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PROJECTED DISTANCES FOR MULTI-PARAMETER
PERSISTENCE MODULES

by Nicolas BERKOUK & François PETIT (*)

Abstract. — Relying on sheaf theory, we introduce the notions of projected
barcodes and projected distances for multi-parameter persistence modules. Pro-
jected barcodes are defined as derived pushforward of persistence modules onto R.
Projected distances come in two flavors: the integral sheaf metrics (ISM) and the
sliced convolution distances (SCD). We conduct a systematic study of the stability
of projected barcodes and show that the fibered barcode is a particular instance
of projected barcodes. We prove that the ISM and the SCD provide lower bounds
for the convolution distance. Furthermore, we show that the γ-linear ISM and the
γ-linear SCD which are projected distances tailored for γ-sheaves can be computed
using TDA software dedicated to one-parameter persistence modules. Moreover,
the time and memory complexity required to compute these two metrics are ad-
vantageous since our approach does not require computing nor storing an entire
n-persistence module.

Résumé. — En nous appuyant sur la théorie des faisceaux, nous introduisons
les notions de code-barres projetés et de distances projetées pour les modules de
persistance à plusieurs paramètres. Les code-barres projetés sont définis comme le
poussé en avant dérivé des modules de persistance sur R. Les distances projetées
viennent en deux familles : les métriques intégrales de faisceaux (ISM) et les dis-
tances de convolution tranchées (SCD). Nous menons une étude systématique de
la stabilité des code-barres projetés et montrons que le code-barre fibré est une
instance particulière des code-barres projetés. Nous prouvons que l’ISM et la SCD
fournissent des bornes inférieures pour la distance de convolution. De plus, nous
montrons que les ISM γ-linéaires et les SCD γ-linéaires, qui sont des distances
projetées adaptées aux γ-faisceaux, peuvent être calculées à l’aide de logiciels de
TDA dédiés aux modules de persistance à un paramètre. De plus, la complexité en
temps et en mémoire requise pour calculer ces deux métriques est avantageuse, car
notre approche ne nécessite ni le calcul ni le stockage d’un module de persistance
à n paramètres.
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1. Introduction

The theory of persistence appeared in the 2000s as an algebraic frame-
work for studying the presence of topological features in data. Its main
objects of interest are n-parameter persistence modules that are functors
from the poset category (Rn,⩽) to the category Mod(k) of k-vector spaces
over a fixed field k, that can be compared in a meaningful way using a dis-
tance defined algebraically: the interleaving distance dI . When n = 1, the
theory is well-understood. One-parameter persistence modules are entirely
determined by a discrete summary called barcode, which can be efficiently
computed. The interleaving distance can also be computed from the bar-
codes, thanks to the bottleneck distance dB . We refer to [5, 11] for general
introductions to n-parameter persistence.

One-parameter persistence is often restrictive, in particular in applica-
tions where there is no canonical choice of filtering function on the data.
Furthermore, there are many situations in which being able to perform
machine learning on multi-parameter persistence modules is anticipated
to be fruitful [7, 19]. Nevertheless, the theory of n-parameter persistence
modules when n ⩾ 2, is far more intricate. Indeed, it has been proven that
there cannot exist, in a precise sense, an analogue of barcodes in this situ-
ation [6], and that the interleaving distance is NP-hard to compute [4]. In
this paper, relying on microlocal sheaf theory, we introduce new invariants
and distances for multi-parameter persistence modules, prove that they
enjoy several stability properties and are efficiently computable, which are
essential requirements for such notions to be useful in practice.

So far, the main invariant that has been developed for multi-parameter
persistent modules, efficiently implemented, and which enjoys the desired
stability properties, is the fibered barcode [18] (which is equivalent to the
rank-invariant [6]). Roughly speaking, the fibered barcode of a n-parameter
persistence module M corresponds to the collection of barcodes obtained
by restricting M along each affine line of positive slope in Rn. One can
compare fibered barcodes by taking the supremum over all lines of positive
slopes of the line-wise bottleneck distance (corrected by a specific coeffi-
cient) between barcodes of the restrictions of the persistence modules. This
distance is called the matching distance, usually denoted dM . The match-
ing distance between the fibered barcodes associated with two n-parameter
persistence modules is bounded above by their interleaving distance [18],
hence ensuring stability. Moreover, the fibered barcode of 2-parameter per-
sistence modules originating from point-cloud data can be computed and
visualized by the software RIVET [19].

ANNALES DE L’INSTITUT FOURIER
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Nevertheless, there are several bottlenecks to the fibered barcode ap-
proach. First, it is easy to exhibit two persistence modules at matching
distance zero but having arbitrarily large interleaving distance (see Sec-
tion 5.1). Second, computing and storing an entire n-parameter persistence
module is time and memory costly. RIVET can currently only handle 2-
parameter persistence modules. Moreover, it cannot deal with persistence
modules originating from sublevel sets filtrations of functions (such as im-
ages or PL maps on simplicial complexes).

In this paper, we approach the study of multi-parameter persistence mod-
ules through the lens of derived, and microlocal sheaf theory of Masaki
Kashiwara and Pierre Schapira [15] as initiated in [16]. In this setting,
building upon [16], the authors have proved, in a previous work [3], that
a multi-parameter persistence module can be identified isometrically to a
γ-sheaf (see equation (3.2)). Therefore, this allows us to tackle the study
of multi-parameter persistence modules via microlocal techniques without
leaving apart computational considerations.

One of the key aspects of sheaf theory is that any continuous map
f : Y → X between topological spaces induces a pair of adjoint functors
(f−1, Rf∗) (inverse image and derived pushforward) between the associ-
ated derived categories of sheaves. In this language, the restriction of a
persistence module M to a line of positive slope L ⊂ Rn is the persis-
tence module i−1

L M obtained by applying the inverse image functor of the
inclusion of L into Rn to M . Therefore, the fibered barcode construction
can be understood as a dimension reduction technique obtained by us-
ing inverse image functors along inclusion of one-dimensional sub-spaces.
A natural question follows: what can we say about derived direct images
of n-parameter persistence modules (or, more generally, of constructible
sheaves) along projections onto one-dimensional spaces? Indeed, the push-
forward operation does not have an easy description in the language of
persistence modules, though it is natural in the sheaf setting.

In this work, we provide a detailed study of the pushforward operation
on sheaves and persistence modules, both from a theoretical and compu-
tational perspective. Following the same strategy of reducing the study
of multi-parameter persistence modules to the study of families of one-
dimensional persistence modules, we introduce the notions of F-projected
barcodes and F-integral sheaf metric (see equations (6.1) and (6.2)). The
distance between two sheaves is the supremum of the distances between
the pushforwards of the sheaves by morphisms belonging to a family F.

TOME 0 (0), FASCICULE 0
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Again, in a similar spirit, we introduce sliced convolution distances (see
equations (6.6) and (7.3)).

Implementing such an approach requires relating precisely the classi-
cal theory of persistence modules and sheaf theory. This has largely been
achieved thanks to several works [1, 2, 3, 13, 16, 20]. Heuristically, this
correspondence goes as follows.

Persistence theory Sheaf theory
level sets persistence modules sheaves for the usual topology

sublevel sets persistence modules sheaves for the γ-topology
interleaving distances convolution distances

tame constructible at infinity
On our way, we prove several results and provide examples that may be

of independent interest to the TDA community. In particular, we show that
increasing the number of parameters of two filtrations of topological spaces
can only increase the interleaving/convolution distance between their asso-
ciated persistence modules/sheaves. In particular, this partially invalidates
the classical saying that “multi-parameter persistence is more robust to
outliers than one-parameter persistence.”

1.1. Structure of the paper

Section 2. We review classical constructions of sheaf theory, such as
integral transforms and kernel compositions. We recall the definition of
the convolution distance between (derived) sheaves of k-vector spaces on a
finite-dimensional real vector space, as developed by Kashiwara–Schapira
in [16] and provide proof about some properties of the convolution distance
that are well-known to the experts but do not appear anywhere (to the
best of our knowledge) in the literature. We recall the lemma, proved by
Petit and Schapira, stating that the pushforward by a C-Lipschitz map is
again C-Lipschitz for the convolution distance [23]. We end this section by
exposing the notion of constructible sheaves up to infinity, recently defined
by Schapira in [25].

Section 3. We review the notion of γ-sheaves, and recall the precise rela-
tionship between this type of sheaves and persistence modules [3]. We then
strengthen one of our previous results, asserting that the interleaving dis-
tance between persistence modules equals the convolution distance between
their associated γ-sheaves. Next, we recall the notion of graded-barcodes
for constructible sheaves on R and how we can compute the convolution

ANNALES DE L’INSTITUT FOURIER
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distance between two such sheaves from their graded-barcode, thanks to
the derived isometry theorem [1]. We end the section by providing a purely
sheaf-theoretic formulation of the fibered barcode.

Section 4. This section is devoted to the study of linear dimensionality
reduction of sheaves on a finite-dimensional real vector space V through
pushforwards along linear forms. Using projective duality, we prove that a
sheaf F on V is zero if and only if its pushforwards with compact support
by all linear forms on V are all zero (Proposition 4.4). We then restrict our
attention to pushforwards of γ-sheaves, which corresponds in our setting to
persistence modules. We recall the definition of Kashiwara–Schapira of the
sublevel sets persistence sheaf PH(f), associated with a continuous map
valued in V. Importantly, we prove in Lemma 4.19 that under a positivity
assumption on the linear form u and mild hypothesis on the continuous
function f : S → V, one has

Ru∗ PH(f) ≃ PH(u ◦ f).

We emphasize that the right-hand side is nothing but the sublevel sets
persistence of the real-valued function u ◦ f , which can be computed with
already existing software packages dedicated to TDA. Then, we provide
a counter-example to the above isomorphism when the positivity assump-
tion is not met (Proposition 4.21). This counter-example shows that post-
composing a sublevel set filtration with a linear map is not, in general, a
stable operation. The identification of the necessity of the positivity hy-
pothesis is made transparent, again, thanks to the sheaf formalism.

Finally, we carefully study the pushforward of γ-sheaves along linear
forms close to the boundary of the polar cone. This allows us to prove
an unexpected result (Corollary 4.27), unknown to the best of our knowl-
edge, stating that increasing the number of parameters in a sublevel sets
filtration can only increase the interleaving distance. More precisely, given
(f1, . . . , fn) : X → Rn and (g1, . . . , gn) : Y → Rn continuous maps from
compact good topological spaces to Rn, one has for every 1 ⩽ i ⩽ n:

distR
(
PH(fi), PH(gi)

)
⩽ distRn

(
PH(f), PH(g)

)
.

This result raises several questions regarding the behavior of multi-para-
meter persistence modules with respect to outlier.

Section 5. In this section, we elaborate on our study of the pushfor-
ward operation and introduce in Definition 5.1 the notion of F-projected
barcodes, associated to a family F of subanalytic functions up to infinity
from V to R. We motivate the introduction of this concept by studying

TOME 0 (0), FASCICULE 0



6 Nicolas BERKOUK & François PETIT

the classic example of the two persistence modules having the same fibered
barcode but being at a strictly positive interleaving distance. We show
that these two modules can be distinguished through their pushforward
via a linear form onto R. We then study several fundamental continuity
properties of the linear and γ-linear projected barcodes (Proposition 5.4
and 5.8). Finally, we prove in Proposition 5.13 that the fibered barcode
can be expressed as a projected barcode.

Section 6. We develop the theory of F-Integral Sheaf Metrics (F-ISM),
which are well-behaved distances between F-projected barcodes, obtained
by taking the supremum over each function in f ∈ F of the pushforward
(possibly with proper support) by f of two sheaves. When all functions in F

are 1-Lipschitz, we prove in Proposition 6.8 that the F-ISM provides lower
bounds for the convolution distance. We then give two detailed examples of
F-ISM: the distance kernel ISM and the linear ISM. Finally, we introduce
the sliced convolution distances, obtained by integrating the p-th power of
the distance between the pushforwards of two sheaves over the unit dual
sphere.

Section 7. We apply our previous results to the case of n-parameter
persistence modules (seen as γ-sheaves over Rn). In particular, we show
that the γ-linear ISM can be obtained by optimizing an almost everywhere
differentiable functional whose values and gradient can be evaluated using
only one-parameter persistence software packages. We end the section by
showing some concrete computations of ISM for multi-parameter persis-
tence modules.

Acknowledgments

The authors would like to thank the anonymous referee for their com-
ments and suggestions which greatly improved the paper.

2. Sheaves

This section introduces the necessary background on sheaf theory, con-
volution distance, and its links with persistence. The main reference for
general results on sheaves is [15]. The convolution distance for sheaves has
been introduced in [16] and generalized in [23]. A useful notion for our pur-
pose is the one of constructible sheaves up to infinity, which was introduced
recently by Schapira in [25].
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Recall that a topological space is good if it is Hausdorff, locally compact,
countable at infinity and of finite flabby dimension.

Let k be a field and let X be a good topological space. We denote by
D(kX) the derived category of sheaves of k-vector space on X, by Db(kX)
its bounded counterpart, that is, the full subcategory of D(kX) whose ob-
jects are the F ∈ D(kX) such that there exists n ∈ N such that for every
k ∈ Z with |k| ⩾ n, Hk(F ) = 0. We write Db

comp(kX) for the full subcate-
gory of Db(kX) spanned by the objects with compact support.

In this text, we will freely make use of techniques from micro-local sheaf
theory, for which we refer the reader to [15]. Nonetheless, micro-local tech-
niques will mostly appear in proofs and not in the results themselves. Hence
a reader only interested in the results may ignore them. Let M be a smooth
manifold.

• We denote by orM its orientation sheaf and by ωM its dualizing
sheaf. Recall that ωM = orM [dim M ]. We will also need the duality
functors

D′
M ( · ) := RHomkM

( · , kM ),
DM ( · ) := RHomkM

( · , ωM ).

• If Z is a locally closed subset of M , we denote by kZ the sheaf
associated to the locally closed subset Z.

• We write T ∗M for the cotangent bundle of M and set Ṫ ∗M =
T ∗M \ 0M , with 0M the zero section of T ∗M .

• For F ∈ Db(kM ), we denote by SS(F ) the micro-support of F . It
is a closed conical co-isotropic subset of T ∗M . We refer the reader
to [15, Chapter V] for a detailed presentation of this notion.

• Following [15, Section 6.1], let V be a subset of T ∗M . We define
the full subcategory Db

V (kM ) of Db(kM ) by setting:

Ob
(
Db

V (kM )
)

=
{

F ∈ Ob
(
Db(kM )

) ∣∣ SS(F ) ⊂ V
}

.

• Let Ω = T ∗M \ V , we set

Db(kM ; Ω) = D(kM )/ Ob
(
Db

V (kM )
)

for the localization of D(kM ) with respect to the null system gen-
erated by the object of Db

V (kM ). The category Db(kM ; Ω) is a tri-
angulated category.

• We will meet the technical notion of cohomologically constructible
sheaf for which we refer the reader to [15, Section 3.4].

TOME 0 (0), FASCICULE 0
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2.1. Composition of kernels and integral transforms

In this section, we set up a few notations and present an associativity
criterion for non-proper composition of kernels.

Given topological spaces Xi (i = 1, 2, 3), we write Xij for Xi×Xj , X123
for X1 ×X2 ×X3, pi : Xij → Xi and pij : X123 → Xij for the projections.
One defines the composition of kernels for Kij ∈ Db(kXij ) as

K12 ◦2 K23 := Rp13!(p−1
12 K12 ⊗ p−1

23 K23),

K12
np
◦
2

K23 := Rp13∗(p−1
12 K12 ⊗ p−1

23 K23).

To a sheaf K ∈ Db(kX12), one associates the following functor

ΦK : Db(kX1) −→ Db(kX2), F 7−→ Rp2!(K ⊗ p−1
1 F ).

Example 2.1. — Let V be a real vector space of dimension n + 1. We
set V̇ := V \ {0} and R× for the multiplicative group R \ {0}. We consider
Pn := V̇/R× the projective space of dimension n. The dual projective space
P∗n is defined similarly with V replaced by V∗ := Homk(V, k). We consider
the subset

(2.1) A =
{

(x, y) ∈ Pn × P∗n
∣∣ ⟨x, y⟩ = 0

}
and the sheaf kA. The integral transform associated to the kernel kA

ΦkA
: Db(Pn) −→ Db(P∗n), F 7−→ kA ◦ F

induces an equivalence of categories

Φ̃kA
: Db(Pn, Ṫ ∗Pn) −→ Db(P∗n, Ṫ ∗P∗n).

This is a consequence of [15, Theorem 7.2.1] and we refer the reader to [12]
for a detailed study.

