangulated categories with quasi-inverse ¢ L

The canonical map k.« — kyoy induces a morphism
(3.3) F¥ky. — F.

PROPOSITION 3.2 ([14, Proposition 3.9]). — Let F € DP(ky). Then
Fe Dgo,a (ky) if and only if the morphism (3.3) is an isomorphism.

The following lemma is closely related.

LEMMA 3.3 ([15, Proposition 3.5.4]). — The endofunctor k,ya?(-) of
D" (ky) factors through DY...(ky) and defines a projector

D"(ky) — Db (kv).

This functor is called the “gammaification” functor.
Let v € V. Recall that

Tw:V—V 2+ 2x—0.

For v,w € V such that w + v C v + =, we can use Proposition 3.2 to
construct a morphism of functors from Dbs.. (kv) to DY.. (ky):

(34) Xfuﬂu/: Tox — Tws-
We refer the reader to [3, Section 4.1.2] for details.

DEFINITION 3.4. — Let F, G € D';o,a (ky), and v € v*. We say that F
and G are v-interleaved if there exist f: 1,,F — G and g: 7,,G — F such
that the following diagram commutes:

X2v,0(F)
TQ’U*FH—T’U*T’U*F T’U*G F

= X

Tous G ——> T, Tos G ——> T, I 7 G.
X2v,0(G)
DEFINITION 3.5. — The interleaving distance between F and G with

respect to v € v* is
di(F,G) = inf({r > 0| F and G are r - v-interleaved } U {oo})

The interleaving distance was introduced in [9]. We refer the reader to [26]
for details.
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3.1. Distances comparison

In this subsection, we compare the interleaving distance on D‘;ova(kv)
with the convolution distance on DSO, o (ky). We sharpen [3, Proposition 5.8
and Corollary 5.9] by removing the ~-properness assumption. The archi-
tecture of the proof is the same as in [3]. The -properness hypothesis is
removed thanks to Theorem 2.2.

Here, V is endowed with a closed proper convex cone v with non-empty
interior. Let v € Int(y*) and consider the set

By = (v+7)N(=v+7%).

The set B, is a symmetric closed bounded convex subset of V such that
0 € Int B,,. It follows that the gauge

(3.5) g, (x) =inf{A> 0|z € AB,}

is a norm, the unit ball of which is B,. We denote this norm by || - ||,. We
assume that V is equipped with this norm. Recall the map

wVxV—V, (z,y)—z—y.
Consider
O={(z,y) eVxV|z—yeqy*}=u"(y)
and notice that
A= {(xay) EVXV | lz —yllo < T} = uil(Br)a

where B, is the closed ball of center 0 and radius r in V for the norm || - [|,..
The following formulas follow from Lemma 2.3:

(3.6) ko 6 F ~ kya % F,
(3.7) ka, o ko ~Kka, so.
LEMMA 3.6. — Let F' € DP(ky). Then,
(ka, o ke) o F~kp o(ke oF).

Proof. — Let w: T*V — V be the cotangent bundle of V. We denote by
uq the dual of the tangent morphism of u. It fits in the following commu-
tative diagram

T*(V x V) <= (V x V) xy xT*V —Z5 TV

~__ I A
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Since we have the isomorphism ka, ~ u~'kp, , [15, Proposition 5.4.5] im-
plies that SS(ka, ) = uqu; *(SS(B,)). A direct computation shows that

uguz (T*V) NTEV X T*V C Ty (V X V).

Hence SS(ka,) NTyV x T*V C Ty, (V x V). Since ka, is constructible
and the properness assumption is clearly satisfied, we apply Theorem 2.2
and get the desired isomorphism. O

Finally, there is also the following isomorphism
(38) kr’r’uv_}'_’ya ~ kBT+,Ya.
We now state and prove the sharpen version of [3, Proposition 5.8].

THEOREM 3.7. — Let v € Int(y*), 7 € Ry and F,G € Db, . (ky). Then
F and G are r - v-interleaved if and only if they are r-isomorphic.

Proof. — Let F,G € DY .(ky). Assume they are r - v-interleaved. We
set w = r - v. Hence, we have the maps

a: Ty — G, B: TwsG — F,

such that the below diagrams commute

Tuw 5 @ TwsB TwxB Tow 5 @
Tows F TwsG F TowsG —— Ty F —— G.
X8,2'w (F) X‘ZLw.O(G)

Using [1, Lemma 4.3], we obtain
np np
k. a * k a % f3
np 2wty np wty
koyyya ¥ F ——————kyyya G ————= F.
P
X2w,0 * F'

Moreover for every r > 0, we have the following isomorphisms

Kyyprya YF ~ kBT+’Ya,I})FF by Equation (3.8)
~ka 100 F by Lemma 2.3(i)
~ (kp Ske) S F by Equation (3.7)
~ka, S(ke S F) by Lemma 3.6
~Kka, rBp(k,ya I;E)F) by Equation (3.6)
~ Kka, SF by Proposition 3.2
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18 Nicolas BERKOUK & Frangois PETIT

o~ kBTr;FF by Lemma 2.3(i)
~kp xF (compacity of B,.).

Hence, we obtain the commutative diagram

k
kp, xF—2"" _kpsG—" P,

po,2cxF
Similarly, we obtain the following commutative diagram

kg, xf3
° kp, * F e

kBgr*G G.

po,2r*G

Hence, F' and G are r-isomorphic.
A similar argument proves that if F' and G are r-isomorphic then they
are r - v-interleaved. d

COROLLARY 3.8. — Let v € Int(y*), F, G € Db...(ky). Then,
dist?(F, G) = i, (F, G),

where disty is the convolution distance associated with the norm |- ||,
defined in equation (3.5).

PROPOSITION 3.9. — Let v € Int(y?), F,G € Db, . (ky) and ¢ € Rxo.
Assume that F and G are c - v-interleaved. Then for all j € Z, H/(F) and
H’(G) are c¢ - v-interleaved.

Proof. — For all w € Int+*, the functor 7,.: Mod(ky) — Mod(ky) is
exact. Therefore, applying the functor H’ to a c - v-interleaving diagram
between F' and G produces a c-v-interleaving diagram between H? (F) and

H (G). O
COROLLARY 3.10. — For v € Int~+* and F,G € Dso,a(kw), one has:

(i) max; dj, (H (F), B (G)) < d},.(F, G);
(i) max; disty (H/ (F), H/(G)) < disty(F, G).

Proof. — The first inequality is a direct consequence of Proposition 3.9.
The second inequality is a consequence of the first one, together with Corol-
lary 3.8. O
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3.2. The dimension one case

When V is a one-dimensional real vector space, the category Dﬁc(kv) en-
joys a structure theorem which ensures the existence of a graded-barcode
for its objects, and allows to derive explicit computations for the convolu-
tion distance. This was studied in detail in [1, 16]. These results extend the
key theorem of Crawley-Boevey [10] to constructible sheaves on the real
line. In this section, we recall the main results that will be useful in the
following of the article.

THEOREM 3.11 ([16, Theorem 1.17]). — Let F' € Modg¢(kr), then there
exists a unique locally finite multi-set of intervals of R noted B(F') such that
F ~ k[.

I€B(F)

Moreover, this decomposition is unique up to isomorphism.

Since for I and J some intervals of R, one has Ext’(k;, k) ~ 0 for all
7 > 1, Theorem 3.11 has the following useful corollary.

COROLLARY 3.12. — Let F € DR (kg). Then there exists an isomor-
phism in DB, (kg):
F =~ P (F)[-j],
JEL
where H?(F) is seen as a complex concentrated in degree 0.

DEFINITION 3.13 ([1, Definiton 2.13]). — Let F € DB (kgr), we de-
fine its graded-barcode B(F') as the collection (Bj(F))jGZ where B/ (F') ==
B(H/(F)). Furthermore, to indicate that an interval I C R appears in de-
gree j € Z in the graded-barcode of F', we write I’ € B(F'). The element
I is called a graded-interval.

We recall here the construction of the category Barcode of [1], which is
an explicit skeleton of D _(kg). Let Inter(R) be the set of intervals of R and
p1, p2 be the projections on the first two coordinates of Inter(R) x Z X Zxy.
Let B be a subset of Inter(R) X Z X Zxo. Then B is said to be:

e Jocally finite if p1(B) N K is finite for all compact subsets K C R;
e bounded if p2(B) C Z is bounded;
o well-defined if the fibers of the projection (pi,p2) have cardinality
at most 1.
In a triple (I,j,n) € B, the first integer stands for the degree in which
the interval I is seen and the second non-negative integer n stands for its
multiplicity.
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20 Nicolas BERKOUK & Frangois PETIT

DEFINITION 3.14 ([1, Definition 6.11]). — The category Barcode has
as objects the elements of the set

B is bounded,
Ob(Barcode) = ¢ B C Int(R) x Z X Zx | locally finite,
and well-defined

For any B and B’ € Barcode, the set of their morphisms is

Homparcode (B, B') = H HomDEC(kR)(k}‘[—j], T [=3'])-
(I,j,n)€EB
(I'5'n")er’
We define the composition in Barcode so that the mapping:

1: Ob(Barcode) 5 B+— P k}[—j] € Ob(Dp.(kr))
(I,j,n)eB
becomes a fully faithful functor:

¢: Barcode — DB (kg).

Note that this is possible only because the objects of Barcode are locally
finite (hence products and co-products coincide). Theorems 3.11 and 3.12
assert that ¢ is essentially surjective, therefore is an equivalence. We also
deduce from these theorems that Barcode is a skeletal category: it satisfies
for any B;,B, € Barcode,

By ~ B, if and only if B; = Bs.

Since ¢ is an equivalence, let us denote by B a quasi-inverse of ¢. In [1],
the authors define a matching distance between the objects of Barcode
called the bottleneck distance, and denoted dg. They prove the following
isometry theorem, where R is endowed with the usual absolute value norm
||, and we denote by distg the associated convolution distance on DP (kg).

THEOREM 3.15 ([1, Theorem 5.10]). — The functor
B: (DR.(kg), distg) — (Barcode, dj)
is an isometric equivalence.

In this article, we will mostly be interested in ~y-sheaves, since they are
the sheaf theoretic analogue of persistence modules in a precise sense [3].
Therefore, we unwrap the derived isometry theorem of [1] in the simpler
setting of y-sheaves that will be useful for us in the following of the article.
For the rest of this section, we set v = (—o0, 0]. Intervals appearing in the
graded-barcodes of y-sheaves are of the form [a,b), with a,b € R U {z00}.
Note that all results translate readily for the cone 4" = [0, +00).

