[Un nerf $(\infty ,1)$-catégorique double pour les catégories doubles]
We construct a nerve from double categories into double $(\infty ,1)$-categories and show that it gives a right Quillen and homotopically fully faithful functor between the model structure for weakly horizontally invariant double categories and the model structure on bisimplicial spaces for double $(\infty ,1)$-categories seen as double Segal objects in spaces complete in the horizontal direction. We then restrict the nerve along a homotopical horizontal embedding of $2$-categories into double categories, and show that it gives a right Quillen and homotopically fully faithful functor between Lack’s model structure for $2$-categories and the model structure for $2$-fold complete Segal spaces. We further show that Lack’s model structure is right-induced along this nerve from the model structure for $2$-fold complete Segal spaces.
On construit un nerf des catégories doubles dans les $(\infty ,1)$-catégories doubles et prouve que cela réalise un foncteur de Quillen à droite qui est homotopiquement pleinement fidèle entre la catégorie de modèles pour les catégories doubles faiblement horizontalement invariantes et la catégorie de modèles sur les espaces bisimpliciaux pour les $(\infty ,1)$-catégories doubles vues comme des espaces de Segal doubles qui sont complets dans la direction horizontale. On restreint ensuite ce nerf le long d’un plongement horizontal homotopique des $2$-catégories dans les catégories doubles et prouve que cela réalise un foncteur de Quillen à droite qui est homotopiquement pleinement fidèle entre la catégorie de modèles de Lack sur les $2$-catégories et la catégorie de modèles pour les espaces de Segal complets doubles. On montre de plus que la catégorie de modèles de Lack sur les $2$-catégories peut être obtenue comme la catégorie de modèles transferrée le long de ce nerf depuis la catégorie de modèles pour les espaces de Segal complets doubles.
Révisé le :
Accepté le :
Première publication :
Keywords: Nerve, 2-categories, double categories, 2-fold complete Segal spaces, double $\infty $-categories
Mots-clés : Nerf, 2-catégories, catégories doubles, espaces de Ségal complets doubles, $\infty $-catégories doubles
Moser, Lyne  1
@unpublished{AIF_0__0_0_A38_0,
author = {Moser, Lyne},
title = {A double $(\infty ,1)$-categorical nerve for double categories},
journal = {Annales de l'Institut Fourier},
year = {2026},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
doi = {10.5802/aif.3750},
language = {en},
note = {Online first},
}
Moser, Lyne. A double $(\infty ,1)$-categorical nerve for double categories. Annales de l'Institut Fourier, Online first, 81 p.
[1] -Cat as a closed model category, Ph. D. Thesis, University of Pennsylvania (2005)
[2] Reedy categories and the -construction, Math. Z., Volume 274 (2013) no. 1-2, pp. 499-514 | DOI | MR | Zbl
[3] Comparison of models for -categories, II, J. Topol., Volume 13 (2020) no. 4, pp. 1554-1581 | DOI | MR | Zbl
[4] The Gray Monoidal Product of Double Categories, Appl. Categ. Struct., Volume 28 (2020), pp. 477-515 | DOI | Zbl | MR
[5] The folk model structure for double categories (seminar talk, http://web.science.mq.edu.au/groups/coact/seminar/cgi-bin/abstract.cgi?talkid=1616)
[6] A homotopy coherent cellular nerve for bicategories, Adv. Math., Volume 368 (2020), 107138, 66 pages | DOI | MR | Zbl
[7] Higher categories and homotopical algebra, Cambridge Studies in Advanced Mathematics, 180, Cambridge University Press, 2019, xviii+430 pages | DOI | MR | Zbl
[8] 2-limits and 2-terminal objects are too different, Appl. Categ. Struct., Volume 30 (2022) no. 6, pp. 1283-1304 | DOI | MR | Zbl
[9] Bi-initial objects and bi-representations are not so different, Cah. Topol. Géom. Différ. Catég., Volume 63 (2022) no. 3, pp. 259-330 | MR | Zbl
[10] Model structures on the category of small double categories, Algebr. Geom. Topol., Volume 8 (2008) no. 4, pp. 1855-1959 | DOI | MR | Zbl
[11] On the equivalence of all models for -categories, J. Lond. Math. Soc. (2), Volume 106 (2022) no. 3, pp. 1920-1982 | DOI | MR | Zbl
[12] Higher dimensional categories. From double to multiple categories, World Scientific, 2020, xi+522 pages | Zbl | MR
[13] Limits in double categories, Cah. Topol. Géom. Différ. Catég., Volume 40 (1999) no. 3, pp. 162-220 | MR | Numdam | Zbl
[14] Persistent double limits, Cah. Topol. Géom. Différ. Catég., Volume 60 (2019) no. 3, pp. 255-297 | MR | Zbl
[15] Formal category theory: adjointness for -categories, Lecture Notes in Mathematics, 391, Springer, 1974, xii+282 pages | MR | Zbl
[16] Weakly Enriched Higher Categories, Ph. D. Thesis, Massachusetts Institute of Technology (2013)
[17] Model categories and their localizations, Mathematical Surveys and Monographs, 99, American Mathematical Society, 2003, xvi+457 pages | MR | Zbl
[18] Model categories, Mathematical Surveys and Monographs, 63, American Mathematical Society, 1999, xii+209 pages | MR | Zbl
[19] 2-dimensional categories, Oxford University Press, 2021, xix+615 pages | DOI | MR | Zbl
[20] A Quillen model structure for 2-categories, -Theory, Volume 26 (2002) no. 2, pp. 171-205 | DOI | MR | Zbl
[21] A Quillen model structure for bicategories, -Theory, Volume 33 (2004) no. 3, pp. 185-197 | DOI | MR | Zbl
[22] Model independence of -categorical nerves (2022) | arXiv | Zbl
[23] -Limits I: Definition and first consistency results (2023) | arXiv
[24] A 2Cat-inspired model structure for double categories, Cah. Topol. Géom. Différ. Catég., Volume 63 (2022) no. 2, pp. 184-236 | MR | Zbl
[25] A model structure for weakly horizontally invariant double categories, Algebr. Geom. Topol., Volume 23 (2023) no. 4, pp. 1725-1786 | DOI | MR | Zbl
[26] Nerves of 2-categories and 2-categorification of -categories, Adv. Math., Volume 391 (2021), 107948, 39 pages | DOI | MR | Zbl
[27] Homotopical algebra, Lecture Notes in Mathematics, 43, Springer, 1967, iv+156 pages | MR | DOI | Zbl
[28] A model for the homotopy theory of homotopy theory, Trans. Am. Math. Soc., Volume 353 (2001) no. 3, pp. 973-1007 | DOI | MR | Zbl
[29] Elements of -category theory, Cambridge Studies in Advanced Mathematics, 194, Cambridge University Press, 2022, xix+759 pages | DOI | MR | Zbl
[30] The algebra of oriented simplexes, J. Pure Appl. Algebra, Volume 49 (1987) no. 3, pp. 283-335 | DOI | MR | Zbl
Cité par Sources :