The proper composition of kernel − ◦
2
− is associative. This is not the

case of the non-proper one −
np
◦
2
−. Nonetheless, we have the following

result.

Theorem 2.2 ([23, Theorem 2.1.8]). — Let Xi (i = 1, 2, 3, 4), be four
C∞-manifolds and let Ki ∈ Db(kXi,i+1) (i = 1, 2, 3). Assume that K1
is cohomologically constructible, q1 is proper on supp(K1) and SS(K1) ∩
(T ∗

X1
X1 × T ∗X2) ⊂ T ∗

X12
X12. Then

K1
np
◦
2

(K2
np
◦
3

K3) ≃ (K1
np
◦
2

K2)
np
◦
3

K3.

ANNALES DE L’INSTITUT FOURIER
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2.2. Convolution distance

It is possible to equip the derived categories of sheaves on a good metric
space (X, dX) with a pseudo-metric [23]. This pseudo-metric generalizes
the convolution distance of [16] from normed finite dimensional real vector
spaces to good metric spaces. Hence, we will also refer to this extension
as the convolution distance. The definition of a good metric space and the
construction of this pseudo-metric on Db(kX) are involved and we do not
need them explicitly. Hence, we do not recall them here and only review
the definition of the convolution distance in the special case of sheaves on
a normed finite dimensional real vector space. Nonetheless, we will state
and prove some of the results at the level of generality of sheaves on a good
metric spaces.

We consider a finite dimensional real vector space V endowed with a norm
∥ · ∥. We equip V with the topology induced by the norm ∥ · ∥. Following [16],
we briefly present the convolution distance. We introduce the following
notations:

s : V× V −→ V, s(x, y) = x + y,

pi : V× V −→ V (i = 1, 2), p1(x, y) = x, p2(x, y) = y.

The convolution bifunctor ⋆ : Db(kV) × Db(kV) → Db(kV) and the non-
proper convolution bifunctor

np
⋆ : Db(kV) × Db(kV) → Db(kV) are defined

as follows. For F, G ∈ Db(kV), we set

F ⋆ G := Rs!(F ⊠ G),
F

np
⋆ F := Rs∗(F ⊠ G).

We consider the morphism

u : V× V −→ V, (x, y) 7−→ x− y.

We will need the following elementary formula relating non-proper convo-
lution and non-proper composition.

Lemma 2.3. — Let F, G ∈ Db(kV). Then,

(i) (u−1F )
np
◦ G ≃ F

np
⋆ G;

(ii) u−1F
np
◦ u−1G ≃ u−1(F

np
⋆ G).

Proof. — We will only prove (i), the proof of (ii) being similar. We define
the maps (u, p2) : V×V→ V×V (resp. (s, p2)) by (u, p2)(x, y) =

(
u(x, y), y

)
TOME 0 (0), FASCICULE 0
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(resp. (s, p2)(x, y) =
(
s(x, y), y

)
). These two continuous maps are invert-

ible, inverse of each other:

u−1F
np
◦ G ≃ Rp1∗(u−1F ⊗ p−1

2 G)

≃ Rp1∗
(
(u, p2)−1p−1

1 F ⊗ (u, p2)−1p−1
2 G

)
≃ Rp1∗(u, p2)−1(F ⊠ G)
≃ Rp1∗R(s, p2)∗(F ⊠ G)
≃ F

np
⋆ G. □

For r ⩾ 0, we set Br =
{

x ∈ V
∣∣ ∥x∥ ⩽ r

}
, and Int (Br) =

{
x ∈

V
∣∣ ∥x∥ < r

}
. For all r ∈ R, we define the following sheaf:

Kr :=
{

kBr if r ⩾ 0,

kInt (B−r)[dim(V)] otherwise.

The following proposition is proved in [16].

Proposition 2.4. — Let r, r′ ∈ R and F ∈ Db(kV). There are functo-
rial isomorphisms

(Kr ⋆ Kr′) ⋆ F ≃ Kr+r′ ⋆ F and K0 ⋆ F ≃ F.

If r ⩾ r′ ⩾ 0, there is a canonical morphism χr,r′ : Kr → Kr′ in Db(kV).
It induces a canonical morphism χr,r′ ⋆ F : Kr ⋆ F → Kr′ ⋆ F . In particular
when r′ = 0, we get

(2.2) χr,0 ⋆ F : Kr ⋆ F −→ F.

Following [16], we recall the notion of c-isomorphic sheaves.

Definition 2.5. — Let F, G ∈ Db(kV) and let c ⩾ 0. The sheaves
F and G are c-isomorphic if there are morphisms f : Kr ⋆ F → G and
g : Kr ⋆ G→ F such that the diagrams

K2r ⋆ F
K2r⋆f //

χ2r,0⋆F

77Kr ⋆ G
g // F ,

K2r ⋆ G
K2r⋆g //

χ2r,0⋆G

77Kr ⋆ F
f // G ,

are commutative. The pair f, g is called a pair of r-isomorphisms.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.6. — For F, G ∈ Db(kV), their convolution distance is

distV(F, G) := inf
({

r ⩾ 0
∣∣ F and G are r-isomorphic

}
∪ {∞}

)
.

It is proved in [16] that the convolution distance is, indeed, a pseudo-
extended metric, that is, it satisfies the triangular inequality. The following
properties of the convolution distance are well-known to the specialists. We
include them with proofs for the convenience of the reader, as we do not
know any references for them.

Lemma 2.7. — Let (V, ∥ · ∥) be a real finite dimensional normed vector
space. Let F, G ∈ Db(kV).

(i) Let v ∈ V, and τv : V→ V, x 7→ x− v. Then,

distV(τv∗F, τv∗G) = distV(F, G).

(ii) Let λ ∈ R and hλ : V→ V, x 7→ λx. Then,

distV(hλ∗F, hλ∗G) = |λ| distV(F, G).

The functors τv∗ and hλ∗ are exact, hence we do not need to derive them.

Proof.
(i). — For F ∈ Db(kX), there are the following natural isomorphisms

Kr ⋆ τv∗F ≃ Rs!(id×τ−v)−1(Kr ⊠ F )
≃ τv∗(Kr ⋆ F ).

Let F, G ∈ Db(kV) and assume that they are c-isomorphic. Let f : Kr ⋆F →
G and g : Kr ⋆ G → F be a pair of c-isomorphisms. Then, we have the
morphisms

f ′ : Kr ⋆ τv∗F ≃ τv∗(Kr ⋆ F ) τv∗f−−−→ τv∗G,

g′ : Kr ⋆ τv∗G ≃ τv∗(Kr ⋆ G) τv∗f−−−→ τv∗F.

It is straightforward to verify that (f ′, g′) is a pair of c-isomorphisms. One
shows similarly that if τv∗F and τv∗G are c-isomorphic, then F and G are
c-isomorphic.

(ii). — We first observe that

hλ∗(Kr ⋆ F ) ≃ h−1
1/λKr ⋆ hλ∗F

≃ K|λ|r ⋆ hλ∗F.

Then, we notice that hλ∗(χr,0) ≃ χλr,0 which concludes the proof. □

We now recall several key inequalities for the convolution distance.

TOME 0 (0), FASCICULE 0
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Proposition 2.8 ([16, Proposition 2.6]).
(i) Let F, G ∈ Db(kV), then

distV
(
DV(F ), DV(G)

)
⩽ distV(F, G).

(ii) Assume that distV(Fi, Gi) ⩽ ai (i = 1, 2). Then one has

distV(F1 ⋆ F2, G1 ⋆ G2) ⩽ a1 + a2.

Lemma 2.9. — For F, G ∈ Db
Rc(kV), distV

(
DV(F ), DV(G)

)
=distV(F, G).

Proof. — By Proposition 2.8, we have that

distV
(
DV(F ), DV(G)

)
⩽ distV(F, G).

As F and G are constructible, it follows from [15, Proposition 3.4.3], that

DV
(
DV(F )

)
≃ F

and similarly for G. It follows that

distV(F, G) = distV
(

DV
(
DV(F )

)
, DV

(
DV(G)

))
⩽ distV

(
DV(F ), DV(G)

)
.

Hence, distV(F, G) = distV
(
DV(F ), DV(G)

)
. □

Let X be a topological space, (V, ∥ · ∥) be a normed finite dimensional
real vector space and f1, f2 : X → V be two continuous maps. We set

∥f1 − f2∥∞ = sup
x∈X

∥∥f1(x)− f2(x)
∥∥.

Theorem 2.10 ([16, Theorem 2.7]). — Let X be a good topological
space and f1, f2 : X → V be two continuous maps. Then for any F ∈
Db(kX), we have:

• distV(Rf1!F, Rf2!F ) ⩽ ∥f1 − f2∥∞;
• distV(Rf1∗F, Rf2∗F ) ⩽ ∥f1 − f2∥∞.

Theorem 2.11 ([23, Corollary 2.5.9.]). — Let (X, dX) and (Y, dY ) be
two good metric spaces and f : X → Y a K-Lipschitz map. Then, for every
F, G ∈ Db(kX),

distX(Rf!F, Rf!G) ⩽ K distY (F, G).

If moreover X and Y are finite dimensional vector spaces and dX and dY

are Euclidean distances, then one also has

distY (Rf∗F, Rf∗G) ⩽ K distX(F, G).
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2.3. Constructible sheaves up to infinity

We review in this section the notion of sheaves constructible up to in-
finity, which was recently introduced by Schapira in [25]. The geometric
setting is the following. Let (V, ∥ · ∥) be a real vector space of dimension n

endowed with a norm. We denote by P the projectivization of V. That is,
we consider the n dimensional projective space Pn(V ⊕ R). We also write
P∗ for the projectivization of V∗. We have the open immersion:

j : V −→ P, x 7−→ [x, 1].

In particular, j is an open embedding of real analytic manifolds, whose
image is relatively compact.

Proposition 2.12 ([25, Lemma 2.7]). — Let F ∈ Db
Rc(kV). The follow-

ing are equivalent.
(i) The micro-support SS(F ) is subanalytic in T ∗P.
(ii) The micro-support SS(F ) is contained in a locally closed R+-conic

subanalytic isotropic subset of T ∗P.
(iii) j!F ∈ Db

Rc(kP).
(iv) Rj∗F ∈ Db

Rc(kP).

Definition 2.13. — If F ∈ Db
Rc(kV) satisfies any (hence all) of the

conditions above, we say that F is constructible up to infinity. We denote
by Db

Rc(kV∞) the full triangulated subcategory of Db
Rc(kV) whose objects

are sheaves constructible up to infinity.

The following is a special case of [25, Definition 2.5].

Definition 2.14. — Let V and W be two finite dimensional real vector
spaces, and P and P′ their respective projectivization. A map f : V→W is
subanalytic up to infinity if its graph Γf ⊂ V×W is subanalytic in P×P′.

Notation 2.15. — We write:
(i) A(V∞) for the set of morphism of analytic manifolds from V to R

which are subanalytic up to infinity;
(ii) SC(V∞) for the set of continuous maps from V to R which are

subanalytic up to infinity.

Let V and W be two finite dimensional real vector spaces, P and P′ their
respective projectivization and f : V→W an element of SC(V∞).

Proposition 2.16. — Let F ∈ Db
Rc(kV∞) and G ∈ Db

Rc(kW∞). Then,
the sheaves f−1G, f !G, Rf∗F , and Rf!F are constructible up to infinity.
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14 Nicolas BERKOUK & François PETIT

Proof. — This follows immediately from [25, Lemma 1.1] and [25, Corol-
lary 2.1’]. □

Corollary 2.17 ([25, Corollary 2.13]). — With the same notations,
one has Rf∗F ≃ DWRf!DVF and f !G ≃ DVf−1DWG.

3. γ-sheaves

The interplay between sheaves on a real vector space and persistence
theory necessitates the use of a topology on a vector space introduced by
Kashiwara and Schapira [15], called the γ-topology. In this section, we
first recall the basic definitions associated to the γ-topology. There is a
notion of interleaving distance between sheaves on the γ-topology, which
the authors proved to coincide under some properness hypothesis with the
convolution distance [3, Corollary 5.9]. Here, we strengthen this result by
removing the properness assumption. We then recall some results specific
to the dimension one case, where γ-sheaves have a graded-barcode [1]. We
end the section with the notion of fibered barcode which was introduced
in [8] for persistence modules, that we translate in our γ-sheaf setting.

Let V be a finite dimensional real vector space. We write a : x 7→ −x for
the antipodal map. If A is a subset of V, we write Aa for the image of A

by the antipodal map. A subset γ of the vector space V is a cone if:
(i) 0 ∈ γ;
(ii) R>0 · γ ⊂ γ.

A convex cone γ is proper if γa ∩ γ = {0}. The polar cone γ◦ of a cone
γ ⊂ V is the cone of V∗:

γ◦ =
{

ξ ∈ V∗ ∣∣ ∀ v ∈ γ, ⟨ξ, v⟩ ⩾ 0
}

.

From now on, we assume that

(3.1) γ is a closed proper convex cone with non-empty interior.

We say that a subset A of V is γ-invariant if A = A + γ. The set of γ-
invariant open subsets of V is a topology on V called the γ-topology. We will
generically designate topology of this type by cone topology. We denote by
Vγ the vector space V endowed with the γ-topology. We write ϕγ : V→ Vγ

for the continuous map whose underlying function is the identity.
We set, following [16],

(3.2) Db
γ◦,a(kV) =

{
F ∈ Db(kV)

∣∣ SS(F ) ⊂ V× γ◦,a
}

.

We call an object of Db
γ◦,a(kV) a γ-sheaf. This terminology is motivated by

the following result.
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Theorem 3.1 ([16, Theorem 1.5]). — Let γ be a proper closed convex
cone in V. The functor Rϕγ∗ : Db

γ◦,a(kV) → Db(kVγ
) is an equivalence of

triangulated categories with quasi-inverse ϕ−1
γ .

The canonical map kγa → k{0} induces a morphism

(3.3) F
np
⋆ kγa −→ F.

Proposition 3.2 ([14, Proposition 3.9]). — Let F ∈ Db(kV). Then
F ∈ Db

γ◦,a(kV) if and only if the morphism (3.3) is an isomorphism.
The following lemma is closely related.
Lemma 3.3 ([15, Proposition 3.5.4]). — The endofunctor kγa

np
⋆ ( · ) of

Db(kV) factors through Db
γ◦,a(kV) and defines a projector

Db(kV) −→ Db
γ◦,a(kV).

This functor is called the “gammaification” functor.
Let v ∈ V. Recall that

τv : V −→ V, x 7−→ x− v.

For v, w ∈ V such that w + γ ⊂ v + γ, we can use Proposition 3.2 to
construct a morphism of functors from Db

γ◦,a(kV) to Db
γ◦,a(kV):

(3.4) χµ
v,w : τv∗ −→ τw∗.

We refer the reader to [3, Section 4.1.2] for details.
Definition 3.4. — Let F , G ∈ Db

γ◦,a(kV), and v ∈ γa. We say that F

and G are v-interleaved if there exist f : τv∗F → G and g : τv∗G→ F such
that the following diagram commutes:

τ2v∗F

**

χ2v,0(F )

((∼ // τv∗τv∗F
τv∗f // τv∗G

""

g // F

τ2v∗G

44

χ2v,0(G)

66
∼ // τv∗τv∗G

τv∗g
// τv∗F

==

f
// G.

Definition 3.5. — The interleaving distance between F and G with
respect to v ∈ γa is

dv
I (F, G) := inf

({
r ⩾ 0

∣∣ F and G are r · v-interleaved
}
∪ {∞}

)
.

The interleaving distance was introduced in [9]. We refer the reader to [26]
for details.
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3.1. Distances comparison

In this subsection, we compare the interleaving distance on Db
γ◦, a(kV)

with the convolution distance on Db
γ◦, a(kV). We sharpen [3, Proposition 5.8

and Corollary 5.9] by removing the γ-properness assumption. The archi-
tecture of the proof is the same as in [3]. The γ-properness hypothesis is
removed thanks to Theorem 2.2.

Here, V is endowed with a closed proper convex cone γ with non-empty
interior. Let v ∈ Int(γa) and consider the set

Bv := (v + γ) ∩ (−v + γa).

The set Bv is a symmetric closed bounded convex subset of V such that
0 ∈ Int Bv. It follows that the gauge

(3.5) gBv (x) = inf
{

λ > 0
∣∣ x ∈ λBv

}
is a norm, the unit ball of which is Bv. We denote this norm by ∥ · ∥v. We
assume that V is equipped with this norm. Recall the map

u : V× V −→ V, (x, y) 7−→ x− y.