ANNALES DE L’INSTITUT FOURIER



PROJECTED DISTANCES FOR PERSISTENCE MODULES 21

We recall that, given two (multi-)sets X and Y, a partial matching be-
tween X and Y is the data (o,X,)) of two subsets X C X and ) C Y,
together with a bijection o: X — ). In this situation, we use the notation
(0,X,)): X =Y.

DEFINITION 3.16. — Let F,G € D} .. (kg), and e > 0. An e-matching
between B(F) and B(G) is the data of a collection of partial matchings
(07, X7, Y7): B/ (F) — B(G), satisfying the following, for all j € Z:

(1) for all I € X7 such that I = [a,b) with a and b in R U {400}, then
oI (I) = [a',b) with a’ and b in RU {£o0}, and?) |a —a'| < € and
b—V|<e;

(2) for all I = [a,b) € BI(F)\X7J UBY(G)\)’, then |a — b| < 2e.

DEFINITION 3.17. — Let F,G € Dﬁcﬁo,a(kR), their bottleneck distance
is defined by:

dp(F,G) = inf{e > 0| B(F) and B(G) are e-matched}.

Remark 3.18. — The matchings between graded barcodes of ~-sheaves
are defined in the same way as between barcodes of persistence modules.
Therefore, one can compute the bottleneck distance between barcodes of
~-sheaves using already existing software [28, 29]. It is nevertheless far from
being true when removing the + assumption on F' and G.

THEOREM 3.19 ([1, Theorem 5.10]). — Let F,G € Dﬂgcﬁo,a(kR), then
the following are equivalent, for all ¢ > 0:

(i) F' and G are e-isomorphic;

(ii) there exists a e-matching between B(F') and B(G);
(iii) for all j € Z, H’(F) and H’(G) are e-isomorphic.
COROLLARY 3.20. — Let F,G € Dy ... (kg), then

disty (F, G) = max dist (H/(F), B (Q))
JE€
_ j j
r?g%dB(B(H (F), B(H/(G))).
Remark 3.21. — Note that Corollary 3.20 is false if one only assumes
F,G e D]%C(kR)

One consequence of the derived isometry theorem is the following closed-
ness property of the convolution distance, which we recall in full generality
here.

(1) We set |[+00 — +00| = |—00 — (—0)| = 0, and for all z € R, |£oo — z| = +oo.
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THEOREM 3.22 ([1, Theorem 6.3]). — Let F,G € DR.(kgr), then the
following are equivalent, for all € > 0:
(i) distg(F,G) < ¢;
(ii) F and G are e-isomorphic.
In particular, distg (F,0) = 0 iff F ~ 0.

3.3. Fibered barcode

One of the challenges of multi-parameter persistence is to provide a mean-
ingful notion of distance between persistence modules which can be com-
puted in a reasonable time complexity. Indeed, it has been shown that the
usual interleaving distance between persistence modules is NP-hard to com-
pute in the multi-parameter case [4]. To overcome this issue, the authors
of [8] introduced the matching distance between multi-parameter persis-
tence modules, which is by now popular in the TDA community, thanks to
the software RIVET [19]. We review this notion below, but formulate it in
the language of ~-sheaves.

In this section, we assume that V = R™ and consider the cone v =
(—00,0]™. Let v = (1,...,1)" € Int(y*) and |||, is defined as in equa-
tion (3.5). Then,

H(ml,...,xn)Hv = max{|m1\,...,|xn|}.

Let us define A := {h € Int(v*), ||hll, = 1}. Given h € A, we denote
by L the one dimensional subspace of R™ spanned by h. Recall that ~
induces on R™ the standard product order < given by:

r<y <= xz+7Cy+v <= x; <y foralli.
The poset (L, <) is isomorphic to (R, <) via the isometry
(3.9) te,: R— Ly, tr—t-h.

Therefore, it has the least upper bound property. Following [19], we define
the push function pg, : V — L, by

pgh(m):inf{yeljﬂxgy} :inf{y6£h|x€y—|—7}

(see Figure 3.1). One can prove that we have the following formula, for
z=(r1,...,2,) €EVand h= (h1,...,h,) € A:

(3.10) pe, (x) = (max %) - h.

g )
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pe, ()

Ly

Figure 3.1. Nlustration of the push function p,, .

In particular, one has for y € Lp:

(3.11) pz ({w}) =y + 0.
LEMMA 3.23. — For h = (hi,...,h,) € A, the map pg, is -
Lipschitz with respect to || - ||, and this coefficient is optimal.
Proof. — Let z,2’ € V, since h; > 0 for all 4, one has:
X4
pe, () =max — - h € L.
i hy
Therefore,
T x!
/ _ 1 i
e () = pes @], = o 52 = 5
/
!
< v
S L T
1 /
= mini hl Hx -7 ||v
The above inequality becomes an equality when ig € {1,...,n} is such
that h;, = min; h;,  is the ip-th element of the canonical basis of R™, and
' =0. O

DEFINITION 3.24 ([8]). — Let F € Dg, c..(ky), its fibered barcode is
the collection of graded-barcodes (B(iz ' 7' F)) (he) AV
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DEFINITION 3.25 ([8]). — Let F,G € Dﬁcﬁo,a(kv), their matching dis-
tance is the possibly infinite quantity:
dm(F,G) = sup (minh;)-dp(B(i; 7, 'F),B(i; 7. 'G)).
(h,c)EAXV * )
Recall that we denote by disty the convolution distance associated with
the norm | - ||, on DP(ky). Then one has the following stability result.

PROPOSITION 3.26 ([8, 18]). — Let F,G € DR, 0..(kv). Then,
dm(F,G) < dist)(F, G).

Therefore, the matching distance is stable with respect to the convolu-
tion distance. Under some finiteness assumptions on F, G, the matching
distance can be computed in polynomial time (in the number of generators
and relations of a finite free presentation of F' and G seen as persistence
modules). In particular, the software RIVET [19] allows for an efficient
computation of the matching distance when V is of dimension 2, and gives
an interactive visualization of the fibered barcode.

4. Linear dimensionality reduction

In this section, we study direct images of sheaves on a finite dimensional
vector space by linear forms. We examine in detail the case of ~-sheaves
and sublevel sets persistence modules. We obtain several vanishing results
and a formula allowing to compute explicitly the pushforward by a linear
form of a sublevel sets multi-parameter persistence module.

Let (V,]|-||) be a real vector space of dimension n endowed with a norm.
Recall that we denote by P the projectivization of V. That is, we consider
the n dimensional projective space P"(V @& R). We also write P* for the
projectivization of V*. We have the open immersion

(4.1) j:V—P  z+—[z1].
4.1. Linear direct image of sheaves

We need the following straightforward generalization of the stability in-
equality. This is a version with support of the usual stability inequality, as
proved in [16].
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LEMMA 4.1. — Let X be a good topological space and (V,|-||) be a
real finite dimensional normed vector space. Let F' € DP(kx), S be a closed
subset containing supp(F), and f1, fa: X — V be continuous maps. Then:

disty(Rf1,F,Rf2 F) < Hf1|s f2|SHoo’
disty(Rf1,F,Rf2, F) < Hf1|s f2|S||oo

Proof. — We only prove the first inequality, the proof of the second one
being similar. Remark that F' ~ ig!iglF. Hence,

disty (R f1,F,Rf2, F) = disty(R f1)isiig ' F,Rfayisiig F).
It follows from the stability theorem that
disty(R friisiig' F,Rfaisiig ' F) < ||f1]s — falgl.,

Thus,
disty (Rf1, F, Rf2 F) < || filg — fol gl oo - O
Let S be a subset of V. We set ||SH = sup,cgllz]. We endow V* with
the operator norm [|u|| == supy = [lu(z)].

LEMMA 4.2. — Let F € DP

comp(Kv), u,v € V* and set S = supp(F).
Then,

distg (Rut F, R F') < ||S]|[w — ]| -
Proof. — It follows from Lemma 4.1 that
distg (Rui F, R F) < HU}S — U|SH(X>
and for every x € §

|u(z) — v(z)|

e = ]l
e =2l S
=gl < llw=lllSI- 0
Recall the following integral transform
®y,: DP(P") — DP(P*"), Fr+—kyoF

where the set A is defined by equation (2.1).
We wish to extract information regarding F' from the data of pushfor-

NN

wards of F' by linear forms. For that purpose, we will use projective duality
as it allows to construct a sheaf on P*, the projectivization of V*, via @y ,,
the stalks of which are the (Ru/F'); where u is a linear form and ¢ an
element of R.

LEMMA 4.3. — Let F € DP(ky) and let [u;t] € P*. Then
(I)kA (RJ'F)[u,t] >~ (Ru;F)t.
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Proof. — Let [u;t] € P* and set
By = {[z,y] € P | u(z) = —ty}.
There is the following commutative diagram
\Y% 7 P
idy x [u;t}l idp x [u;t]
Vx Pt L p oy pr

b

vV—71 oP,

with ¢; and p; the first projections, and [u;t]: V — P* the constant map
with value [u;t]:
Piey (RGF ) = REC (P x [ust]; (ka @ p1 ' RAF) |5 1)
. —1g .
~ RT (P x [us ] ki, xfust) @ (p1(ide x[u; 1) Rj;F)
~ RI.(P; kB 0 @ RHF)
(P; R].( “'kp,, ©F))
(]P’; Riji(k, ~1(t) @ F))
~ R (V k,- 1(1) ®F)
:RFC(U ;F|u_1(t))
~ (Ru F);. O

~
~

c
C

=~ =

I
I
r

PROPOSITION 4.4. — Let F € D"(ky) such that for all u € V*, Ru|F ~
0. Then, F ~ 0.

Proof. — Let [u;t] € P*. Then, it follows from Lemma 4.3 that
Oy, (Rt F) ) =~ (Run F)y.
Hence, @y, (Rj1F) ~ 0 and
dy , : DP(P, T*P) — DP(P*, T*P*)

is an equivalence of categories. This implies that RjiF ~ 0 in D (P, T*IE”).
Thus SS(F) C TyV. It follows from [15, Proposition 8.4.1] that RjiF is a
local system on P. Now, let [z,0] € P. Then

(RjtF)aso) = RO (57 ([2500)s F |,y (ygy)  and 571 ([230]) = 0.

Thus, (Rj!F)[z;O] ~ (. This implies that RjF ~ 0, which leads to F' ~
0. O
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4.2. Linear direct image of y-sheaves

In this subsection, we study direct images and direct images with proper
supports of y-sheaves by linear forms.

PROPOSITION 4.5. — Let F € D (ky) and u € V*.
(i) If u € ¥*2 (resp. 7°), then RuF € DY, . (ky) with A\ = R_ (resp.
A - RJ’_)
(i) If u ¢ v° U~>?, then RuF is a constant sheaf. If furthermore F'
has a compact support, then Ru,F ~ 0.