Consider
Θ =

{
(x, y) ∈ V× V

∣∣ x− y ∈ γa
}

= u−1(γa)
and notice that

∆r =
{

(x, y) ∈ V× V
∣∣ ∥x− y∥v ⩽ r

}
= u−1(Br),

where Br is the closed ball of center 0 and radius r in V for the norm ∥ · ∥v.
The following formulas follow from Lemma 2.3:

kΘ
np
◦ F ≃ kγa

np
⋆ F,(3.6)

k∆r

np
◦ kΘ ≃ k∆r+Θ.(3.7)

Lemma 3.6. — Let F ∈ Db(kV). Then,

(k∆r

np
◦ kΘ)

np
◦ F ≃ k∆r

np
◦ (kΘ

np
◦ F ).

Proof. — Let π : T ∗V→ V be the cotangent bundle of V. We denote by
ud the dual of the tangent morphism of u. It fits in the following commu-
tative diagram

T ∗(V× V)
π

((

(V× V)×V ×T ∗V
udoo uπ //

π

��

T ∗V

π

��
V× V u // V.
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Since we have the isomorphism k∆r
≃ u−1kBr

, [15, Proposition 5.4.5] im-
plies that SS(k∆r

) = ud u−1
π

(
SS(Br)

)
. A direct computation shows that

ud u−1
π (T ∗V) ∩ T ∗

VV× T ∗V ⊂ T ∗
V×V(V× V).

Hence SS(k∆r
) ∩ T ∗

VV × T ∗V ⊂ T ∗
V×V(V × V). Since k∆r

is constructible
and the properness assumption is clearly satisfied, we apply Theorem 2.2
and get the desired isomorphism. □

Finally, there is also the following isomorphism

(3.8) kr·v+γa ≃ kBr+γa .

We now state and prove the sharpen version of [3, Proposition 5.8].

Theorem 3.7. — Let v ∈ Int(γa), r ∈ R⩾0 and F, G ∈ Db
γ◦, a(kV). Then

F and G are r · v-interleaved if and only if they are r-isomorphic.

Proof. — Let F, G ∈ Db
γ◦, a(kV). Assume they are r · v-interleaved. We

set w = r · v. Hence, we have the maps

α : τw∗F −→ G, β : τw∗G −→ F,

such that the below diagrams commute

τ2w∗F
τw∗α //

χµ
0,2w(F )

<<τw∗G
τw∗β // F τ2w∗G

τw∗β //

χµ
2w,0(G)

<<τw∗F
τw∗α // G.

Using [1, Lemma 4.3], we obtain

k2w+γa

np
⋆ F

k2w+γa
np
⋆ α
//

χ2w,0
np
⋆ F

66kw+γa

np
⋆ G

kw+γa
np
⋆ β
// F.

Moreover for every r ⩾ 0, we have the following isomorphisms

krv+γa

np
⋆ F ≃ kBr+γa

np
⋆ F by Equation (3.8)

≃ k∆r+Θ
np
◦ F by Lemma 2.3(i)

≃ (k∆r

np
◦ kΘ)

np
◦ F by Equation (3.7)

≃ k∆r

np
◦ (kΘ

np
◦ F ) by Lemma 3.6

≃ k∆r

np
◦ (kγa

np
⋆ F ) by Equation (3.6)

≃ k∆r

np
◦ F by Proposition 3.2
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18 Nicolas BERKOUK & François PETIT

≃ kBr

np
⋆ F by Lemma 2.3(i)

≃ kBr
⋆ F (compacity of Br).

Hence, we obtain the commutative diagram

kB2c ⋆ F
kBc ⋆α //

ρ0,2c⋆F

77kBc ⋆ G
β // F .

Similarly, we obtain the following commutative diagram

kB2r ⋆ G
kBr ⋆β //

ρ0,2r⋆G

77kBr ⋆ F
α // G .

Hence, F and G are r-isomorphic.
A similar argument proves that if F and G are r-isomorphic then they

are r · v-interleaved. □

Corollary 3.8. — Let v ∈ Int(γa), F, G ∈ Db
γ◦, a(kV). Then,

distv
V(F, G) = dv

Iµ(F, G),

where distv
V is the convolution distance associated with the norm ∥ · ∥v

defined in equation (3.5).

Proposition 3.9. — Let v ∈ Int(γa), F, G ∈ Db
γ◦, a(kV) and c ∈ R⩾0.

Assume that F and G are c · v-interleaved. Then for all j ∈ Z, Hj(F ) and
Hj(G) are c · v-interleaved.

Proof. — For all w ∈ Int γa, the functor τw∗ : Mod(kV) → Mod(kV) is
exact. Therefore, applying the functor Hj to a c · v-interleaving diagram
between F and G produces a c · v-interleaving diagram between Hj(F ) and
Hj(G). □

Corollary 3.10. — For v ∈ Int γa and F, G ∈ Db
γ◦, a(kV), one has:

(i) maxj dv
Iµ

(
Hj(F ), Hj(G)

)
⩽ dv

Iµ(F, G);
(ii) maxj distv

V
(
Hj(F ), Hj(G)

)
⩽ distv

V(F, G).

Proof. — The first inequality is a direct consequence of Proposition 3.9.
The second inequality is a consequence of the first one, together with Corol-
lary 3.8. □
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3.2. The dimension one case

When V is a one-dimensional real vector space, the category Db
Rc(kV) en-

joys a structure theorem which ensures the existence of a graded-barcode
for its objects, and allows to derive explicit computations for the convolu-
tion distance. This was studied in detail in [1, 16]. These results extend the
key theorem of Crawley-Boevey [10] to constructible sheaves on the real
line. In this section, we recall the main results that will be useful in the
following of the article.

Theorem 3.11 ([16, Theorem 1.17]). — Let F ∈ ModRc(kR), then there
exists a unique locally finite multi-set of intervals of R noted B(F ) such that

F ≃
⊕

I∈B(F )

kI .

Moreover, this decomposition is unique up to isomorphism.

Since for I and J some intervals of R, one has Extj(kI , kJ) ≃ 0 for all
j > 1, Theorem 3.11 has the following useful corollary.

Corollary 3.12. — Let F ∈ Db
Rc(kR). Then there exists an isomor-

phism in Db
Rc(kR):

F ≃
⊕
j∈Z

Hj(F )[−j],

where Hj(F ) is seen as a complex concentrated in degree 0.

Definition 3.13 ([1, Definiton 2.13]). — Let F ∈ Db
Rc(kR), we de-

fine its graded-barcode B(F ) as the collection
(
Bj(F )

)
j∈Z where Bj(F ) :=

B
(
Hj(F )

)
. Furthermore, to indicate that an interval I ⊂ R appears in de-

gree j ∈ Z in the graded-barcode of F , we write Ij ∈ B(F ). The element
Ij is called a graded-interval.

We recall here the construction of the category Barcode of [1], which is
an explicit skeleton of Db

Rc(kR). Let Inter(R) be the set of intervals of R and
p1, p2 be the projections on the first two coordinates of Inter(R)×Z×Z⩾0.
Let B be a subset of Inter(R)× Z× Z⩾0. Then B is said to be:

• locally finite if p1(B) ∩K is finite for all compact subsets K ⊂ R;
• bounded if p2(B) ⊂ Z is bounded;
• well-defined if the fibers of the projection (p1, p2) have cardinality

at most 1.
In a triple (I, j, n) ∈ B, the first integer stands for the degree in which
the interval I is seen and the second non-negative integer n stands for its
multiplicity.
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Definition 3.14 ([1, Definition 6.11]). — The category Barcode has
as objects the elements of the set

Ob(Barcode) =

B ⊂ Int(R)× Z× Z⩾0

∣∣∣∣∣∣∣
B is bounded,
locally finite,
and well-defined

.

For any B and B′ ∈ Barcode, the set of their morphisms is

HomBarcode(B,B′) =
∏

(I,j,n)∈B
(I′,j′,n′)∈B′

HomDb
Rc(kR)

(
kn

I [−j], kn′

I′ [−j′]
)
.

We define the composition in Barcode so that the mapping:

ι : Ob(Barcode) ∋ B 7−→
⊕

(I,j,n)∈B

kn
I [−j] ∈ Ob

(
Db

Rc(kR)
)

becomes a fully faithful functor:

ι : Barcode −→ Db
Rc(kR).

Note that this is possible only because the objects of Barcode are locally
finite (hence products and co-products coincide). Theorems 3.11 and 3.12
assert that ι is essentially surjective, therefore is an equivalence. We also
deduce from these theorems that Barcode is a skeletal category: it satisfies
for any B1,B2 ∈ Barcode,

B1 ≃ B2 if and only if B1 = B2.

Since ι is an equivalence, let us denote by B a quasi-inverse of ι. In [1],
the authors define a matching distance between the objects of Barcode
called the bottleneck distance, and denoted dB . They prove the following
isometry theorem, where R is endowed with the usual absolute value norm
| · |, and we denote by distR the associated convolution distance on Db(kR).

Theorem 3.15 ([1, Theorem 5.10]). — The functor

B : (Db
Rc(kR), distR) −→ (Barcode, dB)

is an isometric equivalence.

In this article, we will mostly be interested in γ-sheaves, since they are
the sheaf theoretic analogue of persistence modules in a precise sense [3].
Therefore, we unwrap the derived isometry theorem of [1] in the simpler
setting of γ-sheaves that will be useful for us in the following of the article.
For the rest of this section, we set γ = (−∞, 0]. Intervals appearing in the
graded-barcodes of γ-sheaves are of the form [a, b), with a, b ∈ R ∪ {±∞}.
Note that all results translate readily for the cone γ′ = [0, +∞).
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We recall that, given two (multi-)sets X and Y , a partial matching be-
tween X and Y is the data (σ,X ,Y) of two subsets X ⊂ X and Y ⊂ Y ,
together with a bijection σ : X → Y. In this situation, we use the notation
(σ,X ,Y) : X → Y .

Definition 3.16. — Let F, G ∈ Db
Rc,γ◦, a(kR), and ε ⩾ 0. An ε-matching

between B(F ) and B(G) is the data of a collection of partial matchings
(σj ,X j ,Yj) : Bj(F )→ Bj(G), satisfying the following, for all j ∈ Z:

(1) for all I ∈ X j such that I = [a, b) with a and b in R ∪ {±∞}, then
σj(I) = [a′, b′) with a′ and b′ in R∪ {±∞}, and(1) |a− a′| ⩽ ε and
|b− b′| ⩽ ε;

(2) for all I = [a, b) ∈ Bj(F )\X j ∪ Bj(G)\Yj , then |a− b| ⩽ 2ε.

Definition 3.17. — Let F, G ∈ Db
Rc,γ◦, a(kR), their bottleneck distance

is defined by:

dB(F, G) = inf
{

ε ⩾ 0
∣∣ B(F ) and B(G) are ε-matched

}
.

Remark 3.18. — The matchings between graded barcodes of γ-sheaves
are defined in the same way as between barcodes of persistence modules.
Therefore, one can compute the bottleneck distance between barcodes of
γ-sheaves using already existing software [28, 29]. It is nevertheless far from
being true when removing the γ assumption on F and G.

Theorem 3.19 ([1, Theorem 5.10]). — Let F, G ∈ Db
Rc,γ◦, a(kR), then

the following are equivalent, for all ε ⩾ 0:
(i) F and G are ε-isomorphic;
(ii) there exists a ε-matching between B(F ) and B(G);
(iii) for all j ∈ Z, Hj(F ) and Hj(G) are ε-isomorphic.

Corollary 3.20. — Let F, G ∈ Db
Rc,γ◦, a(kR), then

distR(F, G) = max
j∈Z

distR
(
Hj(F ), Hj(G)

)
= max

j∈Z
dB

(
B
(
Hj(F )

)
,B
(
Hj(G)

))
.

Remark 3.21. — Note that Corollary 3.20 is false if one only assumes
F, G ∈ Db

Rc(kR).

One consequence of the derived isometry theorem is the following closed-
ness property of the convolution distance, which we recall in full generality
here.

(1) We set |+∞ − +∞| = |−∞ − (−∞)| = 0, and for all x ∈ R, |±∞ − x| = +∞.
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Theorem 3.22 ([1, Theorem 6.3]). — Let F, G ∈ Db
Rc(kR), then the

following are equivalent, for all ε ⩾ 0:
(i) distR(F, G) ⩽ ε;
(ii) F and G are ε-isomorphic.

In particular, distR(F, 0) = 0 iff F ≃ 0.

3.3. Fibered barcode

One of the challenges of multi-parameter persistence is to provide a mean-
ingful notion of distance between persistence modules which can be com-
puted in a reasonable time complexity. Indeed, it has been shown that the
usual interleaving distance between persistence modules is NP-hard to com-
pute in the multi-parameter case [4]. To overcome this issue, the authors
of [8] introduced the matching distance between multi-parameter persis-
tence modules, which is by now popular in the TDA community, thanks to
the software RIVET [19]. We review this notion below, but formulate it in
the language of γ-sheaves.

In this section, we assume that V = Rn and consider the cone γ =
(−∞, 0]n. Let v = (1, . . . , 1)t ∈ Int(γa) and ∥ · ∥v is defined as in equa-
tion (3.5). Then, ∥∥(x1, . . . , xn)

∥∥
v

= max
{
|x1|, . . . , |xn|

}
.

Let us define Λ :=
{

h ∈ Int(γa), ∥h∥v = 1
}

. Given h ∈ Λ, we denote
by Lh the one dimensional subspace of Rn spanned by h. Recall that γ

induces on Rn the standard product order ⩽ given by:

x ⩽ y ⇐⇒ x + γ ⊆ y + γ ⇐⇒ xi ⩽ yi for all i.

The poset (Lh,⩽) is isomorphic to (R,⩽) via the isometry

(3.9) ιLh
: R −→ Lh, t 7−→ t · h.

Therefore, it has the least upper bound property. Following [19], we define
the push function pLh

: V→ Lh by

pLh
(x) = inf

{
y ∈ Lh | x ⩽ y

}
= inf

{
y ∈ Lh | x ∈ y + γ

}
(see Figure 3.1). One can prove that we have the following formula, for
x = (x1, . . . , xn) ∈ V and h = (h1, . . . , hn) ∈ Λ:

(3.10) pLh
(x) =

(
max

i

xi

hi

)
· h.

ANNALES DE L’INSTITUT FOURIER



PROJECTED DISTANCES FOR PERSISTENCE MODULES 23

Figure 3.1. Illustration of the push function pLh
.

In particular, one has for y ∈ Lh:

(3.11) p−1
Lh

({y}) = y + ∂γ.

Lemma 3.23. — For h = (h1, . . . , hn) ∈ Λ, the map pLh
is 1

mini hi
-

Lipschitz with respect to ∥ · ∥v, and this coefficient is optimal.

Proof. — Let x, x′ ∈ V, since hi > 0 for all i, one has:

pLh
(x) = max

i

xi

hi
· h ∈ Lh.

Therefore, ∥∥pLh
(x)− pLh

(x′)
∥∥

v
=
∣∣∣∣max

i

xi

hi
−max

i

x′
i

hi

∣∣∣∣
⩽ max

i

∣∣∣∣xi

hi
− x′

i

hi

∣∣∣∣
⩽

1
mini hi

∥x− x′∥v.

The above inequality becomes an equality when i0 ∈ {1, . . . , n} is such
that hi0 = mini hi, x is the i0-th element of the canonical basis of Rn, and
x′ = 0. □

Definition 3.24 ([8]). — Let F ∈ Db
Rc,γ◦,a(kV), its fibered barcode is

the collection of graded-barcodes
(
B(i−1

Lh
τ−1

c F )
)

(h,c)∈Λ×V.
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Definition 3.25 ([8]). — Let F, G ∈ Db
Rc,γ◦,a(kV), their matching dis-

tance is the possibly infinite quantity:

dm(F, G) = sup
(h,c)∈Λ×V

(
min

i
hi

)
· dB

(
B(i−1

Lh
τ−1

c F ),B(i−1
Lh

τ−1
c G)

)
.

Recall that we denote by distv
V the convolution distance associated with

the norm ∥ · ∥v on Db(kV). Then one has the following stability result.

Proposition 3.26 ([8, 18]). — Let F, G ∈ Db
Rc,γ◦,a(kV). Then,

dm(F, G) ⩽ distv
V(F, G).

Therefore, the matching distance is stable with respect to the convolu-
tion distance. Under some finiteness assumptions on F, G, the matching
distance can be computed in polynomial time (in the number of generators
and relations of a finite free presentation of F and G seen as persistence
modules). In particular, the software RIVET [19] allows for an efficient
computation of the matching distance when V is of dimension 2, and gives
an interactive visualization of the fibered barcode.

4. Linear dimensionality reduction

In this section, we study direct images of sheaves on a finite dimensional
vector space by linear forms. We examine in detail the case of γ-sheaves
and sublevel sets persistence modules. We obtain several vanishing results
and a formula allowing to compute explicitly the pushforward by a linear
form of a sublevel sets multi-parameter persistence module.