The same results (i) and (ii) hold for RuF' replaced with Ru. F'.

Proof.

(i). — Let F € DRo,a(kV)7 u € V* and mg«: R x R* — R*. Then [14,
Corollary 1.17] asserts that

(4.2) SS(Rw F) C mglt (u?) ™1 (v>%).
Moreover,
(4.3) (@)1 ) = {€ e R" [ E(Du e 4}

Assume that u € 7%\ {0} and let £ € (u')~!(y**). Since the interior of y
is non-empty, there exists zo € v such that u(xg) < 0 and £(1)u(xg) < 0.
Thus &(1) > 0 which is equivalent to £ € A*® with A = R_. Equation (4.2)
becomes
SS(RuF) C R x A”¢

which proves the claim. The case where u € 7° is treated in a similar way.

(if). — Since u ¢ v° U ~y>%, there exist z,y € 7 such that u(z) < 0
and u(y) > 0. Hence, 7' (u!)™1(7>?) = R x {0}. It follows from [15,
Proposition 8.4.1] that RuF' (resp. Ru,F') is a constant sheaf (possibly
equal to zero) as V is contractible. If the support of F' is compact, then the
support of RuyF is different from R and thus RuiF ~ 0. O

COROLLARY 4.6. — Let F € DYc.u opmp(kv). Then RT(V; F) ~ 0.
Proof. — Let u ¢ +° U~*%. Then, by Proposition 4.5, Ru,F ~ 0 and
RI'(V; F) ~ Rag,Ru.F ~0
where ag is the constant map V — {pt}. O

LEMMA 4.7. — Let K C V be a compact set and u € Int(y°). Then

U is proper.
K+~ prop
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Proof. — Since the interior of v is nonempty, K is compact and u is
linear, we can assume without loss of generality that K C ~. Therefore,
it is sufficient to prove that for any two real numbers a < b, the set ¥ =
u~1([a,b]) N is compact. Since u € Int(y°), it follows that for every z €
v\ {0}, u(x) > 0, which shows that ker(u) N~y = {0}. We set v € Int(y)
such that u(v) = 1. Consequently, one has the direct sum decomposition
V = Rv @ ker(u), and one has:

S={t-v+h|teab], hecker(u)}nn.

Since + is closed and convex, so is Y. Therefore, 3 is unbounded if and only
if there exists x € ¥ and y € V\ {0} such that for all ¢t > 0, x+t-y € X. Let
assume that there exist such z and y. Then, for all t > 0, u(z+t-y) € [a, b],
which implies that y € ker(u). Moreover, for all ¢t > 0,

1 T
;-(m+t~y)=;+y€y.

Since v is closed, we obtain making ¢ going to +oo that y € yNker(u) = {0}.
This is absurd by hypothesis, so ¥ is bounded. Since V is finite dimensional,
it is compact. O

LEMMA 4.8. — Let u € Int(y°) (resp. Int(y>®)). Then Ru.k, ~ kg,
(resp. Ru.k, ~ kg ).

Proof. — Since u € 7°, it follows that v C u=!(R,) and these two sets
are closed. Hence, there is a canonical map u‘lkR+ ~ ky-1r,) = ky. By
adjunction, this provides a map a: kg, — Ru.k,. We compute the stalks
of this map. Since u € Int(v°), it is proper on ~. It follows that for x € R,
(Ru*kv)w ~ RI'. (u_l(x); k'yﬁufl(ac)>~

o If # ¢ Ry, then u™(2) Ny = 0. Thus RTc(u " (2); kyru-1()) =0
and a, is an isomorphism.

o If z € Ry, then u~!(z) N~ is non-empty and it is a compact convex
subset of u~!(x). This implies that RFC(U*I(m);kvﬂu_l(x)) ~ k
and «, is again an isomorphism. O

We recall the notion of characteristic cone following [17, 27]. Let C be a
closed convex subset of V and let p € C. Consider the set

Cp:{er| VA20, Mz —p)+peC}.

Hence C,, is the union of half-lines contained in C emanating from p. The
set C), is an affine convex cone and if ¢ € C then C), = C; + (p — q). The
cone C,, is called a characteristic cone of C.
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LEMMA 4.9. — Let V be a finite dimensional real vector space and let
C be a closed convex set such that a characteristic cone of C' is not an
affine subspace of V. Then,

RT.(V;ke) ~ 0.

Proof. — We first establish the lemma when V = R and C' = [0, 4o0].
Using a stereographic projection from the north pole N of S! C R2, we
notice that R is homeomorphic to a half-circle minus the north pole that
is to [0, 1[. We consider the following exact triangle

RT.([0,1]; ko.1;) — RT. ([0, 1];kyo.1)) — RTe([0,1];kp1y) == .

Since the morphism RFC([O, 1];k[071]) — RI‘C([O,I];k{l}) is an isomor-
phism, it follows that RFC([O, 1]; k[O,l[) ~ 0. Thus RI'.(R; kg 4-o0[) = 0.

Now, assume that V is a real vector space of dimension n and C is a
closed convex set of V such that a characteristic cone of C' is not an affine
subspace of V. By [17, Section 5|, it follows that C' is homeomorphic to
[0,1]% x [0, +o0[ for some 0 < d < n — 1. Hence,

RI(Vike) ~ RT:(Ci ko)
~ RFC([O, 1}d X [0, +OO[; k[o’l]dx[0’+oo[)
~ RI ([0, 1]% kjp,174) ® RT'([0, +00[; k[0, 400[)
~ 0. O

LEMMA 4.10. — Let V be a vector space. A closed proper cone v of V
does not contain any non-trivial affine subspace of V.

Proof. — Let E be an affine subspace of V contained in v and let p € F
and v € V, an element of the vector space associated with E. The set
L= {x ev ’ T=p+ v, A€ R} is an affine subspace of E. Since v is a
cone, for every n € N*, the points ¢, = %(p—!—nv) and r,, = %(p—nv) belong
to . Since 7 is closed, the limits lim,, o p, = v and lim, oo r, = —v
belong again to v which is proper. Hence, v = 0 and L = {p}. This implies
that F is trivial. O

PROPOSITION 4.11. — Let u ¢ Int(y°) U Int(y**). Then Ruk, ~ 0.
Proof. — Let y € R. Then,

(Rurky)y ~ R (1™ ()i Kyru-1(y))-

We set C' =~y Nu~'(y). Then, either C' =0 and RI.(u"*(y); ke) ~ 0 or
C # () and it is a closed convex set. Let xg € C. Since u € 9v° U 0v°4,
it follows that (ker(u) N+)\ (0) # 0. As v is a cone this implies that
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(ker(u) N ’y) contains a half-line h. Since xg € 7 and 7 is a convex cone
then xg+h C 7. Moreover, h C ker(u), thus u(zg+h) = {y}. Hence, xg+h
is contained in C' which implies that the characteristic cone Cy, contains at
least a ray and is not reduced to a point. Let z € C. We have the following
inclusion of characteristic cone C, C v, = v+ z. Moreover, it follows from
Lemma 4.10 that « does not contain any non-trivial affine subspace of V.
Hence C, is not an affine subspace of V. Then, applying Lemma 4.9, we
get that (Ruk,), ~ RT'(V;ke) ~ 0. O

4.3. Sublevel sets persistence

In [16], Masaki Kashiwara and Pierre Schapira provide a sheaf-theoretic
construction of sublevel sets multi-parameter persistence. The aim of this
section is to prove that the sheaf encoding the sublevel sets multi-parameter
persistence of a pair (S, f), where S is a good compact topological space
and f: .S — V is a continuous map, is y-compactly generated.

DEFINITION 4.12. — A sheaf F' € DP(ky) is y-compactly generated if
there exists G € D2, (ky) such that F ~ G ‘)Fk,ya, We denote by D__, (kv)

comp y-cg
the full subcategory of DP(ky) spanned by y-compactly generated sheaves.

Remark 4.13. — Any compactly supported 7-sheaf is y-compactly gen-
erated. Also, with the same notations, one has F' ~ G x kya.

We now recall Kashiwara—Schapira’s construction of the sublevel sets
multi-parameter persistence module associated to a pair (S, f) where S is
a good topological space and f: .S — V is a continuous map. We denote
by I'y the graph of f and + is a cone satisfying hypothesis (3.1). We set

I ={(z,9) e SxV| f(z) -y e}
= Ff + ’y“.
We write p: SXV — V, (z,v) — v for the projection onto Vand s: VXV —
V, (v,w) — v 4+ w. We notice that so (p x idy) = p o (idg xs).

DEFINITION 4.14. — The sublevel sets persistent sheaf of the pair (S, f)
is defined by:

PH(f) = Rp.kr; € D (k).

We use the notation PH'(f) == Hi(Rp*kF}), for i € Z.
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Remark 4.15. — Let M be a real analytic manifold (for instance M =
R™) and let S be a good topological space. We assume that + is subanalytic
and that we have the data of ig: S — M a closed immersion whose image is
a subanalytic subset of M and that f: .S — V is continuous and subanalytic
in M i.e. the graph (ig x idy)(I'¢) is subanalytic in M x V. Following [16],
if we also assume that

for each K C V compact,

4.4
(44) the set {LL‘ es ’ flx) e K +7} is compact,
then the sheaf Rp*kp; is constructible. Indeed, writing pps: M XV — V
for the projection we have

Rp.kry =~ Rpar, (Ris.kry) =~ Rpar ki (07
and the result follows immediately from [16, Theorem 1.11]. Furthermore,
if M is compact, then Rp*kp} is constructible up to infinity.

Let f: V — S be a continuous map. Remark that I'y x y* C (idg xs)™*
(T'})- This provides a canonical map
¢: (idg xs)_lkr; — Kr, xqe.
Precomposing the map R(ids xs),¢ with the morphism
kry — R(ids xs), (ids xs)—lkF}
induced by the unit of the adjunction ((ids xs)~*,R(idg xs),) leads to the

map

R(ids xs), ¢
—

(45) kpy — R(ids xs), (ids xs)’lkp; R(ids x5),Kr, xye-

LEMMA 4.16. — The morphism (4.5) is an isomorphism.