Let (V, ∥ · ∥) be a real vector space of dimension n endowed with a norm.
Recall that we denote by P the projectivization of V. That is, we consider
the n dimensional projective space Pn(V ⊕ R). We also write P∗ for the
projectivization of V∗. We have the open immersion

(4.1) j : V −→ P, x 7−→ [x, 1].

4.1. Linear direct image of sheaves

We need the following straightforward generalization of the stability in-
equality. This is a version with support of the usual stability inequality, as
proved in [16].
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Lemma 4.1. — Let X be a good topological space and (V, ∥ · ∥) be a
real finite dimensional normed vector space. Let F ∈ Db(kX), S be a closed
subset containing supp(F ), and f1, f2 : X → V be continuous maps. Then:

distV(Rf1!F, Rf2!F ) ⩽
∥∥f1
∣∣
S
− f2

∣∣
S

∥∥
∞,

distV(Rf1∗F, Rf2∗F ) ⩽
∥∥f1
∣∣
S
− f2

∣∣
S

∥∥
∞.

Proof. — We only prove the first inequality, the proof of the second one
being similar. Remark that F ≃ iS !i

−1
S F . Hence,

distV(Rf1!F, Rf2!F ) = distV(Rf1!iS !i
−1
S F, Rf2!iS !i

−1
S F ).

It follows from the stability theorem that

distV(Rf1!iS !i
−1
S F, Rf2!iS !i

−1
S F ) ⩽

∥∥f1
∣∣
S
− f2

∣∣
S

∥∥
∞.

Thus,
distV(Rf1!F, Rf2!F ) ⩽

∥∥f1
∣∣
S
− f2

∣∣
S

∥∥
∞. □

Let S be a subset of V. We set ∥S∥ = supx∈S∥x∥. We endow V∗ with
the operator norm ~u~ := sup∥x∥=1∥u(x)∥.

Lemma 4.2. — Let F ∈ Db
comp(kV), u, v ∈ V∗ and set S = supp(F ).

Then,
distR(Ru!F, Rv!F ) ⩽ ∥S∥~u− v~.

Proof. — It follows from Lemma 4.1 that

distR(Ru!F, Rv!F ) ⩽
∥∥u
∣∣
S
− v
∣∣
S

∥∥
∞

and for every x ∈ S ∣∣u(x)− v(x)
∣∣ ⩽ ~u− v~∥x∥∞

⩽ ~u− v~∥S∥.

Thus,
∥∥ũ
∣∣
S
− ṽ
∣∣
S

∥∥
∞ ⩽ ~u− v~∥S∥. □

Recall the following integral transform

ΦkA
: Db(Pn) −→ Db(P∗n), F 7−→ kA ◦ F

where the set A is defined by equation (2.1).
We wish to extract information regarding F from the data of pushfor-

wards of F by linear forms. For that purpose, we will use projective duality
as it allows to construct a sheaf on P∗, the projectivization of V∗, via ΦkA

,
the stalks of which are the (Ru!F )t where u is a linear form and t an
element of R.

Lemma 4.3. — Let F ∈ Db(kV) and let [u; t] ∈ P∗. Then

ΦkA
(Rj!F )[u;t] ≃ (Ru!F )t.
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Proof. — Let [u; t] ∈ P∗ and set

B[u;t] =
{

[x, y] ∈ P
∣∣ u(x) = −ty

}
.

There is the following commutative diagram

V
j //

idV ×[u;t]
��

P

idP ×[u;t]
��

V× P∗ j×id //

q1

��

P× P∗

p1

��
V

j // P,

with q1 and p1 the first projections, and [u; t] : V → P∗ the constant map
with value [u; t]:

ΦkA
(Rj!F )[u;t] ≃ RΓc

(
P× [u; t]; (kA ⊗ p−1

1 Rj!F )
∣∣
P×[u;t]

)
≃ RΓc

(
P× [u; t]; kB[u;t]×[u;t] ⊗

(
p1(idP×[u; t])

)−1Rj!F
)

≃ RΓc(P; kB[u;t] ⊗ Rj!F )

≃ RΓc

(
P; Rj!(j−1kB[u;t] ⊗ F )

)
≃ RΓc

(
P; Rj!(ku−1(t) ⊗ F )

)
≃ RΓc(V; ku−1(t) ⊗ F )

≃ RΓc

(
u−1(t); F

∣∣
u−1(t)

)
≃ (Ru!F )t. □

Proposition 4.4. — Let F ∈ Db(kV) such that for all u ∈ V∗, Ru!F ≃
0. Then, F ≃ 0.

Proof. — Let [u; t] ∈ P∗. Then, it follows from Lemma 4.3 that

ΦkA
(Rj!F )[u;t] ≃ (Ru!F )t.

Hence, ΦkA
(Rj!F ) ≃ 0 and

Φ̃kA
: Db(P, Ṫ ∗P) −→ Db(P∗, Ṫ ∗P∗)

is an equivalence of categories. This implies that Rj!F ≃ 0 in Db(P, Ṫ ∗P).
Thus SS(F ) ⊂ T ∗

VV. It follows from [15, Proposition 8.4.1] that Rj!F is a
local system on P. Now, let [x, 0] ∈ P. Then

(Rj!F )[x;0] ≃ RΓc

(
j−1([x; 0]); F

∣∣
j−1([x;0])

)
and j−1([x; 0]) = ∅.

Thus, (Rj!F )[x;0] ≃ 0. This implies that Rj!F ≃ 0, which leads to F ≃
0. □
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4.2. Linear direct image of γ-sheaves

In this subsection, we study direct images and direct images with proper
supports of γ-sheaves by linear forms.

Proposition 4.5. — Let F ∈ Db
γ◦,a(kV) and u ∈ V∗.

(i) If u ∈ γ◦,a (resp. γ◦), then Ru!F ∈ Db
λ◦,a(kV) with λ = R− (resp.

λ = R+).
(ii) If u /∈ γ◦ ∪ γ◦,a, then Ru!F is a constant sheaf. If furthermore F

has a compact support, then Ru!F ≃ 0.
The same results (i) and (ii) hold for Ru!F replaced with Ru∗F .

Proof.
(i). — Let F ∈ Db

γ◦,a(kV), u ∈ V∗ and πR∗ : R × R∗ → R∗. Then [14,
Corollary 1.17] asserts that

(4.2) SS(Ru!F ) ⊂ π−1
R∗ (ut)−1(γ◦,a).

Moreover,

(4.3) (ut)−1(γ◦,a) =
{

ξ ∈ R∗ ∣∣ ξ(1)u ∈ γ◦,a
}

.

Assume that u ∈ γ◦,a \ {0} and let ξ ∈ (ut)−1(γ◦,a). Since the interior of γ

is non-empty, there exists x0 ∈ γ such that u(x0) < 0 and ξ(1)u(x0) ⩽ 0.
Thus ξ(1) ⩾ 0 which is equivalent to ξ ∈ λ◦,a with λ = R−. Equation (4.2)
becomes

SS(Ru!F ) ⊂ R× λ◦,a

which proves the claim. The case where u ∈ γ◦ is treated in a similar way.
(ii). — Since u /∈ γ◦ ∪ γ◦,a, there exist x, y ∈ γ such that u(x) < 0

and u(y) > 0. Hence, π−1
R (ut)−1(γ◦,a) = R × {0}. It follows from [15,

Proposition 8.4.1] that Ru!F (resp. Ru∗F ) is a constant sheaf (possibly
equal to zero) as V is contractible. If the support of F is compact, then the
support of Ru!F is different from R and thus Ru!F ≃ 0. □

Corollary 4.6. — Let F ∈ Db
γ◦,a,comp(kV). Then RΓ(V; F ) ≃ 0.

Proof. — Let u /∈ γ◦ ∪ γ◦,a. Then, by Proposition 4.5, Ru∗F ≃ 0 and

RΓ(V; F ) ≃ RaR∗Ru∗F ≃ 0

where aR is the constant map V→ {pt}. □

Lemma 4.7. — Let K ⊂ V be a compact set and u ∈ Int(γ◦). Then
u
∣∣
K+γ

is proper.
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Proof. — Since the interior of γ is nonempty, K is compact and u is
linear, we can assume without loss of generality that K ⊂ γ. Therefore,
it is sufficient to prove that for any two real numbers a < b, the set Σ :=
u−1([a, b]) ∩ γ is compact. Since u ∈ Int(γ◦), it follows that for every x ∈
γ \ {0}, u(x) > 0, which shows that ker(u) ∩ γ = {0}. We set v ∈ Int(γ)
such that u(v) = 1. Consequently, one has the direct sum decomposition
V = Rv ⊕ ker(u), and one has:

Σ =
{

t · v + h
∣∣ t ∈ [a, b], h ∈ ker(u)

}
∩ γ.

Since γ is closed and convex, so is Σ. Therefore, Σ is unbounded if and only
if there exists x ∈ Σ and y ∈ V\{0} such that for all t ⩾ 0, x+t ·y ∈ Σ. Let
assume that there exist such x and y. Then, for all t ⩾ 0, u(x+t ·y) ∈ [a, b],
which implies that y ∈ ker(u). Moreover, for all t > 0,

1
t
· (x + t · y) = x

t
+ y ∈ γ.

Since γ is closed, we obtain making t going to +∞ that y ∈ γ∩ker(u) = {0}.
This is absurd by hypothesis, so Σ is bounded. Since V is finite dimensional,
it is compact. □

Lemma 4.8. — Let u ∈ Int(γ◦) (resp. Int(γ◦,a)). Then Ru∗kγ ≃ kR+

(resp. Ru∗kγ ≃ kR−).

Proof. — Since u ∈ γ◦, it follows that γ ⊂ u−1(R+) and these two sets
are closed. Hence, there is a canonical map u−1kR+ ≃ ku−1(R+) → kγ . By
adjunction, this provides a map α : kR+ → Ru∗kγ . We compute the stalks
of this map. Since u ∈ Int(γ◦), it is proper on γ. It follows that for x ∈ R,
(Ru∗kγ)x ≃ RΓc

(
u−1(x); kγ∩u−1(x)

)
.

• If x /∈ R+, then u−1(x) ∩ γ = ∅. Thus RΓc

(
u−1(x); kγ∩u−1(x)

)
≃ 0

and αx is an isomorphism.
• If x ∈ R+, then u−1(x)∩γ is non-empty and it is a compact convex

subset of u−1(x). This implies that RΓc

(
u−1(x); kγ∩u−1(x)

)
≃ k

and αx is again an isomorphism. □

We recall the notion of characteristic cone following [17, 27]. Let C be a
closed convex subset of V and let p ∈ C. Consider the set

Cp =
{

x ∈ V
∣∣ ∀ λ ⩾ 0, λ(x− p) + p ∈ C

}
.

Hence Cp is the union of half-lines contained in C emanating from p. The
set Cp is an affine convex cone and if q ∈ C then Cp = Cq + (p − q). The
cone Cp is called a characteristic cone of C.
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Lemma 4.9. — Let V be a finite dimensional real vector space and let
C be a closed convex set such that a characteristic cone of C is not an
affine subspace of V. Then,

RΓc(V; kC) ≃ 0.

Proof. — We first establish the lemma when V = R and C = [0, +∞[.
Using a stereographic projection from the north pole N of S1 ⊂ R2, we
notice that R+ is homeomorphic to a half-circle minus the north pole that
is to [0, 1[. We consider the following exact triangle

RΓc

(
[0, 1]; k[0,1[

)
−→ RΓc

(
[0, 1]; k[0,1]

)
−→ RΓc

(
[0, 1]; k{1}

) +1−−→ .

Since the morphism RΓc

(
[0, 1]; k[0,1]

)
→ RΓc

(
[0, 1]; k{1}

)
is an isomor-

phism, it follows that RΓc

(
[0, 1]; k[0,1[

)
≃ 0. Thus RΓc(R; k[0,+∞[) ≃ 0.

Now, assume that V is a real vector space of dimension n and C is a
closed convex set of V such that a characteristic cone of C is not an affine
subspace of V. By [17, Section 5], it follows that C is homeomorphic to
[0, 1]d × [0, +∞[ for some 0 ⩽ d ⩽ n− 1. Hence,

RΓc(V; kC) ≃ RΓc(C; kC)

≃ RΓc

(
[0, 1]d × [0, +∞[; k[0,1]d×[0,+∞[

)
≃ RΓc

(
[0, 1]d; k[0,1]d)⊗ RΓc([0, +∞[; k[0,+∞[

)
≃ 0. □

Lemma 4.10. — Let V be a vector space. A closed proper cone γ of V
does not contain any non-trivial affine subspace of V.

Proof. — Let E be an affine subspace of V contained in γ and let p ∈ E

and v ∈ V, an element of the vector space associated with E. The set
L =

{
x ∈ V

∣∣ x = p + λv, λ ∈ R
}

is an affine subspace of E. Since γ is a
cone, for every n ∈ N∗, the points qn = 1

n (p+nv) and rn = 1
n (p−nv) belong

to γ. Since γ is closed, the limits limn→∞ pn = v and limn→∞ rn = −v

belong again to γ which is proper. Hence, v = 0 and L = {p}. This implies
that E is trivial. □

Proposition 4.11. — Let u /∈ Int(γ◦) ∪ Int(γ◦,a). Then Ru!kγ ≃ 0.

Proof. — Let y ∈ R. Then,

(Ru!kγ)y ≃ RΓc

(
u−1(y); kγ∩u−1(y)

)
.

We set C = γ ∩ u−1(y). Then, either C = ∅ and RΓc

(
u−1(y); kC

)
≃ 0 or

C ̸= ∅ and it is a closed convex set. Let x0 ∈ C. Since u ∈ ∂γ◦ ∪ ∂γ◦,a,
it follows that

(
ker(u) ∩ γ

)
\ (0) ̸= ∅. As γ is a cone this implies that
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(
ker(u) ∩ γ

)
contains a half-line h. Since x0 ∈ γ and γ is a convex cone

then x0 +h ⊂ γ. Moreover, h ⊂ ker(u), thus u(x0 +h) = {y}. Hence, x0 +h

is contained in C which implies that the characteristic cone Cx0 contains at
least a ray and is not reduced to a point. Let z ∈ C. We have the following
inclusion of characteristic cone Cz ⊂ γz = γ + z. Moreover, it follows from
Lemma 4.10 that γ does not contain any non-trivial affine subspace of V.
Hence Cz is not an affine subspace of V. Then, applying Lemma 4.9, we
get that (Ru!kγ)y ≃ RΓc(V; kC) ≃ 0. □

4.3. Sublevel sets persistence

In [16], Masaki Kashiwara and Pierre Schapira provide a sheaf-theoretic
construction of sublevel sets multi-parameter persistence. The aim of this
section is to prove that the sheaf encoding the sublevel sets multi-parameter
persistence of a pair (S, f), where S is a good compact topological space
and f : S → V is a continuous map, is γ-compactly generated.

Definition 4.12. — A sheaf F ∈ Db(kV) is γ-compactly generated if
there exists G ∈ Db

comp(kV) such that F ≃ G
np
⋆ kγa . We denote by Db

γ-cg(kV)
the full subcategory of Db(kV) spanned by γ-compactly generated sheaves.

Remark 4.13. — Any compactly supported γ-sheaf is γ-compactly gen-
erated. Also, with the same notations, one has F ≃ G ⋆ kγa .

We now recall Kashiwara–Schapira’s construction of the sublevel sets
multi-parameter persistence module associated to a pair (S, f) where S is
a good topological space and f : S → V is a continuous map. We denote
by Γf the graph of f and γ is a cone satisfying hypothesis (3.1). We set

Γγ
f =

{
(x, y) ∈ S × V

∣∣ f(x)− y ∈ γ
}

= Γf + γa.

We write p : S×V→ V, (x, v) 7→ v for the projection onto V and s : V×V→
V, (v, w) 7→ v + w. We notice that s ◦ (p× idV) = p ◦ (idS ×s).

Definition 4.14. — The sublevel sets persistent sheaf of the pair (S, f)
is defined by:

PH(f) := Rp∗kΓγ
f
∈ D(kV).

We use the notation PHi(f) := Hi(Rp∗kΓγ
f
), for i ∈ Z.
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Remark 4.15. — Let M be a real analytic manifold (for instance M =
Rn) and let S be a good topological space. We assume that γ is subanalytic
and that we have the data of iS : S →M a closed immersion whose image is
a subanalytic subset of M and that f : S → V is continuous and subanalytic
in M i.e. the graph (iS × idV)(Γf ) is subanalytic in M ×V. Following [16],
if we also assume that

(4.4)
for each K ⊂ V compact,

the set
{

x ∈ S
∣∣ f(x) ∈ K + γ

}
is compact,

then the sheaf Rp∗kΓγ
f

is constructible. Indeed, writing pM : M × V → V
for the projection we have

Rp∗kΓγ
f
≃ RpM ∗(RiS∗kΓγ

f
) ≃ RpM ∗kiS(Γγ

f
)

and the result follows immediately from [16, Theorem 1.11]. Furthermore,
if M is compact, then Rp∗kΓγ

f
is constructible up to infinity.

Let f : V→ S be a continuous map. Remark that Γf × γa ⊂ (idS ×s)−1

(Γγ
f ). This provides a canonical map

ϕ : (idS ×s)−1kΓγ
f
−→ kΓf ×γa .

Precomposing the map R(idS ×s)∗ϕ with the morphism

kΓγ
f
−→ R(idS ×s)∗(idS ×s)−1kΓγ

f

induced by the unit of the adjunction
(
(idS ×s)−1, R(idS ×s)∗

)
leads to the

map

(4.5) kΓγ
f
−→ R(idS ×s)∗(idS ×s)−1kΓγ

f

R(idS ×s)∗ϕ
−−−−−−−−→ R(idS ×s)∗kΓf ×γa .

Lemma 4.16. — The morphism (4.5) is an isomorphism.

Proof. — We show that the morphism (4.5) is an isomorphism by check-
ing it at the level of the stalks. The map idS ×s is proper on Γf × γa and
induces a bijection idS ×s : Γf × γa → Γγ

f . Let (x, y) ∈ S × V. We notice
that(

R(idS ×s)∗kΓf ×γa

)
(x,y) ≃ RΓ

(
(idS ×s)−1(x, y); kΓf ×γa∩(idS ×s)−1(x,y)

)
.

First, if (x, y) /∈ Γγ
f , then Γf × γa ∩ (idS ×s)−1(x, y) = ∅ and the stalk at

(x, y) of the morphism (4.5) is an isomorphism. Second, if (x, y) ∈ Γγ
f , then

Γf × γa ∩ (idS ×s)−1(x, y) =
(
x, f(x), y − f(x)

)
. Thus,

RΓ
(
(idS ×s)−1(x, y); kΓf ×γa∩(idS ×s)−1(x,y)

)
≃ k.

Morphism (4.5) induces a non-zero map from k to k which is an isomor-
phism. □
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Proposition 4.17. — Assume that f is proper. Then,

Rp∗kΓγ
f
≃ (Rf∗kS)

np
⋆ kγa .

Proof. — Applying the functor Rp∗ to the isomorphism (4.5), we get

Rp∗kΓγ
f
≃ Rp∗R(idS ×s)∗kΓf ×γa .

Moreover,

Rp∗R(idS ×s)∗kΓf ×γa ≃ Rs∗R(p× idV)∗kΓf ×γa

≃ Rs∗R(p× idV)!kΓf ×γa (properness of f)
≃ Rs∗(Rp!kΓf

⊠ kγa) (Künneth isom.)
≃ Rs∗(Rp∗kΓf

⊠ kγa) (properness of f)
≃ Rs∗(Rf∗kS ⊠ kγa). □

Corollary 4.18. — Let S be a good compact topological space and
f : S → V be a continuous map. The sheaf PH(f) is γ-compactly generated.

4.4. Properties of γ-compactly generated sheaves

In this subsection, we study the properties of γ-compactly generated
sheaves and deduce from them results for sublevel sets multi-parameter
persistent sheaves.

Lemma 4.19. — Let u ∈ Int(γ◦).
(i) If F ∈ Db

comp(kV). Then, Ru∗(F
np
⋆ kγa) ≃ (Ru∗F )

np
⋆ kR− .

(ii) Let S be a good compact topological space, f : S → V be a contin-
uous map. Then, Ru∗Rp∗kΓγ

f
≃
(
R(uf)∗kS

)np
⋆ kR− . In other words,

Ru∗ PH(f) ≃ PH(u ◦ f).

Proof.
(i). — We have

Ru∗(F
np
⋆ kγa) ≃ Ru∗Rs∗(F ⊠ kγa)

≃ Rs∗
(
R(u× u)∗(F ⊠ kγa)

)
.

Since u ∈ Int(γ◦), it follows from Lemma 4.7 that u is proper on γa. As
supp(F ) is compact, this implies that u × u is proper on supp(F ) × γa.
Hence, applying Künneth formula

Rs∗
(
R(u× u)∗F ⊠ kγa

)
≃ Rs∗(Ru∗F ⊠ Ru∗kγa)
≃ Rs∗(Ru∗F ⊠ kR−) (Lemma 4.8)
≃ (Ru∗F )

np
⋆ kR− .
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(ii). — Since S is compact, the support of Rf∗kS is compact. Hence,
applying (i) with F := Rf∗kS , we have

Ru∗
(
(Rf∗kS)

np
⋆ kγa

)
≃
(
R(uf)∗kS

)np
⋆ kR− . □

Remark 4.20. — We emphasize that the pushforward by a linear form u

of the module PH(f) is in general different of the module PH(u ◦ f). Let
X and Y be good topological spaces and consider two functions f : X → V
and g : Y → V. Then, the quantity sup~u~⩽1 distR

(
Ru∗ PH(f),Ru∗ PH(g)

)
is a lower bound of the interleaving distance distV

(
PH(f), PH(g)

)
whereas

this is in general not the case for distR
(
PH(u ◦ f), PH(u ◦ g)

)
as shown by

the following proposition.

Figure 4.1. The sets X (left) and Ys (right).

Consider (R2, ∥ · ∥∞) equipped with the usual cone γ = R2
⩽0. Let X ={

(−1, 1) · t
∣∣ t ∈ [0, 1]

}
and for s ⩾ 2, Ys = Conv

(
X ∪ (0, s)

)
, where

Conv stands for the convex hull of a set (see Figure 4.1). Let f : X → R2

and gs : Ys → R2 be the inclusions. We also set p : R2 → R defined by
p(x, y) = y−x

2 , which is a 1-Lipschitz linear form (R2, ∥ · ∥∞)→ (R, | · |).

Proposition 4.21. — The following hold:
• distR2

(
PH(f), PH(gs)

)
= 0;

• distR
(
PH(p ◦ f), PH(p ◦ gs)

)
=
∣∣ s

2 − 1
∣∣.

In particular, one has:

distR
(
PH(p ◦ f), PH(p ◦ gs)

)
−−−→
s→∞

∞

while ∀ s ⩾ 2, distR2
(
PH(f), PH(gs)

)
= 0.
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Proof. — For s ⩾ 0, since Ys is compact, gs is proper and one has

PH(gs) ≃ (Rgs∗kYs
)
np
⋆ kγa ≃ kYs

np
⋆ kγa .

Moreover, the sum map is proper on Ys×γa, so that kYs

np
⋆ kγa ≃ kYs

⋆kγa .
Similarly, one proves that PH(f) ≃ kX ⋆ kγa . Since X and Ys are both
compact and convex, by [15, Example II.20], one has kYs

⋆ kγa ≃ kYs+γa ≃
kX+γa ≃ kX ⋆kγa . Therefore, we have proved that PH(f) ≃ PH(gs), which
in particular implies that distR2

(
PH(f), PH(gs)

)
= 0.

Similarly as above, one has PH(p◦f) ≃
(
R(p ◦ f)∗kX

)
⋆kR+ ≃ k[1,∞) and

PH(p ◦ gs) ≃ k[ s
2 ,∞). By the derived isometry theorem [1, Theorem 5.10],

one concludes that distR
(
PH(p ◦ f), PH(p ◦ gs)

)
=
∣∣ s

2 − 1
∣∣. □

Lemma 4.22. — Let u /∈ Int(γ◦) ∪ Int(γ◦,a) and F a γ-compactly gen-
erated sheaf. Then Ru!F ≃ 0.

Proof. — Since F is γ-compactly generated there exist F ′ ∈ Db
comp(kV)

such that F ≃ F ′ ⋆ kγa . Then Ru!F ≃ Ru!F
′ ⋆ Ru!kγa ≃ 0 where the last

isomorphism follows from Proposition 4.11. □

Corollary 4.23. — Let F be a γ-compactly generated sheaf. Then
RΓc(V; F ) ≃ 0.

Proposition 4.24. — Let F ∈ Db(kV). Assume that F is γ-compactly
generated and that for all u ∈ Int(γ◦), Ru!F ≃ 0. Then F ≃ 0.

Proof. — By hypothesis, for every u ∈ Int(γ◦) ∪ Int(γ◦,a), Ru!F ≃ 0.
Moreover, for every u /∈ Int(γ◦)∪Int(γ◦,a), it follows from Lemma 4.22 that
Ru!F ≃ 0. Thus, for every u ∈ V∗, Ru!F ≃ 0. It follows from Corollary 4.4
that F ≃ 0. □

Lemma 4.25. — Let F ∈ Db
comp(kV), u, v ∈ Int(γa,◦) (resp. Int(γ◦))

and set S = supp(F ). Then,

distR
(
Ru!(F ⋆ kγa), Rv!(F ⋆ kγa)

)
⩽ ∥S∥~u− v~.

Proof. — It follows from Lemma 4.19 that

distR
(
Ru!(F ⋆ kγa), Rv!(F ⋆ kγa)

)
= distR

(
Ru!F ⋆ kR+ , Rv!F ⋆ kR+

)
.

Using Proposition 2.8(ii) followed by Lemma 4.2, we obtain

distR(Ru!F ⋆ kR+ , Rv!F ⋆ kR+) ⩽ distR(Ru!F, Rv!F )
⩽ ∥S∥~u− v~

which completes the proof. □
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Proposition 4.26. — Let F, G ∈ Db
comp(kV) and p ∈ γ◦ ∪ γ◦,a. Then,

distR(Rp!F ⋆ kλ, Rp!G ⋆ kλ) ⩽ ~p~ distV(F ⋆ kγa , G ⋆ kγa)

where ~ ·~ is the operator norm associated with the norm ∥ · ∥ on V and
λ = [0, +∞[ if p ∈ γ◦,a and λ = [−∞, 0[ if p ∈ γ◦.

Proof. — We proceed in two steps.
Step 1. — If p ∈ Int(γ◦,a) ∪ Int(γ◦), we have

(4.6) distR(Rp!F ⋆ kλ, Rp!G ⋆ kλ)
= distR

(
Rp!(F ⋆ kγa), Rp!(G ⋆ kγa)

)
Lemma 4.19

⩽ ~p~ distV(F ⋆ kγa , G ⋆ kγa) Theorem 2.11.

Step 2. — We now assume that p ∈ ∂γ◦ ∪ ∂γ◦,a. Without loss of gen-
erality, we can further assume that p ∈ ∂γ◦. Thus there exists a sequence
(pn)n∈N of elements of Int(γ◦) such that limn→∞ pn = p. Then,

distR(Rp!F ⋆ kλ, Rp!G ⋆ kλ)
⩽ distR(Rp!F ⋆ kλ, Rpn!F ⋆ kλ) + distR(Rpn!F ⋆ kλ, Rpn!G ⋆ kλ)

+ distR(Rpn!G ⋆ kλ, Rp!G ⋆ kλ).

Moreover, it follows from the first step that

distR(Rpn!F ⋆ kλ, Rpn!G ⋆ kλ) ⩽ ~pn~ distV(F ⋆ kγa , G ⋆ kγa)

and
distR(Rp!F ⋆ kλ, Rpn!F ⋆ kλ) ⩽ distR(Rp!F, Rpn!F )

⩽ ∥supp(F )∥~pn − p~.

This implies that

distR(Rp!F ⋆ kλ, Rp!G ⋆ kλ)
⩽ ~pn~ distR(F ⋆ kγa , G ⋆ kγa) + ∥supp(F )∥~pn − p~

+ ∥supp(G)∥~pn − p~.

Taking the limit when n→∞, we get

distR(Rp!F ⋆ kλ, Rp!G ⋆ kλ) ⩽ ~p~ distR(F ⋆ kγa , G ⋆ kγa). □

Corollary 4.27. — Let X and Y be compact good topological spaces
and f : X → Rn, x 7→

(
f1(x), . . . , fn(x)

)
, g : Y → Rn, y 7→

(
g1(y), . . . , gn(y)

)
be continuous maps. Consider the cone γ = ]−∞, 0]n. Then, for every
1 ⩽ i ⩽ n,

distR
(
PH(fi), PH(gi)

)
⩽ distRn

(
PH(f), PH(g)

)
.
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Proof. — Let pi : Rn → R be the projection on the i-th coordinate. No-
tice that pi ∈ ∂γ and ~pi~∞ = 1. Hence, applying Lemma 4.19 and Propo-
sition 4.26, we get

distR
(
PH(fi), PH(gi)

)
= distR

(
PH(pi ◦ f), PH(pi ◦ g)

)
⩽ distV

(
PH(f), PH(g)

)
. □

Remark 4.28. — The above corollary shows that passing from persis-
tence to multi-persistence tends to increase the distance between persis-
tence modules. A possible interpretation is that multipersistence has a
better sensitivity than persistence but it cannot be claimed that it is more
robust to outliers.

5. Projected barcodes

In this section, we introduce the notion of projected barcodes. The pro-
jected barcodes of a multi-parameter persistence module F on V (that is a
γ-sheaf) is the family of barcodes obtained by considering the direct images
of F by various maps from V to R. While the fibered barcode is obtained
by pulling back a multi-parameter module on an affine line, we propose
instead to study the pushforwards of a γ-sheaf onto R. We start by provid-
ing an example showing that two non isomorphic multi-parameter modules
that have the same fibered barcodes can have different projected barcodes.
We then formally introduce the notion of F-projected barcodes and study
its properties.

5.1. Motivations and example

The fibered barcode has been successfully used in a variety of machine
learning tasks as a summary of multi-parameter persistence modules [7].
Nevertheless, it is easy to build examples of γ-sheaves (hence persistence
modules) with the same fibered barcodes (hence at matching distance zero)
though they are not isomorphic and are at a strictly positive convolu-
tion/interleaving distance. Let us describe below one of these well-known
situations.

In this example, we consider V = R2, endowed with γ = (−∞, 0]2. We
set v = (1, 1), therefore ∥(x, y)∥v = max

(
|x|, |y|

)
= ∥(x, y)∥∞. We keep the

notation Λ :=
{

h ∈ Int(γa), ∥h∥v = 1
}

. We let a > 2 and define the two
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Figure 5.1. The sheaves F and G in Db
Rc(kR2).

sheaves F and G in Db
Rc,γ◦,a(kV) as follows: F = k[1,a)×[0,a) ⊕ k[0,a)×[1,a)

and G = kA ⊕ k[1,a)×[1,a), where

A = [0, a)× [0, a) \
(
[0, 1)× [0, 1)

)
.

(see Figure 5.1). The sheaf kA fits into the following short exact sequence

0 −→ k[0,1)×[0,1) −→ k[0,a)×[0,a) −→ kA −→ 0.

Some classical computations (see for instance [30, Example 2.1]) give

i−1
Lh

τ−1
c F ≃ i−1

Lh
τ−1

c G

for all (h, c) ∈ Λ×V. Therefore, one cannot distinguish F and G by restric-
tions to one dimensional affine subspaces. However, one has distV(F, G) = 1.

We now show that it is possible to produce barcodes out of F and G which
are different. Our idea is to study the barcode decomposition obtained
after applying the direct image functor of a map from V to R, rather than
restrictions, which corresponds to the inverse image functor of injections
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from R to V. Let p : V → R be defined by the formula p(x, y) = (x+y)
2 .

Then, we have

Rp∗F ≃
(
k[ 1

2 ,a)
)2

, Rp∗G ≃ k[ 1
2 ,a) ⊕ k[ 1

2 ,1) ⊕ k[1,a).

According to Definition 3.16, the partial matching between B(Rp∗F ) and
B(Rp∗G) given by[ 1

2 , a
)
←→

[ 1
2 , a
)
,

[ 1
2 , a
)
←→ [1, a), ∅ ←→

[ 1
2 , 1
)
,

is a 1
2 -matching, and a simple computation shows that for every 1

2 > ε > 0,
there is no ε-matching between B(Rp∗F) and B(Rp∗G). Using Theorem 3.19,
one deduces that

distR(Rp∗F, Rp∗G) = dB

(
B(Rp∗F ),B(Rp∗G)

)
= 1

2 .

Therefore, it is possible to distinguish F from G by using barcodes obtained
from pushforwards, rather than pullbacks.

5.2. F-projected barcodes

5.2.1. Generalities

Recall that SC(V∞) denotes the set of continuous maps from V to R
which are subanalytic up to infinity and let F be a subset of SC(V∞). We
regard F as a discrete category.