Proof. — We show that the morphism (4.5) is an isomorphism by check-
ing it at the level of the stalks. The map idg xs is proper on I'f x y* and
induces a bijection idg xs: I'y x v* — F’JZ. Let (z,y) € S x V. We notice
that

(R(ids xs),kr, xw)(w) ~ RI((ids x5) (2, ¥); Kr, xyan(ids xs)~ (2.9)) -
First, if (v,y) ¢ T'}, then I'y x 7% N (ids xs)"(z,y) = 0 and the stalk at
(x,y) of the morphism (4.5) is an isomorphism. Second, if (z,y) € 1"}, then
Ty x~*N(ids xs) " (z,y) = (2, f(x),y — f()). Thus,

RT((ids x8) ™" (@, 4); Kr; xyan(ids xs) - (ay)) = K-
Morphism (4.5) induces a non-zero map from k to k which is an isomor-
phism. O
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PROPOSITION 4.17. — Assume that f is proper. Then,
Rp*kr; = (Rf*ks)rfkva'
Proof. — Applying the functor Rp, to the isomorphism (4.5), we get
Rp*kp} ~ Rp.R(ids x5) Kr; xa.
Moreover,
Rp.R(ids x5) kr,x e ~ Rs.R(p X idy) Kr xe
~ Rs.R(p x idv),kr,;x~«  (properness of f)

~ Rs.(Rpkr, Mkya) (Kiinneth isom.)

~ Rs.(Rp«kr; Mk,a) (properness of f)

~ Rs,(Rfiks Mkya). O
COROLLARY 4.18. — Let S be a good compact topological space and

f: S — V be a continuous map. The sheaf PH(f) is y-compactly generated.

4.4. Properties of y-compactly generated sheaves

In this subsection, we study the properties of ~-compactly generated
sheaves and deduce from them results for sublevel sets multi-parameter
persistent sheaves.

LEMMA 4.19. — Let u € Int(y°).

(i) If F € DY,y (kv). Then, Ru.(Fxky) =~ (Ru.F) *kg_.

(ii) Let S be a good compact topological space, f: S — V be a contin-
uous map. Then, Ru*Rp*kp; o~ (R(uf)*ks)rfkR_, In other words,
Ru. PH(f) ~ PH(uo f).
Proof.
(i). — We have
R (F % Kye) =~ Ru, R, (F K kye)
~ Rs, (R(u x u), (FRky)).
Since u € Int(y°), it follows from Lemma 4.7 that u is proper on y*. As

supp(F) is compact, this implies that u x u is proper on supp(F) x v°.
Hence, applying Kiinneth formula
Rs. (R(u x u), F Mkya) ~ Rs, (Ru, F K Ru,kya)
~ Rs, (Ru.F kg ) (Lemma 4.8)

np

~ (Ru,F)¥kg_.
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(ii). — Since S is compact, the support of R f.kg is compact. Hence,
applying (i) with F':= R f.kg, we have

Ru. (Rf.ks) % kye) =~ (R(uf),ks) ¥ kg O

Remark 4.20. — We emphasize that the pushforward by a linear form
of the module PH(f) is in general different of the module PH(u o f). Let
X and Y be good topological spaces and consider two functions f: X — V
and g: Y — V. Then, the quantity supy, | <; distr (Ru* PH(f),Ru. PH(g))
is a lower bound of the interleaving distance disty (PH(f), PH(g)) whereas
this is in general not the case for distg (PH(u o f),PH(u o g)) as shown by
the following proposition.

Y,

Figure 4.1. The sets X (left) and Y (right).

Consider (R?, ||-[|o) equipped with the usual cone v = R%,. Let X =
{(-=1,1) -t | t € [0,1]} and for s > 2, Y, = Conv(X U (0,s)), where
Conv stands for the convex hull of a set (see Figure 4.1). Let f: X — R?
and gs: Yy — R? be the inclusions. We also set p: R? — R defined by
p(z,y) = Y5*, which is a 1-Lipschitz linear form (R?, |- [) = (R, |-]).

PRrROPOSITION 4.21. — The following hold:

e distg2 (PH(f), PH(g,)) = 0;
o distg (PH(po f),PH(pog,)) =[5 —1|.

In particular, one has:

distR(PH(p of),PH(po gs)) S—) o0

— 00

while V s > 2, distg2 (PH(f), PH(gs)) = 0.

TOME 0 (0), FASCICULE 0



34 Nicolas BERKOUK & Frangois PETIT

Proof. — For s > 0, since Y is compact, g, is proper and one has
np np
PH(gs) ~ (Rygs.ky,) *xkya = ky, xkya.

Moreover, the sum map is proper on Yy x v%, so that ky, r;?kva ~ ky, ¥kya.
Similarly, one proves that PH(f) ~ kx x kya. Since X and Y; are both
compact and convex, by [15, Example I1.20], one has ky, xkyo >~ ky, 1o =~
kxi~a > kx *kyao. Therefore, we have proved that PH(f) ~ PH(g,), which
in particular implies that distg2 (PH(f)7 PH(gs)) =0.

Similarly as above, one has PH(po f) ~ (R(p o f)*kx)*kR+ >~ K[1,00) and
PH(p o gs) ~ k[ o). By the derived isometry theorem [1, Theorem 5.10],

25

one concludes that distg (PH(po f),PH(po gs)) = }% - 1‘. O

LEMMA 4.22. — Let u ¢ Int(y°) U Int(y>*) and F a y-compactly gen-
erated sheaf. Then Ru,F ~ 0.

Proof. — Since F is y-compactly generated there exist F' € DY, (kvy)
such that F' ~ F' x kya. Then RuF' ~ RuiF’ * Rutkya >~ 0 where the last
isomorphism follows from Proposition 4.11. O

COROLLARY 4.23. — Let F' be a ~y-compactly generated sheaf. Then
RI.(V; F) ~ 0.

PROPOSITION 4.24. — Let F € DP(ky). Assume that F is y-compactly
generated and that for all u € Int(~°), RuyF ~ 0. Then F ~ 0.

Proof. — By hypothesis, for every u € Int(7°) U Int(v>), RuF ~ 0.
Moreover, for every u ¢ Int(y°)UInt(y*%), it follows from Lemma 4.22 that
RuiF ~ 0. Thus, for every u € V*, RuyF' >~ 0. It follows from Corollary 4.4
that F' ~ 0. O

LEMMA 4.25. — Let F € D2, (kv), u,v € Int(y*°) (resp. Int(y°))
and set S = supp(F'). Then,

distr (Rui(F x kya ), Roy(F x kya)) < ||S]|[|u — vl
Proof. — It follows from Lemma 4.19 that
distg (Ru;(F * ko), Rui(F + kva)) = distg (Ru;F *kr_, RuiF' % kR+).
Using Proposition 2.8(ii) followed by Lemma 4.2, we obtain

distg (Ru F x kg, , R F x kg, ) < distg(RuF, Ru F)
< IS1llw = vl

which completes the proof. O
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PROPOSITION 4.26. — Let F,G € DY, _(ky) and p € v° U~°®. Then,

comp
distr (Rpr F' x kx, RpiG * k) < [[p| disty(F % kya, G *xkya)
where || - || is the operator norm associated with the norm || -|| on V and

A =1[0,4o00[ if p € v** and A = [—o0,0[ if p € ¥°.

Proof. — We proceed in two steps.
Step 1. — If p € Int(vy>*) U Int(7°), we have

(4.6) distp(RpiF *ky, RpiG x k)
= distg (Rp1(F *ky ), Rpi(G xkye)) Lemma 4.19
< lpll disty (F * kya, G * kya) Theorem 2.11.
Step 2. — We now assume that p € 9v° U 9v°¢. Without loss of gen-
erality, we can further assume that p € 0v°. Thus there exists a sequence
(Pn)nen of elements of Int(+°) such that lim,,_,~ p, = p. Then,
distg (Rpr F + ky, RpiG x k)
< distg(Rpr F x ky, Rpp, F x ky) + distg(Rpp F * kx, Rpn G * k)
+ distg (Rpn G *x kx, RpiG % k).
Moreover, it follows from the first step that

distr (Rpn  F' * kx, Rpn G x k) < ||pn || distv(F * kya, G * kya)

and

diStR(RplF*k,\,Rme*k)\) < diStR(Rp!F, an!F)
< |lsupp(F) | lpn = pl-

This implies that

distg (Rp F + ky, RpiG x k)
< lpall diste (F * kya, G % kya) + [|supp(F)[[lpn — p
+ [lsupp(G)|llpn. — pll-
Taking the limit when n — oo, we get

distr(Rp1F' x kx, RpiG k) < [|p]| distr(F * kya, G *xkya). O

COROLLARY 4.27. — Let X and Y be compact good topological spaces
and f: X — R, 2 (Fi(@),.. fu(@)), 95 Y = R,y (919, -+ n(1)
be continuous maps. Consider the cone v = ]—o0,0]™. Then, for every
1<i<n

7

distr (PH(f;), PH(g;)) < distg~ (PH(f), PH(g)).
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Proof. — Let p;: R™ — R be the projection on the i-th coordinate. No-
tice that p; € 0y and ||p;||co = 1. Hence, applying Lemma 4.19 and Propo-
sition 4.26, we get

distr (PH(f;), PH(g;)) = distr (PH(p; o f), PH(p;  g))
< disty (PH(f), PH(g)). O

Remark 4.28. — The above corollary shows that passing from persis-
tence to multi-persistence tends to increase the distance between persis-
tence modules. A possible interpretation is that multipersistence has a
better sensitivity than persistence but it cannot be claimed that it is more
robust to outliers.

5. Projected barcodes

In this section, we introduce the notion of projected barcodes. The pro-
jected barcodes of a multi-parameter persistence module ' on V (that is a
~-sheaf) is the family of barcodes obtained by considering the direct images
of F' by various maps from V to R. While the fibered barcode is obtained
by pulling back a multi-parameter module on an affine line, we propose
instead to study the pushforwards of a «-sheaf onto R. We start by provid-
ing an example showing that two non isomorphic multi-parameter modules
that have the same fibered barcodes can have different projected barcodes.
We then formally introduce the notion of §-projected barcodes and study
its properties.

5.1. Motivations and example

The fibered barcode has been successfully used in a variety of machine
learning tasks as a summary of multi-parameter persistence modules [7].
Nevertheless, it is easy to build examples of y-sheaves (hence persistence
modules) with the same fibered barcodes (hence at matching distance zero)
though they are not isomorphic and are at a strictly positive convolu-
tion/interleaving distance. Let us describe below one of these well-known
situations.

In this example, we consider V = R?  endowed with v = (—o0, 0]2. We
set v = (1, 1), therefore ||(z,y)|, = max(|z|,|y|) = ||(z,y)]lcc. We keep the
notation A = {h € Int(v*), ||hll, = 1}. We let a > 2 and define the two
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(a,a) (a,a)

(0,1)

\4
\4

(1,0)

(a,a) (a,a)

1,1)

\4
\4

(1,0)

Figure 5.1. The sheaves F and G in DY (kgz).

sheaves F' and G in D]}%CWO,Q(kV) as follows: F' = k1 q)x[0,0) D K[0,0)x[1,a)
and G = ka ® K1 4)x[1,a), Where

A=10,a) x[0,a)\ ([0,1) x [0,1)).
(see Figure 5.1). The sheaf k4 fits into the following short exact sequence
0 — Kkjo,1)x[0,1) — K[0,a)x[0,a) — ka — 0.
Some classical computations (see for instance [30, Example 2.1]) give
Z'Z;ILT(;lF ~ iZiTglG

for all (h,c) € Ax V. Therefore, one cannot distinguish F' and G by restric-
tions to one dimensional affine subspaces. However, one has disty (F, G) = 1.