Definition 5.1. — The F-projected barcodes is the functor

(5.1) PF : F× Db
Rc(kV∞) −→ Db

Rc(kR∞), (u, F ) 7−→ Ru!F.

and the non-proper projected barcodes is the functor

(5.2) PF : F× Db
Rc(kV∞) −→ Db

Rc(kR∞), (u, F ) 7−→ Ru∗F.

When the context is clear, we will omit F from the notation.
We will often study restriction of the (non-proper) projected barcodes to

specific subcategories of Db
Rc(kV∞). For instance, the category of compactly

supported constructible sheaves or the category of Db
Rc,γ◦,a(kV∞).

Notation 5.2. — Let F ∈ Db
Rc(kV∞). We set PF

F := PF( · , F ) and PF
F :=

PF( · , F ).
Remark 5.3. — The proper and the non-proper projected barcodes are

related via the following formula which follows from Corollary 2.17. Let
F ∈ Db

Rc(kV∞), Then,
PF

F = DR(PF
DV(F )).

We now provide a few examples of projected barcodes of interest.
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5.2.2. Linear projected barcodes

Let (V, ∥ · ∥) be a real finite dimensional vector space and V∗ its dual
endowed with the operator norm ~ ·~.

We set S∗ =
{

u ∈ V∗
∣∣ ~u~ = 1

}
. The linear projected barcodes is the

functor

PS∗
: S∗ × Db

Rc(kV∞) −→ Db
Rc(kR∞), (u, F ) 7−→ Ru!F.

Proposition 5.4. — The linear projected barcodes has the following
properties.

(i) Let F ∈ Db
Rc(kV∞). If PS∗

F ≃ 0, then F ≃ 0.
(ii) The map PS∗ : S∗×Db

Rc,comp(kV∞)→ Db
Rc(kR∞), (u, F ) 7→PS∗

F (u),
is continuous.

(iii) Let u ∈ S∗. The map Db
Rc,comp(kV∞)→ Db

Rc(kR∞), F 7→PS∗

F (u), is
Lipschitz.

Proof.
(i). — This follows from Proposition 4.4.
(ii). — Let us show that P is continuous. Let (u, F )∈S∗×Db

Rc,comp(kV∞)
and let ε > 0. For every v ∈ S∗ such that ~u− v~ < ε/

(
2∥supp(F )∥

)
and

G ∈ Db
Rc,comp(kV∞) such that distV(F, G) ⩽ ε/2, we have

distR
(
PS∗

F (u), PS∗

G (v)
)
⩽ distR

(
PS∗

F (u), PS∗

F (v)
)
+distR

(
PS∗

F (v), PS∗

G (v)
)

⩽ ∥supp(F )∥~u− v~ + ~v~ distV(F, G)
⩽ ∥supp(F )∥~u− v~ + distV(F, G)
⩽ ε.

(iii). — This follows from the above inequality by taking u = v. □

Remark 5.5. — The first point of the above proposition expresses that
the linear projected barcodes can be used as a nullity test of persistence
modules, where the space of test parameters is S∗, thus compact. This is
a fundamental difference with the fibered barcode, whose parameter test
space is not compact.

5.2.3. γ-linear projected barcode

We introduce a notion of projected barcode tailored for γ-sheaves, that
is, for persistence modules. For sublevel sets persistence modules, we ex-
plain in Example 5.9 how it can be computed with standard one-parameter
persistence software.
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Since this version of the projected barcode is aimed at γ-sheaves, it is
natural, in view of Proposition 4.5 and Lemma 4.7, to set F = Int(γ◦, a) ∩
S∗ where S∗ is the unit sphere of V∗ for the norm ~ ·~. This version of
the projected barcode is called γ-linear projected barcode. For the sake of
brevity, we set Qγ = Int(γ◦,a) ∩ S∗.

Definition 5.6. — The γ-linear projected barcode is the functor

Pγ : Qγ × Db
Rc,γ◦,a(kV∞) −→ Db

Rc,λ◦,a(kR∞), (u, F ) 7−→ Ru!F,

where λ = R−.

Remark 5.7. — We focus on the properties of the γ-projected barcode for
γ-sheaves which are γ-compactly generated. If F is γ-compactly generated,
then for u ∈ Int(γ◦,a), one has Ru!F ≃ Ru∗F . This is why we only discuss
the γ-projected barcode and omit the study of the non-proper γ-linear
projected barcode.

Proposition 5.8. — The γ-linear projected barcode has the following
properties.

(i) Let F ∈ Db
Rc,γ◦,a(kV∞) and assume that F is γ-compactly gener-

ated. If Pγ
F ≃ 0, then F ≃ 0.

(ii) Let (u, F ) ∈ Qγ ×Db
Rc,γ◦,a(kV∞) and assume that F is γ-compactly

generated. The map Pγ : Qγ × Db
Rc(kV∞)→ Db

Rc(kR∞) is continu-
ous in (u, F ).

Proof.
(i). — This is a direct consequence of Proposition 4.24.
(ii). — Let (u, F ) ∈ Qγ × Db

Rc,γ-cg(kV∞) and let ε > 0. Since F is γ-
compactly generated there exists a sheaf F ′ with compact support such
that F ≃ F ′ ⋆ kγa . For every v ∈ Qγ such that ~u− v~ < ε/

(
2∥supp(F ′)∥

)
and G ∈ Db

Rc(kV∞) such that distV(F, G) ⩽ ε/2, we have

distR
(
Pγ

F (u), Pγ
G(v)

)
⩽ distR

(
Pγ

F (u), Pγ
F (v)

)
+ distR

(
Pγ

F (v), Pγ
G(v)

)
⩽ distR

(
Pγ

F ′(u), Pγ
F ′(v)

)
+ ~v~ distV(F, G)

⩽ ∥supp(F ′)∥~u− v~ + ~v~ distV(F, G)
⩽ ∥supp(F ′)∥~u− v~ + distV(F, G)
⩽ ε. □

Example 5.9. — Here, we specialize the situation to the case where V =
R2 endowed with the norm ∥(x, y)∥∞ = max

(
|x|, |y|

)
and γ = (−∞, 0]2.

Then (V∗, ~ ·~∞) is isometric to (R2, ∥ · ∥1) where ∥(a, b)∥1 = |a| + |b|.
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It follows that Qγ =
{

(a, b) ∈ R>0 × R>0; a + b = 1
}

. If for instance
S is a compact real analytic manifold and f : S → R2 is a subanalytic
map with f = (f1, f2). Then by Lemma 4.19, the projected barcode u 7→
Pγ

PH(f)(u) is the collection of barcodes associated to the family of sublevel
sets persistence modules

(
PH(a f1 + (1− a) f2)

)
a∈(0,1).

5.3. Fibered versus projected barcodes

In this subsection, we prove that the fibered barcode is a special instance
of projected barcode.

We get back to the setting of Section 3.3, with V = Rn, γ = (−∞, 0]n and
v = (1, . . . , 1) and denote by jLh

the inverse of morphism (3.9). Note that
for h ∈ Λ, λ := Lh∩γ is a cone of the one-dimensional real vector space Lh

satisfying hypothesis (3.1) as a cone of Lh. We denote Lh,λ the topological
space Lh endowed with the λ-topology. We also consider R with the cone
topology associated with the cone λ0 = (−∞; 0]. In particular, ιLh

(λ0) = λ.

Proposition 5.10. — Let h ∈ Λ, the following hold:
(i) pLh

◦ iLh
= ιLh

as maps of sets;
(ii) pLh

, iLh
and jLh

are continuous for both the norm and the cone
topologies.

Proof.
(i). — This is clear.
(ii). — We have already noticed that pLh

is Lipschitz, therefore contin-
uous for the norm topology. Observe that for x ∈ Lh, p−1

Lh

(
x + Int(λ)

)
=

x + Int(γ). Moreover, for any λ-open subset U ⊂ Lh, U =
⋃

x∈U x + Int(λ)
by [3, Lemma 2.1]. Hence, p−1

Lh
(U) =

⋃
x∈U x + Int(γ). This proves the

statement. □

Let us precise some notations. When the context is clear, we drop the h

of the maps pLh
, jLh

and iLh
. From now on, pL, jL and iL refer to the mor-

phisms of topological spaces equipped with the norm topologies, whereas
pγ

L, jγ
Lh

and iγ
L refers to the morphisms of topological spaces equipped with

the cone topologies.
We now construct an isomorphism of functors between iγ

L
−1 and (jγ

L pγ
L)∗.

Proposition 5.11. — There is an isomorphism of (non derived) func-
tors (jγ

L pγ
L)∗ ≃ (iγ

L)−1 in Fun
(
Mod(kVγ

), Mod(kRλ0
)
)
.

TOME 0 (0), FASCICULE 0



42 Nicolas BERKOUK & François PETIT

Proof. — Let F ∈ Mod(kVγ
) and U ⊂ R be a non empty λ0-open set.

Since R is one dimensional, there exists t ∈ R ∪ {+∞} such that U =
t+Int(λ0). Hence, (jγ

L pγ
L)∗F (U) = F

(
(pγ

L)−1(jγ
L)−1(U)

)
= F

(
t·h+Int(γ)

)
.

By definition, (iγ
L)−1F is the sheaffification of the presheaf (iγ

L)†F : V 7→
lim−→V ⊂W

F (W ). For every λ0-open U ⊂ R, the colimit lim−→U⊂W
F (W ) is

canonically isomorphic to F
(
t · h + Int(γ)

)
. This leads to an isomorphism

of pre-sheaves (iγ
L)†F → (jγ

L pγ
L)∗F . Since (jγ

L pγ
L)∗F is a sheaf, we con-

clude that so is (iγ
L)†F and (iγ

L)†F ≃ (jγ
L pγ

L)∗F ≃ (iγ
L)−1F . Moreover, this

isomorphism is functorial in F by functoriality of colimits. □

We denote by ϕ : V → Vγ , ϕ′ : Lh → Lh,λ and ϕ′′ : R → Rλ0 the mor-
phisms of topological spaces induced by the identity maps. We have the
following relation ϕ′ pL = pγ

Lϕ. For every G ∈ D+(kV), we have

Hom(ϕ−1G, ϕ−1G) −→Hom(ϕ−1pγ
L

−1Rpγ
L∗G, ϕ−1G)

≃Hom(p−1
L ϕ′−1Rpγ

L∗G, ϕ−1G)

≃Hom(ϕ′−1Rpγ
L∗G, RpL∗ϕ−1G).

The image of the identity map by the above sequence of morphisms provides
a map

(5.3) ϕ′−1Rpγ
L∗G −→ RpL∗ϕ−1G.

Lemma 5.12. — Let G ∈ D+(kVγ
), the morphism (5.3) is an isomor-

phism.

Proof. — To prove that the morphism (5.3) is an isomorphism, it is suf-
ficient to prove that it induces an isomorphism RΓ(U ; ϕ′−1Rpγ

L∗G) ∼−→
RΓ(U ; RpL∗ϕ−1G), for every open subset U ⊂ Lh of the form U =

{
t·h
∣∣ t ∈

(a, b)
}

, for a < b in R. Let I be a bounded from below complex of injective
(in particular flabby) sheaves on Vγ , which is quasi-isomorphic to G.

It follows from equation (3.11) that

p−1
L (U) = U + ∂γ = Int(b · h + γ) \ (a · h + γ).

In the canonical basis of Rn, b · h = (b1, . . . , bn) and a · h = (a1, . . . , an).
Then,

b · h + Int(γ) =
n⋂

i=1
{xi < bi},

a · h + γ =
n⋂

i=1
{xi ⩽ ai}.
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Hence,

Int(b · h + γ) \ (a · h + γ) =
(

n⋂
i=1
{xi < bi}

)
∩

(
n⋃

i=1
{xi > ai}

)

=
n⋃

j=1

[(
n⋂

i=1
{xi < bi}

)
∩ {xj > aj}

]
.

For 1 ⩽ j ⩽ n, we set Rj =
(⋂n

i=1{xi < bi}
)
∩ {xj > aj}. The Rj are

convex open subsets of V. For I ⊂ {1, . . . , n}, we define RI = ∩i∈IRi. In
particular, R{1,...,n} =

⋂n
j=1 Rj =

∏n
i=1(ai, bi). For all I ⊂ {1, . . . , n}, RI

is a convex open subset, satisfying RI + γ = p−1
L (U) + γ (see Figure 5.2).

Figure 5.2. Illustration of the sets RI .

Therefore, it follows from the proof of [16, Proposition 3.5.3] that there
are isomorphisms of chain complexes in C

(
Mod(k)

)
Γ(RI + γ; I) = Γ

(
p−1

L (U) + γ; I
) ∼−→ Γ(RI ; ϕ−1I),

which commute with the restriction morphisms

Γ(RJ ; ϕ−1I) −→ Γ(RI ; ϕ−1I),

for J ⊂ I. Thus, one has the isomorphisms in C
(
Mod(k)

)
:

Γ
(
p−1

L (U) + γ; I
)
≃ lim←−

I

Γ(RI ; ϕ−1I) ≃ Γ
(
p−1

L (U); ϕ−1I
)
.
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From the above, we conclude that in D+(Mod(k)
)
:

RΓ
(
U ; ϕ′−1Rpγ

L∗G
)
≃ RΓ

(
U + λ; Rpγ

L∗G
)

≃ RΓ
(
p−1

L (U + λ); G
)

= RΓ
(
p−1

L (U) + γ; G
)

≃ Γ
(
p−1

L (U) + γ; I
)

≃ Γ
(
p−1

L (U); ϕ−1I
)

≃ RΓ
(
p−1

L (U); ϕ−1G
)

≃ RΓ
(
U ; RpL∗ϕ−1G

)
. □

We now prove the result announced at the beginning of the subsection.
Namely, that the fibered barcode is a special instance of projected barcode.

Proposition 5.13. — Let F ∈ D+
γ◦,a(kV), then there is a functorial

isomorphism (jL pL)∗F ≃ i−1
L F .

Proof. — We have the following commutative diagram of topological
spaces:

R
iL //

ϕ′′

��

V

ϕ

��

pL // Lh

ϕ′

��

jL // R

ϕ′′

��
Rλ0

iγ
L // Vγ

pγ
L // Lh,λ

jγ
L // Rλ0 .

Therefore, one has the following isomorphisms:

i−1
L F ≃ i−1

L ϕ−1Rϕ∗F

≃ (ϕ ◦ iL)−1Rϕ∗F

≃ (iγ
L ◦ ϕ′′)−1Rϕ∗F

≃ ϕ
′′−1Rjγ

L∗Rpγ
L∗Rϕ∗F

≃ ϕ
′′−1Rjγ

L∗Rϕ′
∗RpL∗F

≃ ϕ
′′−1Rϕ′′

∗RjL∗RpL∗F

≃ RjL∗RpL∗F. □

Corollary 5.14. — Let F ∈ Db
Rc,γ◦,a(kV), Then,

i−1
Lh

τ−1
c F ≃ RjLh ∗RpLh ∗Rτ−c∗F.

In other words, the fibered barcode of F is the F-projected barcode of F

with F =
{

jLh
pLh

τ−c

∣∣ (h, c) ∈ Λ× V
}

.
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6. Integral sheaf metrics

6.1. Generalities

In this section, we elaborate on our study of projected barcodes to in-
troduce a family of pseudo-metrics on categories of sheaves inspired by
integral probability metrics [21]. Here, the probability measures are re-
placed by sheaves and the integration of real-valued functions against the
probability measure by the pushforward of the sheaves by such functions.
In this subsection, we study the general properties of such metrics.

Let X be a good topological space. We denote by C 0(X) the algebra
of continuous functions from X to R and by capital fraktur letters such
that F, B, R subsets of continuous functions. Given a class F of functions
and writing distR for the convolution distance on Db(kR), we introduce the
following pseudo-metrics on Db(kX)

δF(F, G) = sup
f∈F

(
distR(Rf!F, Rf!G)

)
,(6.1)

dF(F, G) = sup
f∈F

(
distR(Rf∗F, Rf∗G)

)
.(6.2)

These pseudo-metrics are called integral sheaf metrics (ISM) and F is called
a generator of δF (resp. dF).

Remark 6.1.
(a) In the above formula, the convolution distance can be replaced by

any distance on Db(kR) as for instance the Wasserstein distance.
Here, we focus on the convolution distance.

(b) If F , G ∈ Db(kX) have compact supports, then we have δF(F, G) =
dF(F, G).

Proposition 6.2. — The mappings

δF, dF : Ob
(
Db(kX)

)
×Ob

(
Db(kX)

)
−→ R+ ∪ {∞}

are pseudo-metrics.