We now show that it is possible to produce barcodes out of F' and G which
are different. Our idea is to study the barcode decomposition obtained
after applying the direct image functor of a map from V to R, rather than
restrictions, which corresponds to the inverse image functor of injections
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from R to V. Let p: V — R be defined by the formula p(z,y) = (x;y).

Then, we have
2
Rp.F = (kiy )" RpG kg @k Sk

According to Definition 3.16, the partial matching between B(Rp, F') and
B(Rp.G) given by
1 1

[3:0) = [5:0),  [5:0) = [La), 0= [500),

isa %—matching, and a simple computation shows that for every % >e >0,
there is no e-matching between B(Rp. F') and B(Rp.G). Using Theorem 3.19,
one deduces that

1
distr (Rp.F, Rp.G) = d (B(Rp.F),B(Rp.G)) = 7

Therefore, it is possible to distinguish F' from G by using barcodes obtained
from pushforwards, rather than pullbacks.

5.2. §-projected barcodes
5.2.1. Generalities

Recall that SC(V) denotes the set of continuous maps from V to R
which are subanalytic up to infinity and let § be a subset of SC(V,). We
regard § as a discrete category.

DEFINITION 5.1. — The §-projected barcodes is the functor
(5.1) PS5 F xDR.(ky. ) — DR.(kr_), (u,F)+— RuF.
and the non-proper projected barcodes is the functor
(5.2) PS: & x DR (kv..) — DR.(kr.), (u,F)+— Ru,F.
When the context is clear, we will omit § from the notation.

We will often study restriction of the (non-proper) projected barcodes to
specific subcategories of Dﬁc(kv(x, ). For instance, the category of compactly
supported constructible sheaves or the category of Dﬂlféc,,yo,a (ky_)-

Notation 5.2. — Let F € DR_(ky_ ). We set 2 := &2%(-, F) and P%, :=
PS( " F)

Remark 5.3. — The proper and the non-proper projected barcodes are
related via the following formula which follows from Corollary 2.17. Let
F € DE_(ky..), Then,

§ §
PY. = DR(,@DV(F)).
We now provide a few examples of projected barcodes of interest.
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5.2.2. Linear projected barcodes

Let (V,]|-]|) be a real finite dimensional vector space and V* its dual
endowed with the operator norm || - ||.

We set S* = {u € V* | [|u[| = 1}. The linear projected barcodes is the
functor

2% S* x DB.(ky_) — DB (ke_), (u,F)+—s RuF.

PRrROPOSITION 5.4. — The linear projected barcodes has the following
properties.
(i) Let F € D (ky_). If #% ~0, then F ~ 0.
(ii) The map 2% : §* DR, comp(kv.,) = DB (Kr..), (u, F) — P% (u),
is continuous.
(iii) Let w € S*. The map Dﬁc’comp(kvw) — Db (kg ), F s 2% (u), is
Lipschitz.
Proof.
(i). — This follows from Proposition 4.4.
(ii). — Let us show that & is continuous. Let (u, F) ES*XDﬂb{c,comp(kVoo)
and let € > 0. For every v € S* such that [|u — v|| < &/(2||supp(F)|) and
G € Db (ky_ ) such that disty(F,G) < /2, we have

Rc,comp

distr (25 (u), P2 (v)) < distz (2% (v), Py (v))+distr (2% (v), P2 (v))

< [[supp(E)[[[lv — vl + [lv[| distv (F, G)
< [lsupp(F)|[lu — o[l 4 disty (F, G)
<e.
(iii). — This follows from the above inequality by taking u = v. O

Remark 5.5. — The first point of the above proposition expresses that
the linear projected barcodes can be used as a nullity test of persistence
modules, where the space of test parameters is S*, thus compact. This is
a fundamental difference with the fibered barcode, whose parameter test
space is not compact.

5.2.3. ~-linear projected barcode

We introduce a notion of projected barcode tailored for ~-sheaves, that
is, for persistence modules. For sublevel sets persistence modules, we ex-
plain in Example 5.9 how it can be computed with standard one-parameter
persistence software.
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Since this version of the projected barcode is aimed at vy-sheaves, it is
natural, in view of Proposition 4.5 and Lemma 4.7, to set § = Int(y>%) N
S* where S* is the unit sphere of V* for the norm || ||. This version of
the projected barcode is called v-linear projected barcode. For the sake of
brevity, we set @, = Int(y>*) N S*.

DEFINITION 5.6. — The ~y-linear projected barcode is the functor
P Q'y X DII[OQC,'yOva (kVoo) — D]]I%c,/\ova (kRoo)7 (qu) — Ru F,
where A = R_.

Remark 5.7. — We focus on the properties of the v-projected barcode for
~y-sheaves which are y-compactly generated. If F' is y-compactly generated,
then for u € Int(y*>%), one has RuiF' ~ Ru, F. This is why we only discuss
the vy-projected barcode and omit the study of the non-proper ~-linear
projected barcode.

PROPOSITION 5.8. — The ~v-linear projected barcode has the following
properties.
(i) Let F € Dﬂgcﬂo,a (kv.,) and assume that F' is y-compactly gener-
ated. If #}. ~ 0, then F ~ 0.
(i) Let (u,F) € Q% Dﬁcﬁo,a (kv ) and assume that F' is y-compactly
generated. The map 27: Q- x DB (ky_ ) — DR (kr..) is continu-
ous in (u, F).

Proof.
(i). — This is a direct consequence of Proposition 4.24.
(if). — Let (u, F) € Q4 x Dﬁcﬁ_cg(k\’m) and let ¢ > 0. Since F is -

compactly generated there exists a sheaf I’ with compact support such
that F' ~ F'xkya. For every v € Q. such that [|u—v|| < e/(2||supp(F")]|)
and G € DR (ky_ ) such that disty(F,G) < £/2, we have

distr (2% (u), 2% (v)) < distg (P25 (u), Z7L(v)) + distr (2L (v), PL(v))
distr (22} (u), 27, (v)) + [|v]| distv (F, G)
[lsupp(F")[[[llu — o[l + [Jv]] distv (£, G)
[Isupp(£") || lu — vl + distv (F, G)

INCINCINCIN

o

O

Example 5.9. — Here, we specialize the situation to the case where V =
R? endowed with the norm [|(z,y)|/c = max(|z|,|y|) and v = (—o0, 0]2.
Then (V|| - |loo) is isometric to (R, ||-||1) where ||(a,b)||1 = |a| + |b].
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It follows that @, = {(a,b) € Rog xRyg; a+b = 1}. If for instance
S is a compact real analytic manifold and f: S — R? is a subanalytic
map with f = (f1, f2). Then by Lemma 4.19, the projected barcode u
QgH( f)(u) is the collection of barcodes associated to the family of sublevel

sets persistence modules (PH(a f1 + (1 — a) fz))ae(o "

5.3. Fibered versus projected barcodes

In this subsection, we prove that the fibered barcode is a special instance
of projected barcode.

We get back to the setting of Section 3.3, with V.= R™, v = (—00,0]™ and
v=(1,...,1) and denote by j., the inverse of morphism (3.9). Note that
for h € A, A\ := L, N~ is a cone of the one-dimensional real vector space L,
satisfying hypothesis (3.1) as a cone of L. We denote Ly, 5 the topological
space L; endowed with the A-topology. We also consider R with the cone
topology associated with the cone A\g = (—o0; 0]. In particular, ¢z, (o) = .

PRrROPOSITION 5.10. — Let h € A, the following hold:

(i) pe, oirc, = tr, as maps of sets;
(ii) pe,, ic, and jr, are continuous for both the norm and the cone
topologies.

Proof.

(i). — This is clear.

(ii). — We have already noticed that p., is Lipschitz, therefore contin-
uous for the norm topology. Observe that for z € Ly, pzi (x + Int()\)) =
x + Int (7). Moreover, for any A-open subset U C Ly, U = |, ¢y 4 Int(A)

by [3, Lemma 2.1]. Hence, pZi(U) = U ey« + Int(y). This proves the
statement. O

Let us precise some notations. When the context is clear, we drop the h
of the maps pg, , jz, and iz, . From now on, pg, jz and iz refer to the mor-
phisms of topological spaces equipped with the norm topologies, whereas
pr, jr, and i vefers to the morphisms of topological spaces equipped with
the cone topologies.

We now construct an isomorphism of functors between iz_l and (j2 p)),-

PROPOSITION 5.11. — There is an isomorphism of (non derived) func-
tors (j2p}), ~ (i7)~" in Fun(Mod (kv ), Mod(kRM)).
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Proof. — Let F' € Mod(ky. ) and U C R be a non empty Ag-open set.
Since R is one dimensional, there exists ¢ € R U {+o0o} such that U =
t-+Int(Xo). Hence, (i} p}), F(U) = F((p}) "' (j2) "1 (U)) = F(t-h-+Int(7)).
By definition, (i%.)"'F is the sheaffification of the presheaf (i}2)TF: V
lim,, F(W). For every Ag-open U C R, the colimit lim, F(W) is
canonically isomorphic to F (t -h+ Int('y)). This leads to an isomorphism
of pre-sheaves (i2)'F — (j2p}), F. Since (j}p}),F is a sheaf, we con-
clude that so is (i%)TF and (i})TF ~ (j} p}.), F ~ (i) "' F. Moreover, this
isomorphism is functorial in F' by functoriality of colimits. O

We denote by ¢: V. — V,, ¢': L, = Lj x and ¢”: R — Ry, the mor-
phisms of topological spaces induced by the identity maps. We have the
following relation ¢’ pz = pl¢. For every G € DT (ky), we have

Hom(¢~'G, ¢~ 'G) — Hom (¢ 'p) 'Rp}.G, 67 'G)
~ Hom(pzl(b’_lRpZ*G, ¢ @)
~Hom(¢''Rp}:, G, Rpr.0~'G).

The image of the identity map by the above sequence of morphisms provides
a map

(5.3) ¢’ 'Rp. G — Rpr,¢ 'G.

LEMMA 5.12. — Let G € D" (ky,), the morphism (5.3) is an isomor-
phism.

Proof. — To prove that the morphism (5.3) is an isomorphism, it is suf-
ficient to prove that it induces an isomorphism RI'(U;¢'~'Rp} . G) —
RI(U; Rpr,.¢~1G), for every open subset U C L}, of the form U = {t~h | te
(a, b)}7 for a < bin R. Let Z be a bounded from below complex of injective
(in particular flabby) sheaves on V., which is quasi-isomorphic to G.

It follows from equation (3.11) that

pzl(U):U—i—a'yzlnt(b-h—i—’y)\(a-h—i—’y).

In the canonical basis of R®, b-h = (by,...,b,) and a-h = (a1,...,a,).
Then,

b-h+Int(v) = [{z: < bi},
1=1
n

a-h+v=[{z: <a}.

i=1
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Hence,

Int(b-h+v)\(a-h+7)= (m{xl < bl}> N (U{xz > ai}>
= U [(ﬂ{xz < bz}> N {.Tfj > aj}].

For 1 < j < n, weset R; = (N;_{z: < b;}) N{x; > a;}. The R; are
convex open subsets of V. For I C {1,...,n}, we define R; = N;e;R;. In
particular, Ryy 3 = ﬂ?:1 R; =TI/, (a;,b;). For all I C {1,...,n}, R;
is a convex open subset, satisfying Ry + v = p;'(U) + 7 (see Figure 5.2).

(1,2}

h

Figure 5.2. Tllustration of the sets R;.

Therefore, it follows from the proof of [16, Proposition 3.5.3] that there
are isomorphisms of chain complexes in C(Mod(k))
D(Rr +%Z) =T (p;' (U) +%I) = D(Rp;¢67'T),
which commute with the restriction morphisms
D(Ry;¢7'T) — T(R1;¢7'1),

for J C I. Thus, one has the isomorphisms in C(Mod(k)):

L(pz'(U) +7I) = Im (R ¢~ 'T) ~ T (p'(U); 67'T).
I
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From the above, we conclude that in D™ (Mod(k)):

RI(U; ¢/~ 'Rp},G) ~RI(U + X\;Rp}. . G)
~RT (p;" (U + \); G)
=RI(p;'(U) +7G)
~T(p:'(U) +7T)
~T(p;'(U);¢7'T)
~RI(p;'(U);¢7'G)
~RI(U;Rpz,.¢~'G). O

We now prove the result announced at the beginning of the subsection.
Namely, that the fibered barcode is a special instance of projected barcode.

PROPOSITION 5.13. — Let F' € DX..(ky), then there is a functorial
isomorphism (jzpg), F =~ iZlF.

Proof. — We have the following commutative diagram of topological

spaces:
R ic % pL Ly Jc R
NN
Ry, > V. —%5 L4\ 25 Ry,

Therefore, one has the following isomorphisms:
i F~i'¢g7 ' Re. F
~ (¢poir) 'R.F
= (if 0 ¢") 'Ro.F
~ ¢ "'Rj} Rp R F
~ ¢ "'Rj2.R¢ . Rp. F
~ ¢ "'R¢" Rjc.Rpc, F
~ Rj. . Rpe, F. O
COROLLARY 5.14. — Let F € DR _...(ky), Then,

iZ,}TglF ~ Rje, Roe, Rr—c F.

In other words, the fibered barcode of F' is the §-projected barcode of F
with § = {jghpghT_c | (h,c) € A x V}.
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6. Integral sheaf metrics
6.1. Generalities

In this section, we elaborate on our study of projected barcodes to in-
troduce a family of pseudo-metrics on categories of sheaves inspired by
integral probability metrics [21]. Here, the probability measures are re-
placed by sheaves and the integration of real-valued functions against the
probability measure by the pushforward of the sheaves by such functions.
In this subsection, we study the general properties of such metrics.

Let X be a good topological space. We denote by ¢°(X) the algebra
of continuous functions from X to R and by capital fraktur letters such
that §, 9B, R subsets of continuous functions. Given a class § of functions
and writing distg for the convolution distance on D (kg), we introduce the
following pseudo-metrics on DP (k)

(6.1) 53(F, G) = sup (diStR(Rf!F, RfIG)),
fes
(6.2) d5(F,G) = sup(dista(Rf. F,R£.G)).
fes

These pseudo-metrics are called integral sheaf metrics (ISM) and § is called
a generator of dz (resp. dg).

Remark 6.1.
(a) In the above formula, the convolution distance can be replaced by
any distance on DP(kg) as for instance the Wasserstein distance.
Here, we focus on the convolution distance.
(b) If F, G € DP(kx) have compact supports, then we have 6z (F, G) =
dz(F, G).
PROPOSITION 6.2. — The mappings
53,dz: Ob(D"(kx)) x Ob(D"(kx)) — Ry U {oc}
are pseudo-metrics.

Proof. — This follows from the fact that distg is a pseudo-distance. [

DEFINITION 6.3. — Let § C ¢°(X). The set Rz of all functions f €
¢°(X) such that

(6.3) distg (RAF, RAG) < 03(F,G) for all F,G € DP(kx)

is called the maximal generator of dgz. Similarly, we define for dz the set
MRz« and call it the maximal generator of dg.
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We have the following straightforward lemma.

LEMMA 6.4. — Let § C® and F, G € DP(kx). Then:
(i) 65(F,G) < 6o (F, G);
(ii) Rz C Roy;
(iii) if® C Ry, then oz = .
Similar results hold for Rz, and Ro..

Proof. — The points (i) and (ii) are clear. For (iii), it follows from (i)
that for every F and G in DP(kx), 03(F, G) < 6o (F,G). Applying (i) again
we get

I (F, G) < Oy, (F, G) = 05(F, G).
Hence, 05 = 0p. O

PROPOSITION 6.5. — Let § be a generator of 3.

(i) f € Rz implies af +b € Rz for all a € [-1,1] and b € R.
(ii) If the sequence (fyn)nen C Rz converges uniformly to f, then f €
%g!,
Results (i) and (ii) hold with dg and Rz, instead of 05 and Rg.

Proof.
(i). — Follows from Lemma 2.7.
(ii). — Let (fn)nen be a sequence of continuous functions of Rz con-

verging uniformly to a function f and let F, G € D(kx). Then,
distg(RfiF,RAIG) < distg(RAIF, Rf F) + distg(R fr F, R fn/G)
+ distg (R fr /G, RfIG)
<L2|f = follo + 05(F, G) (Stability Theorem)

Hence, taking n to infinity, the above inequality implies

distg(RfiF,RAG) < 03(F,G). O

6.2. A comparison result

In this subsection, we relate the pseudo-distances dz and dz when the
underlying space is a real finite dimensional normed vector space (V, || - ||).

PROPOSITION 6.6. — Let F,G € DP(ky), then
dz (Dv(F),Dy(G)) < 65(F, G).
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Proof. — Let f: V — R be a continuous map. Then,
Hence,
distg (R f.Dv(F),R f.Dv(G)) = distg (Dv(RAiF),Dv(R fiG))
< distg(RAF, RAG)
(by Proposition 2.8(ii))
which implies that dg (Dy(F), Dy(G)) < 63(F, G). O
PROPOSITION 6.7. — Assume that § C A(Vs) and F,G € DB (ky_,).

Then,
dg(Dv(F),Dv(G)) = 65(F, G).
Proof. — Let F,G € D} (kv_ ). By Proposition 2.16, RfiF and RAG
are again constructible up to infinity. Hence,
distg (Rf.Dv(F),Rf.Dy(G)) = distg (Dy(RfiF),Dy(RAG))
= distr(RAF,RfIG) (by Lemma 2.9).

The result follows by taking the supremum over § on both sides of the
equality. O

6.3. Lipschitz ISM

In order to get well behaved ISMs, it is natural to assume that the set §
in the definition of the ISM is a subset of the Lipschitz functions.

Let (X,d) be a good metric space, (V,||-]|) be a normed finite dimen-
sional real vector space. We denote the space of Lipschitz functions from
X to V by

Lip(X,V)={f: X -V ‘ [ is Lipschitz on X }.
The space Lip(X,V) can be equipped with the following semi-norm
(6.4) L(f) = sup{[|f (x) = f(y)ll/d(z,y) | =,y € X, = #y}.

We also set Lip<; (X, V) = {f € Lip(X,V) ’ L(f) <1}.If V=R, we write
Lip(X) instead of Lip(X, V) and similarly for Lip< (X, V).

A pointed metric space (X, d, xg) is a metric space (X, d) together with
a distinguished point zg € X. If X is a vector space, we always choose
xg = 0. For a pointed metric space (X, d, zp), we set

Lipy(X,R) ={f: X - R ’ [ is Lipschitz on X and f(z) = 0}.
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The following proposition is immediate in view of Theorem 2.11. It as-
serts that Lipschitz ISMs provide lower bounds for the convolution distance
for sheaves on a good metric space.

PROPOSITION 6.8. — Let (X,d) be a good metric space and F,G €
D"(kx). Assume that § C Lipg, (X). Then:

(i) 0z(F,G) < distx (F,G);
(ii) if furthermore, X is a real finite dimensional vector space endowed
with the Euclidean norm, dz(F,G) < distx (F,G).

The following proposition is a direct corollary of Proposition 6.8 com-
bined with Theorem 2.10. It states that Lipschitz ISMs are stable.

COROLLARY 6.9. — Let (V,||-||) be a finite dimensional normed vector
space and Z be a locally compact space and let § C Lipgl(V). Let F' €
D"(kz) and fi, fa: Z — V be two continuous maps. Then:

O(Rf1F,Rfo F) < ||f1 = falloo, O03(Rf1.F Rfo F) < | fi — falloo-

If furthermore the norm || - || is Euclidean, then:
dz(Rf1LF Rf2F) < |f1 = fello,  dg(Rf1LERf2.F) < |lf1 = follo-

LEMMA 6.10. — Let § C {f € Lipy(X,R) | L(f) <1} and ® = {f €
F | L(f) = 1} N . Assume that for every f € F\ {0}, f/L(f) € §. Then
53 = 5@ and d;g = dz).

Proof. — We only prove the statement for dz and o as the proof is
similar for dg and de. Since ® C §, d5 = dp.

We now prove the reverse inequality. Let f € §\{0}. Then g = f/L(f) €
D and for every F,G € DP(kx)

1
distg(RfIF,RfiG) < m distgr (RfiF,RfiG) = distg(Rg1 F, RgiG).
Hence, iz < 0p. O

We now prove some inequalities that we will use to control the regularity
of Lipschitz ISM.

LEMMA 6.11. — Let(X,d) be a good metric space, f,g € Lip(X) and
F,GeDb  (kx). Set S = supp(F)Usupp(G). Then,

comp

|diste(RfiF,RfiG) — distr(Rgi F, Rg:G)| < 2 diam(S)L(f — g).
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Proof. — Let zy € S. The distance distg is invariant by translation.