Proof. — This follows from the fact that distR is a pseudo-distance. □

Definition 6.3. — Let F ⊂ C 0(X). The set RF! of all functions f ∈
C 0(X) such that

(6.3) distR(Rf!F, Rf!G) ⩽ δF(F, G) for all F, G ∈ Db(kX)

is called the maximal generator of δF. Similarly, we define for dF the set
RF∗ and call it the maximal generator of dF.
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We have the following straightforward lemma.

Lemma 6.4. — Let F ⊂ D and F , G ∈ Db(kX). Then:
(i) δF(F, G) ⩽ δD(F, G);
(ii) RF! ⊂ RD!;
(iii) if D ⊂ RF!, then δF = δD.

Similar results hold for RF∗ and RD∗.

Proof. — The points (i) and (ii) are clear. For (iii), it follows from (i)
that for every F and G in Db(kX), δF(F, G) ⩽ δD(F, G). Applying (i) again
we get

δD(F, G) ⩽ δRF!(F, G) = δF(F, G).
Hence, δF = δD. □

Proposition 6.5. — Let F be a generator of δF.
(i) f ∈ RF! implies af + b ∈ RF! for all a ∈ [−1, 1] and b ∈ R.
(ii) If the sequence (fn)n∈N ⊂ RF! converges uniformly to f , then f ∈

RF!.
Results (i) and (ii) hold with dF and RF∗ instead of δF and RF!.

Proof.
(i). — Follows from Lemma 2.7.
(ii). — Let (fn)n∈N be a sequence of continuous functions of RF! con-

verging uniformly to a function f and let F, G ∈ Db(kX). Then,
distR(Rf!F, Rf!G) ⩽ distR(Rf!F, Rfn!F ) + distR(Rfn!F, Rfn!G)

+ distR(Rfn!G, Rf!G)
⩽ 2∥f − fn∥∞ + δF(F, G) (Stability Theorem)

Hence, taking n to infinity, the above inequality implies

distR(Rf!F, Rf!G) ⩽ δF(F, G). □

6.2. A comparison result

In this subsection, we relate the pseudo-distances dF and δF when the
underlying space is a real finite dimensional normed vector space (V, ∥ · ∥).

Proposition 6.6. — Let F, G ∈ Db(kV), then

dF

(
DV(F ), DV(G)

)
⩽ δF(F, G).
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Proof. — Let f : V→ R be a continuous map. Then,

Rf∗DV(F ) ≃ DR(Rf!F ).

Hence,

distR
(
Rf∗DV(F ), Rf∗DV(G)

)
= distR

(
DV(Rf!F ), DV(Rf!G)

)
⩽ distR(Rf!F, Rf!G)

(by Proposition 2.8(ii))

which implies that dF

(
DV(F ), DV(G)

)
⩽ δF(F, G). □

Proposition 6.7. — Assume that F ⊂ A(V∞) and F, G ∈ Db
Rc(kV∞).

Then,
dF

(
DV(F ), DV(G)

)
= δF(F, G).

Proof. — Let F, G ∈ Db
Rc(kV∞). By Proposition 2.16, Rf!F and Rf!G

are again constructible up to infinity. Hence,
distR

(
Rf∗DV(F ), Rf∗DV(G)

)
= distR

(
DV(Rf!F ), DV(Rf!G)

)
= distR(Rf!F, Rf!G) (by Lemma 2.9).

The result follows by taking the supremum over F on both sides of the
equality. □

6.3. Lipschitz ISM

In order to get well behaved ISMs, it is natural to assume that the set F

in the definition of the ISM is a subset of the Lipschitz functions.
Let (X, d) be a good metric space, (V, ∥ · ∥) be a normed finite dimen-

sional real vector space. We denote the space of Lipschitz functions from
X to V by

Lip(X,V) =
{

f : X → V
∣∣ f is Lipschitz on X

}
.

The space Lip(X,V) can be equipped with the following semi-norm

(6.4) L(f) = sup
{
∥f(x)− f(y)∥/d(x, y)

∣∣ x, y ∈ X, x ̸= y
}

.

We also set Lip⩽1(X,V) =
{

f ∈ Lip(X,V)
∣∣ L(f) ⩽ 1

}
. If V = R, we write

Lip(X) instead of Lip(X,V) and similarly for Lip⩽1(X,V).
A pointed metric space (X, d, x0) is a metric space (X, d) together with

a distinguished point x0 ∈ X. If X is a vector space, we always choose
x0 = 0. For a pointed metric space (X, d, x0), we set

Lip0(X,R) =
{

f : X → R
∣∣ f is Lipschitz on X and f(x0) = 0

}
.

TOME 0 (0), FASCICULE 0



48 Nicolas BERKOUK & François PETIT

The following proposition is immediate in view of Theorem 2.11. It as-
serts that Lipschitz ISMs provide lower bounds for the convolution distance
for sheaves on a good metric space.

Proposition 6.8. — Let (X, d) be a good metric space and F, G ∈
Db(kX). Assume that F ⊂ Lip⩽1(X). Then:

(i) δF(F, G) ⩽ distX(F, G);
(ii) if furthermore, X is a real finite dimensional vector space endowed

with the Euclidean norm, dF(F, G) ⩽ distX(F, G).

The following proposition is a direct corollary of Proposition 6.8 com-
bined with Theorem 2.10. It states that Lipschitz ISMs are stable.

Corollary 6.9. — Let (V, ∥ · ∥) be a finite dimensional normed vector
space and Z be a locally compact space and let F ⊂ Lip⩽1(V). Let F ∈
Db(kZ) and f1, f2 : Z → V be two continuous maps. Then:

δF(Rf1!F, Rf2!F ) ⩽ ∥f1 − f2∥∞, δF(Rf1∗F, Rf2∗F ) ⩽ ∥f1 − f2∥∞.

If furthermore the norm ∥ · ∥ is Euclidean, then:

dF(Rf1!F, Rf2!F ) ⩽ ∥f1 − f2∥∞, dF(Rf1∗F, Rf2∗F ) ⩽ ∥f1 − f2∥∞.

Lemma 6.10. — Let F ⊂
{

f ∈ Lip0(X,R)
∣∣ L(f) ⩽ 1

}
and D =

{
f ∈

F
∣∣ L(f) = 1

}
∩ F. Assume that for every f ∈ F \ {0}, f/L(f) ∈ F. Then

δF = δD and dF = dD.

Proof. — We only prove the statement for δF and δD as the proof is
similar for dF and dD. Since D ⊂ F, δF ⩾ δD.

We now prove the reverse inequality. Let f ∈ F\{0}. Then g = f/L(f) ∈
D and for every F, G ∈ Db(kX)

distR(Rf!F, Rf!G) ⩽ 1
L(f) distR(Rf!F, Rf!G) = distR(Rg!F, Rg!G).

Hence, δF ⩽ δD. □

We now prove some inequalities that we will use to control the regularity
of Lipschitz ISM.

Lemma 6.11. — Let(X, d) be a good metric space, f, g ∈ Lip(X) and
F, G ∈ Db

comp(kX). Set S = supp(F ) ∪ supp(G). Then,∣∣distR(Rf!F, Rf!G)− distR(Rg!F, Rg!G)
∣∣ ⩽ 2 diam(S)L(f − g).
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Proof. — Let x0 ∈ S. The distance distR is invariant by translation.
Hence setting f̃(x) = f(x)− f(x0) and g̃(x) = g(x)− g(x0), we get that

distR(Rf!F, Rf!G) = distR(Rf̃ !F, Rf̃ !G),
distR(Rg!F, Rg!G) = distR(Rg̃!F, Rg̃!G).

Thus,∣∣distR(Rf!F, Rf!G)− distR(Rg!F, Rg!G)
∣∣

=
∣∣distR(Rf̃ !F, Rf̃ !G)− distR(Rg̃!F, Rg̃!G)

∣∣
and ∣∣distR(Rf̃ !F, Rf̃ !G)− distR(Rg̃!F, Rg̃!G)

∣∣
⩽
∣∣distR(Rf̃ !F, Rf̃ !G)− distR(Rf̃ !F, Rg̃!G)

∣∣
+
∣∣distR(Rf̃ !F, Rg̃!G)− dist(Rg̃!F, Rg̃!G)

∣∣
⩽ distR(Rf̃ !F, Rg̃!F ) + distR(Rf̃ !G, Rg̃!G)
⩽ 2
∥∥f̃
∣∣
S
− g̃
∣∣
S

∥∥
∞

⩽ 2 sup
x∈S

(
d(x, x0)

)
L(f − g)

⩽ 2 diam(S) L(f − g). □

6.4. Distance kernel

We now give a first example of ISM.
Let (V, ∥ · ∥) be a finite dimensional normed vector space such that the

distance (x, y) 7→ ∥x− y∥ is subanalytic. We set

ℓx0 : X −→ R, x 7−→ ℓx0(x) = ∥x− x0∥.

For every x in V, the map ℓx is 1-Lipschitz and proper. Let X be a subset
of V. We set FX = {ℓx, x ∈ X} and consider the Lipschitz ISM, δFX

generated by FX , namely

δF(F, G) = sup
ℓx∈FX

distR(Rℓx!F, Rℓx!G), for F, G ∈ Db(kV).

Remark 6.12.
(a) More generally the above ISM can be defined on any real analytic

manifold endowed with a subanalytic distance.
(b) Since the applications ℓx are proper, we have that δF = dF.
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We recall the definition of the local Euler–Poincaré index of an object
F ∈ Db

Rc(kX):

χ(F ) : X −→ Z, x 7−→ χ(F )(x) :=
∑
i∈Z

(−1)i dim
(
Hi(Fx)

)
.

Proposition 6.13. — Let F, G ∈ Db
Rc(kV) and assume that δFV(F, G) =

0. Then:
(i) for every x ∈ V and r > 0, RΓ(B′(x, r); F ) ≃ RΓ(B′(x, r); G);
(ii) Fx ≃ Gx;
(iii) χ(F ) = χ(G).

Proof. — It is clear that (i) implies (ii) and (ii) implies (iii). Hence, we
only prove (i). Let F, G ∈ Db

Rc(kV). It follows from the definition of δFV ,
that for every x ∈ V distR(Rℓx!F, Rℓx!G) = 0. Moreover since for every x,
ℓx is proper and subanalytic, Rℓx!F and Rℓx!G are constructible. Hence,
by [1, Theorem 6.3], we have that

(6.5) Rℓx0 !F ≃ Rℓx0 !G.

Moreover,
RΓ
(
[0, r[; Rℓx0 !F

)
≃ RHomkV

(
k[0,r[, Rℓx0 !F

)
≃ RHomkV

(
ℓ−1

x0
k[0,r[, F

)
≃ RHomkV

(
kℓ−1

x0 ([0,r[), F
)

≃ RΓ
(
B′(x0, r); F

)
.

Hence, applying the functor RΓ([0, r[; · ) to both sides of the isomorphism
in (6.5) we get that RΓ

(
B′(x0, r); F

)
≃ RΓ

(
B′(x0, r); G

)
. □

6.5. Linear ISM

We assume that (V, ∥ · ∥) is a real finite dimensional normed vector space
and denote by V∗ its dual. Again, by analogy with integral probability
metrics and in view of Section 6.3, it is natural to consider the set L ={

u ∈ V∗
∣∣ L(u) ⩽ 1

}
and introduce the distance δL i.e. for F, G ∈ Db(kV)

δL(F, G) = sup
{u∈V∗ | L(u)⩽1}

distR(Ru!F, Ru!G).

Remark that for a linear map u ∈ V∗, L(u) is equal to the operator norm
~u~ of u. This, together with Lemma 6.10 implies that

δL(F, G) = sup
u∈S∗

distR(Ru!F, Ru!G),

where S∗ is the unit sphere in (V∗, ~ ·~).
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Proposition 6.14. — Let F ∈ Db
Rc(kV∞). If δL(F, 0) = 0, then F ≃ 0.

Proof. — Let F ∈ Db
Rc(kV∞) such that δL(F, 0) = 0. Since F is in

Db
Rc(kV∞), it follows that Ru!F ∈ Db

Rc(kV∞). Applying Theorem 3.22, we
deduce that for every u ∈ V∗, Ru!F = 0. Now, Proposition 4.4 implies that
F ≃ 0. □

Corollary 6.15. — Let u, v ∈ V∗ and F, G ∈ Db
comp(kV). Set S =

supp(F ) ∪ supp(G). Then∣∣dist(Ru!F, Ru!G)− dist(Rv!F, Rv!G)
∣∣ ⩽ 2 diam(S) ~u− v~.

Proof. — For a linear map u ∈ V∗, L(u) is equal to the operator norm
~u~ of u. Then, the inequality follows from Lemma 6.11. □

The above proposition implies that for F, G ∈ Db
comp(kV) the map

ΥF,G : V∗ −→ R, u 7−→ distR(Ru!F, Ru!G)

is Lipschitz on V∗. It follows from the Rademacher Theorem that the map
ΥF,G is C 1 almost everywhere. Since it is continuous and

{
u ∈ V∗ | L(u) ⩽

1
}

is compact, ΥF,G reaches its supremum that is for F, G ∈ Db
comp(kV)

δL(F, G) = max
u∈L

ΥF,G(u).

6.6. Sliced convolution distance

The result of the preceding section allows to introduce the notion of sliced
convolution distance for sheaves in Db

comp(kV). For the sake of simplicity, we
assume that V is endowed with the Euclidean norm ∥ · ∥2 and let distV be
the convolution distance associated with ∥ · ∥2. Corollary 6.15 implies that
for F, G ∈ Db

comp(kV) the map ΥF,G : V∗ → R, u 7→ distR(Ru!F, Ru!G) is
measurable. Hence, for p ∈ N∗, we set

(6.6) Sp(F, G) := 1
Vol(S∗)

(∫
S∗

ΥF,G(u)p du

) 1
p

where S∗ is the Euclidean sphere of radius 1 of V∗ and du is the canonical
volume form on S∗. This is the p-th sliced convolution distance.

The following proposition is clear.

Proposition 6.16. — The application

Sp : Ob
(
Db

comp(kV)
)
×Ob

(
Db

comp(kV)
)
−→ R+

is a pseudo-distance and for F, G ∈ Db
comp(kV)

Sp(F, G) ⩽ distV(F, G).
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Lemma 6.17. — Let F ∈ Db
Rc,comp(kV∞). If Sp(F, 0) = 0, then F ≃ 0.

Proof. — It follows from the hypothesis that the function ΥF,0 is zero al-
most everywhere on S∗ and as it is continuous, ΥF,0 =0 on S∗. Lemma 2.7(ii)
implies that ΥF,0 = 0 on V∗. Then, the result follows from Proposi-
tion 6.14. □

6.7. A question

The following question as well as the study of integral sheaf metrics was
already mentioned in [22]. Here, we recall this question and remark a few
facts.

Question 6.18. — Let F, G ∈ Db(kV). When does the following equal-
ity hold:

distV(F, G) ?= sup
f∈Lip⩽1

(
distR(Rf∗F, Rf∗G)

)
?

Is it sufficient to assume either distV(F, G) < ∞ or F, G are constructible
up to infinity and supf∈Lip⩽1

(
distR(Rf∗F, Rf∗G)

)
<∞?

Remark 6.19. — The fact that we are working over a vector space, hence
contractible, is essential for the question. Indeed, let us provide a counterex-
ample where the space is no longer contractible. Let S1 =

{
z ∈ C

∣∣ |z| = 1
}

equipped with its standard Riemannian structure. Let m : S1 → S1 defined
by m(z) = z2. Let F = kS1 and G = Rm∗F . It is clear that F and G are
non-isomorphic local systems on S1. Therefore, by [23, Proposition 2.3.7],
distS1(F, G) =∞. Let p : S1 → R be a 1-Lipschitz map. Then one has that
supp(Rp∗F ), supp(Rp∗G) ⊂ Im(p), in particular, the supports of Rp∗F

and Rp∗G are compact. Moreover, since p is 1-Lipschitz, diam
(
Im(p)

)
⩽

diam(S1) = 2. Since Rp∗F and Rp∗G have isomorphic global sections, one
deduces by [16, Remark 2.5(i)] that distR(Rp∗F, Rp∗G) ⩽ 2. To summarize,
we have:

distS1(F, G) =∞ and sup
f∈Lip⩽1

(
distR(Rf∗F, Rf∗G)

)
⩽ 2,

which contradicts the question over S1.

7. Metric for multi-parameter persistence modules

In this section, we make use of the structure of γ-sheaves to construct
metrics which are efficiently computable for sublevel sets persistence mod-
ules by relying on software dedicated to one-parameter persistence modules
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and recent advances on optimization of topological functionals [24]. One of
these distances is an ISM whereas the second is a sliced distance. We study
the properties of these two metrics.