Hence setting f(z) = f(x) — f(xo) and g(z) = g(x) — g(xo), we get that
distg (R fiF, RAG) = distg (Rf,F,Rf,G),
dists (Rgi F, RgiG) = distr (R§, F, R§,G).
Thus,
|distr (R f1F,RfiG) — distr(Rg:F, Rg:G)|
= |diste(Rf, F, R f,G) — distr(Rg, F, Rg,G)|
and
|diste(Rf, F, Rf,G)— distz(Rg, F, Rg,G)|
< |distr(Rf,F,Rf,G) — distg (Rf,F, RG,G)|
+ |diste(Rf, F,RG,G) — dist(Rg, F, R§,G)|

< distg (Rf,F, R, F) + distg (Rf,G, R§,G)
< 2Hf|s _§|SHoo
<2 Sug(d(w,xo))fl(f - 9)
S
< 2diam(S) L(f — g). O

6.4. Distance kernel

We now give a first example of ISM.
Let (V,]|-]|) be a finite dimensional normed vector space such that the
distance (z,y) — || — y|| is subanalytic. We set

lyy: X — R, z+— Ll (x) = |z — 0]

For every x in V, the map ¢, is 1-Lipschitz and proper. Let X be a subset
of V. We set §x = {l;, * € X} and consider the Lipschitz ISM, &z,
generated by §x, namely

65(F,G) = sup distg(Rl, F,Rl,G), for F,G € D(ky).
fach‘fx
Remark 6.12.
(a) More generally the above ISM can be defined on any real analytic
manifold endowed with a subanalytic distance.
(b) Since the applications ¢, are proper, we have that 05z = dg.
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We recall the definition of the local Euler-Poincaré index of an object
F e D%C(kx):

X(F): X — Z, s x(F)(x) =) (-1)"dim(H"(F,)).
i€z

PROPOSITION 6.13. — Let F,G € D_(ky) and assume that §3, (F,G) =
0. Then:

(i) for every x € V and r > 0, RI'(B'(z,7); F) ~ R['(B'(x,7); G);
(i) Fp ~ Gy

(iif) x(F) = x(G).

Proof. — Tt is clear that (i) implies (ii) and (ii) implies (iii). Hence, we
only prove (i). Let F,G € D} (ky). It follows from the definition of dg,,
that for every x € V distg(R{, F, R¢;)G) = 0. Moreover since for every x,
{, is proper and subanalytic, R¢,F' and R/,,G are constructible. Hence,
by [1, Theorem 6.3], we have that

(6.5) Rl F ~ Rl G
Moreover,
RT ([0, r[; Rty F7) = RHom, (kipo,rf; Reizoy F')
~ RHomy, (£, ko, F)
~ RHomu, (k1 10,1y F')
~ RI(B'(zo,7); F).

Hence, applying the functor RT'([0, r[;-) to both sides of the isomorphism
in (6.5) we get that RI'(B’(xo,7); F) ~ RT(B'(z0,7); G). O

6.5. Linear ISM

We assume that (V, || - ||) is a real finite dimensional normed vector space
and denote by V* its dual. Again, by analogy with integral probability
metrics and in view of Section 6.3, it is natural to consider the set £ =
{ueV* | L(u) <1} and introduce the distance dg i.e. for F,G € D"(ky)

0e(F,G) = sup distg (Rui F, RuG).
{uev+| L(u)<1}
Remark that for a linear map u € V*, L(u) is equal to the operator norm
[lee|| of w. This, together with Lemma 6.10 implies that
de(F,G) = sup distg (Ru F, RuG),
ueS*
where S* is the unit sphere in (V*, || -[|)-
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PROPOSITION 6.14. — Let F € DR (ky_ ). If §2(F,0) = 0, then F ~ 0.

Proof. — Let F € DR (ky.) such that d¢(F,0) = 0. Since F is in
D2, (kv..), it follows that Ru,F € DR (kv ). Applying Theorem 3.22, we
deduce that for every u € V*, RuyF' = 0. Now, Proposition 4.4 implies that
F~0. 0

COROLLARY 6.15. — Let u,v € V* and F,G € D, (ky). Set S =
supp(F') Usupp(G). Then

|dist(Ru F, RuiG) — dist(RviF, RuiG) | < 2 diam(S) [|u — v]|.
Proof. — For a linear map u € V*, L(u) is equal to the operator norm
[l|| of u. Then, the inequality follows from Lemma 6.11. O

The above proposition implies that for F, G € D2 (ky) the map

comp
Tre: V' — R, wu+— distr(RuF,RuG)

is Lipschitz on V*. It follows from the Rademacher Theorem that the map
T g is €' almost everywhere. Since it is continuous and {u € V* | L(u) <

1} is compact, Y, reaches its supremum that is for F,G € Dsomp(kv)

de(F,G) = max Tra(u).

6.6. Sliced convolution distance

The result of the preceding section allows to introduce the notion of sliced
convolution distance for sheaves in DY, (ky). For the sake of simplicity, we

comp
assume that V is endowed with the Euclidean norm || - ||2 and let disty be
the convolution distance associated with || - ||2. Corollary 6.15 implies that
for F,G € D, (kv) the map Tpg: V¥ — R, u — distg(RuF, RuG) is
measurable. Hence, for p € N*, we set

6.6 S,(F,G ! T Pd '

(6.6) WFG) = g [ Tretr )

where S* is the Euclidean sphere of radius 1 of V* and du is the canonical
volume form on S*. This is the p-th sliced convolution distance.
The following proposition is clear.

PROPOSITION 6.16. — The application
Sp: Ob(DY, 1 (kv)) x Ob(DE,(kv)) — Ry

comp comp

is a pseudo-distance and for F,G € Db, (ky)

comp

S,(F,G) < disty(F, G).
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LEMMA 6.17. — Let F € D} (ky_). If S,(F,0) = 0, then F ~ 0.

Rc,comp
Proof. — It follows from the hypothesis that the function T r ¢ is zero al-
most everywhere on S* and as it is continuous, Tz =0 on S*. Lemma 2.7(ii)
implies that Tro = 0 on V*. Then, the result follows from Proposi-
tion 6.14. O

6.7. A question

The following question as well as the study of integral sheaf metrics was
already mentioned in [22]. Here, we recall this question and remark a few
facts.

QUESTION 6.18. — Let F,G € DP(ky). When does the following equal-
ity hold:

?

disty (F, G) sup (distR(Rf*F, Rf*G)) ?

feLipg,
Is it sufficient to assume either disty(F,G) < oo or F,G are constructible
up to infinity and supper,_, (distr(Rf.F,Rf.G)) < c0?

Remark 6.19. — The fact that we are working over a vector space, hence
contractible, is essential for the question. Indeed, let us provide a counterex-
ample where the space is no longer contractible. Let St = {z eC ’ |z| = 1}
equipped with its standard Riemannian structure. Let m: S* — S! defined
by m(z) = 2%. Let F = kg1 and G = Rm, F. It is clear that F and G are
non-isomorphic local systems on S!. Therefore, by [23, Proposition 2.3.7],
distg: (F, G) = oc. Let p: S' — R be a 1-Lipschitz map. Then one has that
supp(Rp. F), supp(Rp.G) C Im(p), in particular, the supports of Rp,F
and Rp,G are compact. Moreover, since p is 1-Lipschitz, diam(lm(p)) <
diam(S') = 2. Since Rp, F and Rp.G have isomorphic global sections, one
deduces by [16, Remark 2.5(i)] that distg (Rp.F, Rp.G) < 2. To summarize,
we have:

distg: (F, G) = o0 and sup (distR(Rf*F, Rf*G)) <2,
f€Lip¢y

which contradicts the question over S'.

7. Metric for multi-parameter persistence modules

In this section, we make use of the structure of y-sheaves to construct
metrics which are efficiently computable for sublevel sets persistence mod-
ules by relying on software dedicated to one-parameter persistence modules
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and recent advances on optimization of topological functionals [24]. One of
these distances is an ISM whereas the second is a sliced distance. We study
the properties of these two metrics.

7.1. ~-linear ISM

We now introduced an ISM tailored for y-sheaves. In view of Proposi-
tion 4.5, it is natural to consider the following pseudo-distance on DBM (ky)
(note that though this pseudo-distance is well defined on DP(ky), it is
mostly interesting DY... (kv)):

(7.1) 0o (F,G) = sup distg (Ru F, RuiG).
{ueye | L(u)<1}

LEMMA 7.1. — The following equality holds:

0o (F,G) = sup distg (Ru1 F, RuiG).
{u€lnt(y°) | L(u)<1}

Proof. — This follows from Lemma 4.11. O
We recall that £ = {u € V* | L(u) < 1}.

PROPOSITION 7.2. — Let F,G € Dbs..(ky) and assume that 6¢(F,G) <
00 or 0,0 (F,G) = 0o. Then 0¢(F,G) = 60 (F,G).

Proof. — Since d,0 is a lower bound of d¢, the case 6,0 (F,G) = oo is
clear. Hence, we assume that d¢(F,G) < oo.

Let u ¢ ~v° U~*® such that L(u) < 1. It follows from Proposition 4.5
that RuyF' is a constant sheaf and similarly for RuyG. Moreover, we have
distg (Ru F, RuiG) < oo since d¢(F,G) < oo. Thus it follows from [23,
Proposition 2.3.7], that RuyF ~ RwG which implies that distg(RuwF,
RuG) = 0. Morever, if u € %, then v = —u € 4° and it follows from
Lemma 2.7(ii) that distg (Ru) F, Ru)G) = distg (Rvi F, RvniG). Hence,

0e(F,G) = sup distg (Ru F, RuG)
{ueV* | L(u)<1}

= sup distg (Ru1 F, RuiG)
{u€y°® | L(u)<1}

= 0,0 (F, Q). a
COROLLARY 7.3. — Let F,G € D‘f/o,a(kv) with compact supports. Then
de(F,G) = 0,0 (F,G).
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Proof. — Let F,G € Dso,a(kv) with compact supports. Since they are
~-sheaves with compact support RI'(V; F) ~ RI'(V;G) ~ 0. Then, [16,
Example 2.4] implies that disty(F,G) < oo. Thus, d¢(F,G) < oo and
applying Proposition 7.2, the result follows. g

We denote by DH‘%CWO,Q(kv) the full triangulated subcategory of DP(ky)
spanned by the objects of Dgo,u(kw) N DX, (ky).

PROPOSITION 7.4. — Let F € Dg_..(ky) and assume that F is ~-
compactly generated. If 6o (F,0) = 0, then F' ~ 0.

Proof. — Since F' is constructible, it follows from Theorem 3.22 that for
every u € Int(y°), RuF' ~ 0.
Then Proposition 4.24 implies that F' ~ 0. g

PROPOSITION 7.5. — Let F,G € D]‘?Rwo,a(kvoc), then
§,0(F,G) =max  sup  dp (IB% (I (Ru ), B (FF (Ru;G))).
IEL {ueye | L(w)<1}
Proof. — Let F,G € DR o.a(kv).

0yo (F,G) = sup distg (Ru F, RuiG)
{ue~e | L(u)<1}

= sup max distg (Hj (Rw, F), H? (Ru@))
fucy®| w1} I (Corollary (3.20))

= max sup distg (Hj (Ru, F), HY (Rw@))
€L {ueye | L(w)<1}

_ J J
wax sw o dn (B(H (RuwF)), B (Ruy@))). O

COROLLARY 7.6. — Let S and S’ be compact good topological spaces,
f: S = Vandg: S — V be continuous maps. Assume that PH(f) and
PH(g) are constructible. Then,

3o (PH(f), PH(g))

S s (45 (B(PH (uo 1), B(PH (uog))) ).

Proof. — It follows from Proposition 7.5 that

8,0 (PH(f), PH(g))

—max swp (4 (B (Ruy PH(/))), B(W (Ru: PH(9))) ) )

Let u € Int(v°). Then u is proper on f(S) +~v* and on g(S’) +v*. Hence,
it is proper on supp(PH(f)) and supp(PH(g)). Then by Lemma 4.19(ii),
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Ruy PH(f) ~ PH(uo f) and similarly Ruy PH(g) ~ PH(u o g). This implies
that

dp (B(HJ’ (Rus PH(f))), B(H (Ru PH(g))))

= d (B(PH (uo £), B(PH/ (u o0 g)))
which concludes the proof. O

The above results lead naturally to introduce the following pseudo-metrics
that we call truncated y-integral sheaves metrics.

DEFINITION 7.7. — Let F,G € Dﬁcﬁo,a(kv) and p < q € Z. The (p, q)-
truncated ~y-integral sheaf metric is

§0I(F,G) = max( sup distR(Hj(Ru!F),Hj(RugG))>.
PSISI\{uerye | L(u)<1}
ProposiTiON 7.8. — The map
7 Ob (DR 0.a (kv)) X Ob(DRe yo.a(ky)) — Ry U {00}
is a pseudo-metric and

OV (F, G) < 040 (F, G) < disty(F, G).

7.1.1. Gradient computation

In this section, we compute explicitly the gradient of the functional u
distg (Rw F, RuiG) when F and G are v-sheaves arising from sublevel set
persistence. We do so in order to approximate ¢,o by gradient ascent.

Let F,G € D, ., (kv). We first study the regularity of the application

(7.2) Trg: Int(7?) — R, u+— distg(RwF,RuG).
PROPOSITION 7.9. — Let u,v € Int(y°) and F,G € D®_,(ky). Then

there exists a constant Cr g in R>o depending on F' and G such that
Trc(u) — Tre()| < Crallu— .

Proof. — The proof is similar to the one of Lemma 6.11. Since F' and G
are y-compactly generated, there exists F’ and G’ € D'gomp(kv) such that
F ~ F/Ifk,ya and G ~ G’rfkwa. We set S = supp(F”’) Usupp(G’). Since S
is compact, there exists (rg,x1) in S x S such that diam S = d(zo,x1).
Moreover the distance distg is invariant by translation. Hence, setting
u(z) = w(x) — u(xo) = Tym) 0 u and v(x) = v(x) — V(L) = Ty(z) O U
we get that

distr (Rur(F"% koo ), Ruy (G % Ky )) =distr (R (F/ % kya ), R (G % Kqa)).
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Moreover,
Rt (F'%Kye) = Ry, Rt (F/ % Ky )
~ R7y(ao), (RuF' % kg ) by Lemma 4.19
~ (RTu(xU)*Ru*)F’rfkR_
~ R F ¥ kp_
and similarly with @ replaced by v and F’ by G’. Hence,
Y rc(u) = distg (R, F' % kg, Ri,G' * kg_).
Now using Proposition 2.8(ii), we get
ITrc(u) — Tra()| < diste(Ru.F' x kg, Ru.F' % kg )
+ distp (R, G % kg_, RU,G' kg _)
< distg(Ru. F', R, F') + distg (Ru.G', RU.G)
<2Hﬁ|s v| H < 2diam(S)||u — v]|. O

The Rademacher Theorem combined with the above inequality implies
the following corollary.

COROLLARY 7.10. — Let F,G € D?_(kv). The application
Trg: Int(y°) — R

(see equation (7.2) ) is differentiable Lebesgue almost everywhere on Int(~°).

We choose a basis (eq,...,e,) of V, and denote (e}, ...,e!) the associ-
ated dual basis of V*. Given u € Int~°, we will denote u1,...,u, € R the
coordinates of u in the basis (e7,...,e}). Let Ky and K3 be two finite sim-

plicial complexes with geometric realizations |K;| and |Ka|, f: |Ki| =V
and g: |K2| — V be PL maps. We define:

T (u) = distg (PH(u o f),PH(u o g)).
With 77 (u) := distg (PH (uo f), PH (uo f)), we deduce from (3.20) that:
T (u) = max diste (PH’ (uo f),PH’ (uog))

e T
Let F denot‘e the bott]eneck distance‘function between two barcodes. For
jEZ, let Bi(u) = {[b],d])} (vesp. Bi(u) = {[b7,d5)}) be the barcode of
PH’(u o f) (resp. PH’ (u o g)). Therefore, we deduce by 3.20 that:
T/ (u) = dp (B (u), B} (u))
= F (B (), Bj(w)).
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We now follow the exposition of [11, Section 13.2.2] for the gradient com-
putation. Let E{ C R (resp. E% C R) be the set of endpoints of the interval
appearing in Bj (resp. B’ %), which we assume to be all distinct. Therefore,
there exists an inverse function p¥: |_| E1 — K (resp. py: |_| E2 — K>)
mapping each birth and death in B (resp. B}) to the corresponding sim-
plex in K (resp. K3) generating or annihilating this bar. Moreover, this
function is locally constant in u in a precise sense (see [24, Section 5]).

Therefore, writing f, = vwo f and g, = w o g for brevity, one has the
following computations:

= > G (E) Bw) 2w
beEIUE]
=2 %f(m ), Bzw))g;f? (p3 (b))
bEEJ i
+ 3 O (Bl B w) 22 (54(0)
bEE] i
“i(Z %];(BJ( ), By (w))ei (f(p1 (1))
beE]
+2 %i(BJ( ), Bé(u))ﬁf@(ﬂé‘@))))
bEE]

Note that [1, Proposition 5.3] asserts that in the context of y-sheaves,
the function F coincides with the usual bottleneck distance of persis-
tence. Therefore, one can use [24, Lemma 3] to compute the quantity
%—JZ(B{ (u),B%(u)) which is either worth —1, 0 or 1. We will study more
in-depth the optimization of 7 in a forthcoming work.

7.2. ~-sliced convolution distance

In this subsection, we introduce a version of the sliced convolution dis-
tance tailored for y-compactly generated sheaves. For the sake of simplicity,
we assume that V = R™ and that it is endowed with the norm || - || and
that v = (—00,0]". We endow V* with the dual basis of the canonical basis
of R™. We also equip V* with its canonical scalar product. Then, the affine
plane of V* defined by the equation > ; u; = 1 is a Riemannian subman-
ifold of V*. Hence, we equip it with its canonical Riemannian measure that
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we denote du. We define Q- = {u € Int(y°) | [|ulloc = 1}. In other words
Q, ={(u1,...,un) € RZy | X", u; = 1}. We consider the restriction of
du to @, and set Vol(Q,) = wi du.

Let F,G € Dg_cg(kv). It follows from Proposition 7.9 that the map

Trg: Int(7°) — R, ur— distg(RwF, RuiG)

is Lipschitz on @, hence measurable.
For p € N*, we define the p-th 7-sliced convolution distance between F'
and G by

1 ®
. F,G)= —rr dist F Pd
(7 3) S%p( ,G) VOI(Q,Y) (/ ) 18 R(Rw ,RUIG) u)
ProPOSITION 7.11. — The application
Sypt Ob(DE_,(ky)) x Ob(Db_, (kv)) — Ry

is a pseudo-distance and for F,G € D?_, (ky)

S, ,(F,G) < disty(F,G).

LEMMA 7.12. — Let F € Dy ., (kv,). If Sy ,(F,0) = 0, then F ~ 0.

Proof. — It follows from the hypothesis that the function T},O =0 al-
most everywhere on Q., and as it is continuous, T},o =0on (,. Lemma 2.7
implies that T, = 0 on 7°.

Then, the result follows from Proposition 7.4. g

7.3. Some aspects of the computation of the -linear ISM and
the ~-sliced convolution distance

As a proof of concept, we showcase here the results of our implementation
of the estimation of the y-linear ISM in the following context. We endow R?
with the cone v = (—o0, 0]? and the norm || - || . Therefore, with p; and po
the coordinate projections, we have Q. = {p; = t-p1+(1—1)-ps | te0,1]}.

We sampled 300 points uniformly on a circle of radius 1, to which we
added a radial uniform noise in [0,0.1]. We call this first dataset X. The
second dataset Y was obtained by using the same sampling process than
for X, then appending to it 10 outlier points drawn uniformly in [—1,1]?
(see Figure 7.1).

We then performed a kernel density estimation for X and Y, outputting
two functions rx, ky : [—1,1]> — RT, leading to two bi-filtrations of [0, 1]?:
fx = (dx,—kx) and fy = (dy,—kKy), where d4 denotes the distance
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Figure 7.1. The datasets X (left) and Y (right).

99

function to the set A. We computed the bottleneck distance between the
projected barcodes IB%(PH(pt o fX)) and ]B%(PH(pt o fy))7 as the parameter
t of the 1-Lipschitz projection varies. The y-linear ISM is the maximum of
these distances, while the p-sliced distance corresponds to the p-th root of
the integral of the p-th power of this function (see Figure 7.2(a)).

Table 7.1. Values of the different distances between PH(fx) and

PH(fy).

Distance type | S, 1

Siz | Sys | Sya | 000

Value 0.055

0.0057 | 0.0027 | 0.0019 | 0.090
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(a) Bottleneck distance between projected barcodes, in function of
the parameter of the 1-Lipschitz projection. Note that t = 0 corre-
sponds to the 1-filtration induced by the (co)density estimator on
each pointcloud filtration, while ¢ = 1 corresponds to the 1-filtration
associated to the distance function to the point cloud.
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(b) Value of S, (PH(fX), PH(fy)), as p varies.

Figure 7.2
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