7.1. γ-linear ISM

We now introduced an ISM tailored for γ-sheaves. In view of Proposi-
tion 4.5, it is natural to consider the following pseudo-distance on Db

γ◦,a(kV)
(note that though this pseudo-distance is well defined on Db(kX), it is
mostly interesting Db

γ◦,a(kV)):

(7.1) δγ◦(F, G) = sup
{u∈γ◦ | L(u)⩽1}

distR(Ru!F, Ru!G).

Lemma 7.1. — The following equality holds:

δγ◦(F, G) = sup
{u∈Int(γ◦) | L(u)⩽1}

distR(Ru!F, Ru!G).

Proof. — This follows from Lemma 4.11. □

We recall that L =
{

u ∈ V∗ | L(u) ⩽ 1
}

.

Proposition 7.2. — Let F, G ∈ Db
γ◦,a(kV) and assume that δL(F, G) <

∞ or δγ◦(F, G) =∞. Then δL(F, G) = δγ◦(F, G).

Proof. — Since δγ◦ is a lower bound of δL, the case δγ◦(F, G) = ∞ is
clear. Hence, we assume that δL(F, G) <∞.

Let u /∈ γ◦ ∪ γ◦,a such that L(u) ⩽ 1. It follows from Proposition 4.5
that Ru!F is a constant sheaf and similarly for Ru!G. Moreover, we have
distR(Ru!F, Ru!G) < ∞ since δL(F, G) < ∞. Thus it follows from [23,
Proposition 2.3.7], that Ru!F ≃ Ru!G which implies that distR(Ru!F,

Ru!G) = 0. Morever, if u ∈ γ◦,a, then v = −u ∈ γ◦ and it follows from
Lemma 2.7(ii) that distR(Ru!F, Ru!G) = distR(Rv!F, Rv!G). Hence,

δL(F, G) = sup
{u∈V∗ | L(u)⩽1}

distR(Ru!F, Ru!G)

= sup
{u∈γ◦ | L(u)⩽1}

distR(Ru!F, Ru!G)

= δγ◦(F, G). □

Corollary 7.3. — Let F, G ∈ Db
γ◦,a(kV) with compact supports. Then

δL(F, G) = δγ◦(F, G).
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Proof. — Let F, G ∈ Db
γ◦,a(kV) with compact supports. Since they are

γ-sheaves with compact support RΓ(V; F ) ≃ RΓ(V; G) ≃ 0. Then, [16,
Example 2.4] implies that distV(F, G) < ∞. Thus, δL(F, G) < ∞ and
applying Proposition 7.2, the result follows. □

We denote by Db
Rc,γ◦,a(kV) the full triangulated subcategory of Db(kV)

spanned by the objects of Db
γ◦,a(kV) ∩ Db

Rc(kV).

Proposition 7.4. — Let F ∈ Db
Rc,γ◦,a(kV) and assume that F is γ-

compactly generated. If δγ◦(F, 0) = 0, then F ≃ 0.

Proof. — Since F is constructible, it follows from Theorem 3.22 that for
every u ∈ Int(γ◦), Ru!F ≃ 0.

Then Proposition 4.24 implies that F ≃ 0. □

Proposition 7.5. — Let F, G ∈ Db
Rc,γ◦, a(kV∞), then

δγ◦(F, G) = max
j∈Z

sup
{u∈γ◦ | L(u)⩽1}

dB

(
B
(
Hj(Ru!F )

)
,B
(
Hj(Ru!G)

))
.

Proof. — Let F, G ∈ Db
Rc,γ◦, a(kV).

δγ◦(F, G) = sup
{u∈γ◦ | L(u)⩽1}

distR(Ru!F, Ru!G)

= sup
{u∈γ◦ | L(u)⩽1}

max
j∈Z

distR
(
Hj(Ru!F ), Hj(Ru!G)

)
(Corollary (3.20))

= max
j∈Z

sup
{u∈γ◦ | L(u)⩽1}

distR
(
Hj(Ru!F ), Hj(Ru!G)

)
= max

j∈Z
sup

{u∈γ◦ | L(u)⩽1}
dB

(
B
(
Hj(Ru!F )

)
,B
(
Hj(Ru!G)

))
. □

Corollary 7.6. — Let S and S′ be compact good topological spaces,
f : S → V and g : S′ → V be continuous maps. Assume that PH(f) and
PH(g) are constructible. Then,

δγ◦
(
PH(f), PH(g)

)
= max

j∈Z
sup

{u∈γ◦ | L(u)⩽1}

(
dB

(
B
(
PHj(u ◦ f)

)
,B
(
PHj(u ◦ g)

)))
.

Proof. — It follows from Proposition 7.5 that

δγ◦
(
PH(f), PH(g)

)
= max

j∈Z
sup

{u∈γ◦ | L(u)⩽1}

(
dB

(
B
(
Hj
(
Ru! PH(f)

))
,B
(
Hj
(
Ru! PH(g)

))))
.

Let u ∈ Int(γ◦). Then u is proper on f(S) + γa and on g(S′) + γa. Hence,
it is proper on supp

(
PH(f)

)
and supp

(
PH(g)

)
. Then by Lemma 4.19(ii),
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Ru! PH(f) ≃ PH(u ◦ f) and similarly Ru! PH(g) ≃ PH(u ◦ g). This implies
that

dB

(
B
(
Hj
(
Ru! PH(f)

))
,B
(
Hj
(
Ru! PH(g)

)))
= dB

(
B
(
PHj(u ◦ f)

)
,B
(
PHj(u ◦ g)

))
which concludes the proof. □

The above results lead naturally to introduce the following pseudo-metrics
that we call truncated γ-integral sheaves metrics.

Definition 7.7. — Let F, G ∈ Db
Rc,γ◦, a(kV) and p ⩽ q ∈ Z. The (p, q)-

truncated γ-integral sheaf metric is

δp,q
γ◦ (F, G) = max

p⩽j⩽q

(
sup

{u∈γ◦ | L(u)⩽1}
distR

(
Hj(Ru!F ), Hj(Ru!G)

))
.

Proposition 7.8. — The map

δp,q
γ◦ : Ob

(
Db

Rc,γ◦, a(kV)
)
×Ob

(
Db

Rc,γ◦, a(kV)
)
−→ R+ ∪ {∞}

is a pseudo-metric and

δp,q
γ◦ (F, G) ⩽ δγ◦(F, G) ⩽ distV(F, G).

7.1.1. Gradient computation

In this section, we compute explicitly the gradient of the functional u 7→
distR(Ru!F, Ru!G) when F and G are γ-sheaves arising from sublevel set
persistence. We do so in order to approximate δγ◦ by gradient ascent.

Let F, G ∈ Dγ-cg(kV). We first study the regularity of the application

(7.2) ΥF,G : Int(γ◦) −→ R, u 7−→ distR(Ru!F, Ru!G).

Proposition 7.9. — Let u, v ∈ Int(γ◦) and F, G ∈ Db
γ-cg(kV). Then

there exists a constant CF,G in R⩾0 depending on F and G such that∣∣ΥF,G(u)−ΥF,G(v)
∣∣ ⩽ CF,G~u− v~.

Proof. — The proof is similar to the one of Lemma 6.11. Since F and G

are γ-compactly generated, there exists F ′ and G′ ∈ Db
comp(kV) such that

F ≃ F ′np
⋆ kγa and G ≃ G′np

⋆ kγa . We set S = supp(F ′) ∪ supp(G′). Since S

is compact, there exists (x0, x1) in S × S such that diam S = d(x0, x1).
Moreover the distance distR is invariant by translation. Hence, setting
ũ(x) = u(x) − u(x0) = τu(x0) ◦ u and ṽ(x) = v(x) − v(x0) = τv(x0) ◦ u

we get that

distR
(
Ru!(F ′np

⋆ kγa), Ru!(G′np
⋆ kγa)

)
=distR

(
Rũ!(F ′np

⋆ kγa), Rũ!(G′np
⋆ kγa)

)
.
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Moreover,
Rũ∗(F ′np

⋆ kγa) ≃ Rτu(x0)∗Ru!(F ′np
⋆ kγa)

≃ Rτu(x0)∗(Ru∗F ′np
⋆ kR−) by Lemma 4.19

≃ (Rτu(x0)∗Ru∗)F ′np
⋆ kR−

≃ Rũ∗F ′np
⋆ kR−

and similarly with ũ replaced by ṽ and F ′ by G′. Hence,

ΥF,G(u) = distR(Rũ∗F ′np
⋆ kR− , Rũ∗G′np

⋆ kR−).

Now using Proposition 2.8(ii), we get∣∣ΥF,G(u)−ΥF,G(v)
∣∣ ⩽ distR(Ru∗F ′np

⋆ kR− , Rv∗F ′np
⋆ kR−)

+ distR(Rũ∗G′np
⋆ kR− , Rṽ∗G′np

⋆ kR−)
⩽ distR(Rũ∗F ′, Rṽ∗F ′) + distR(Rũ∗G′, Rṽ∗G′)
⩽ 2
∥∥ũ
∣∣
S
− ṽ
∣∣
S

∥∥
∞ ⩽ 2 diam(S)~u− v~. □

The Rademacher Theorem combined with the above inequality implies
the following corollary.

Corollary 7.10. — Let F, G ∈ Db
γ-cg(kV). The application

ΥF,G : Int(γ◦) −→ R

(see equation (7.2)) is differentiable Lebesgue almost everywhere on Int(γ◦).

We choose a basis (e1, . . . , en) of V, and denote (e∗
1, . . . , e∗

n) the associ-
ated dual basis of V∗. Given u ∈ Int γ◦, we will denote u1, . . . , un ∈ R the
coordinates of u in the basis (e∗

1, . . . , e∗
n). Let K1 and K2 be two finite sim-

plicial complexes with geometric realizations |K1| and |K2|, f : |K1| → V
and g : |K2| → V be PL maps. We define:

T (u) = distR
(
PH(u ◦ f), PH(u ◦ g)

)
.

With T j(u) := distR
(
PHj(u ◦ f), PHj(u ◦ f)

)
, we deduce from (3.20) that:

T (u) = max
j∈Z

distR
(
PHj(u ◦ f), PHj(u ◦ g)

)
= max

j∈Z
T j(u).

Let F denote the bottleneck distance function between two barcodes. For
j ∈ Z, let Bj

1(u) =
{

[bj
1, dj

1)
}

(resp. Bj
2(u) =

{
[b′j

2 , d′j
2 )
}

) be the barcode of
PHj(u ◦ f) (resp. PHj(u ◦ g)). Therefore, we deduce by 3.20 that:

T j(u) = dB

(
Bj

1(u),Bj
2(u)

)
= F

(
Bj

1(u),Bj
2(u)

)
.
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We now follow the exposition of [11, Section 13.2.2] for the gradient com-
putation. Let Ej

1 ⊂ R (resp. Ej
2 ⊂ R) be the set of endpoints of the interval

appearing in Bj
1 (resp. Bj

2), which we assume to be all distinct. Therefore,
there exists an inverse function ρu

1 :
⊔

j Ej
1 → K1 (resp. ρu

2 :
⊔

j Ej
2 → K2)

mapping each birth and death in Bj
1 (resp. Bj

2) to the corresponding sim-
plex in K1 (resp. K2) generating or annihilating this bar. Moreover, this
function is locally constant in u in a precise sense (see [24, Section 5]).

Therefore, writing fu = u ◦ f and gu = u ◦ g for brevity, one has the
following computations:

∂T j

∂e∗
i

(u) =
∑

b∈Ej
1⊔Ej

2

∂F
∂b

(
Bj

1(u),Bj
2(u)

) ∂b

∂e∗
i

(u)

=
∑

b∈Ej
1

∂F
∂b

(
Bj

1(u),Bj
2(u)

)∂fu

∂e∗
i

(
ρu

1 (b)
)

+
∑

b∈Ej
2

∂F
∂b

(
Bj

1(u),Bj
2(u)

)∂gu

∂e∗
i

(
ρu

2 (b)
)

= ui

(∑
b∈Ej

1

∂F
∂b

(
Bj

1(u),Bj
2(u)

)
e∗

i

(
f
(
ρu

1 (b)
))

+
∑

b∈Ej
2

∂F
∂b

(
Bj

1(u),Bj
2(u)

)
e∗

i

(
g
(
ρu

2 (b)
)))

Note that [1, Proposition 5.3] asserts that in the context of γ-sheaves,
the function F coincides with the usual bottleneck distance of persis-
tence. Therefore, one can use [24, Lemma 3] to compute the quantity
∂F
∂b

(
Bj

1(u),Bj
2(u)

)
which is either worth −1, 0 or 1. We will study more

in-depth the optimization of T in a forthcoming work.

7.2. γ-sliced convolution distance

In this subsection, we introduce a version of the sliced convolution dis-
tance tailored for γ-compactly generated sheaves. For the sake of simplicity,
we assume that V = Rn and that it is endowed with the norm ∥ · ∥∞ and
that γ = (−∞, 0]n. We endow V∗ with the dual basis of the canonical basis
of Rn. We also equip V∗ with its canonical scalar product. Then, the affine
plane of V∗ defined by the equation

∑n
i=1 ui = 1 is a Riemannian subman-

ifold of V∗. Hence, we equip it with its canonical Riemannian measure that
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we denote du. We define Qγ =
{

u ∈ Int(γ◦)
∣∣ ~u~∞ = 1

}
. In other words

Qγ =
{

(u1, . . . , un) ∈ Rn
>0
∣∣ ∑n

i=1 ui = 1
}

. We consider the restriction of
du to Qγ and set Vol(Qγ) =

∫
Qγ

du.
Let F, G ∈ Db

γ-cg(kV). It follows from Proposition 7.9 that the map

ΥF,G : Int(γ◦) −→ R, u 7−→ distR(Ru!F, Ru!G)

is Lipschitz on Qγ , hence measurable.
For p ∈ N∗, we define the p-th γ-sliced convolution distance between F

and G by

(7.3) Sγ,p(F, G) = 1
Vol(Qγ)

(∫
Qγ

distR(Ru!F, Ru!G)p du

) 1
p

.

Proposition 7.11. — The application

Sγ,p : Ob
(
Db

γ-cg(kV)
)
×Ob

(
Db

γ-cg(kV)
)
−→ R+

is a pseudo-distance and for F, G ∈ Db
γ-cg(kV)

Sγ,p(F, G) ⩽ distV(F, G).

Lemma 7.12. — Let F ∈ Db
Rc,γ-cg(kV∞). If Sγ,p(F, 0) = 0, then F ≃ 0.

Proof. — It follows from the hypothesis that the function Υγ
F,0 = 0 al-

most everywhere on Qγ and as it is continuous, Υγ
F,0 = 0 on Qγ . Lemma 2.7

implies that Υγ
F,0 = 0 on γ◦.

Then, the result follows from Proposition 7.4. □

7.3. Some aspects of the computation of the γ-linear ISM and
the γ-sliced convolution distance

As a proof of concept, we showcase here the results of our implementation
of the estimation of the γ-linear ISM in the following context. We endow R2

with the cone γ = (−∞, 0]2 and the norm ∥ · ∥∞. Therefore, with p1 and p2
the coordinate projections, we have Qγ =

{
pt = t·p1+(1−t)·p2

∣∣ t ∈ [0, 1]
}

.
We sampled 300 points uniformly on a circle of radius 1, to which we

added a radial uniform noise in [0, 0.1]. We call this first dataset X. The
second dataset Y was obtained by using the same sampling process than
for X, then appending to it 10 outlier points drawn uniformly in [−1, 1]2
(see Figure 7.1).

We then performed a kernel density estimation for X and Y , outputting
two functions κX , κY : [−1, 1]2 → R+, leading to two bi-filtrations of [0, 1]2:
fX = (dX ,−κX) and fY = (dY ,−κY ), where dA denotes the distance
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Figure 7.1. The datasets X (left) and Y (right).

function to the set A. We computed the bottleneck distance between the
projected barcodes B

(
PH(pt ◦ fX)

)
and B

(
PH(pt ◦ fY )

)
, as the parameter

t of the 1-Lipschitz projection varies. The γ-linear ISM is the maximum of
these distances, while the p-sliced distance corresponds to the p-th root of
the integral of the p-th power of this function (see Figure 7.2(a)).

Table 7.1. Values of the different distances between PH(fX) and
PH(fY ).

Distance type Sγ,1 Sγ,2 Sγ,3 Sγ,4 δγ◦

Value 0.055 0.0057 0.0027 0.0019 0.090
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(a) Bottleneck distance between projected barcodes, in function of
the parameter of the 1-Lipschitz projection. Note that t = 0 corre-
sponds to the 1-filtration induced by the (co)density estimator on
each pointcloud filtration, while t = 1 corresponds to the 1-filtration
associated to the distance function to the point cloud.

(b) Value of Sγ,p

(
PH(fX), PH(fY )

)
, as p varies.

Figure 7.2
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