A double $(\infty ,1)$-categorical nerve for double categories
[Un nerf $(\infty ,1)$-catégorique double pour les catégories doubles]
Annales de l'Institut Fourier, Online first, 81 p.

We construct a nerve from double categories into double $(\infty ,1)$-categories and show that it gives a right Quillen and homotopically fully faithful functor between the model structure for weakly horizontally invariant double categories and the model structure on bisimplicial spaces for double $(\infty ,1)$-categories seen as double Segal objects in spaces complete in the horizontal direction. We then restrict the nerve along a homotopical horizontal embedding of $2$-categories into double categories, and show that it gives a right Quillen and homotopically fully faithful functor between Lack’s model structure for $2$-categories and the model structure for $2$-fold complete Segal spaces. We further show that Lack’s model structure is right-induced along this nerve from the model structure for $2$-fold complete Segal spaces.

On construit un nerf des catégories doubles dans les $(\infty ,1)$-catégories doubles et prouve que cela réalise un foncteur de Quillen à droite qui est homotopiquement pleinement fidèle entre la catégorie de modèles pour les catégories doubles faiblement horizontalement invariantes et la catégorie de modèles sur les espaces bisimpliciaux pour les $(\infty ,1)$-catégories doubles vues comme des espaces de Segal doubles qui sont complets dans la direction horizontale. On restreint ensuite ce nerf le long d’un plongement horizontal homotopique des $2$-catégories dans les catégories doubles et prouve que cela réalise un foncteur de Quillen à droite qui est homotopiquement pleinement fidèle entre la catégorie de modèles de Lack sur les $2$-catégories et la catégorie de modèles pour les espaces de Segal complets doubles. On montre de plus que la catégorie de modèles de Lack sur les $2$-catégories peut être obtenue comme la catégorie de modèles transferrée le long de ce nerf depuis la catégorie de modèles pour les espaces de Segal complets doubles.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3750
Classification : 18N10, 18N25, 18N65, 55U35
Keywords: Nerve, 2-categories, double categories, 2-fold complete Segal spaces, double $\infty $-categories
Mots-clés : Nerf, 2-catégories, catégories doubles, espaces de Ségal complets doubles, $\infty $-catégories doubles

Moser, Lyne  1

1 Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
@unpublished{AIF_0__0_0_A38_0,
     author = {Moser, Lyne},
     title = {A double $(\infty ,1)$-categorical nerve for double categories},
     journal = {Annales de l'Institut Fourier},
     year = {2026},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     doi = {10.5802/aif.3750},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Moser, Lyne
TI  - A double $(\infty ,1)$-categorical nerve for double categories
JO  - Annales de l'Institut Fourier
PY  - 2026
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3750
LA  - en
ID  - AIF_0__0_0_A38_0
ER  - 
%0 Unpublished Work
%A Moser, Lyne
%T A double $(\infty ,1)$-categorical nerve for double categories
%J Annales de l'Institut Fourier
%D 2026
%V 0
%N 0
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3750
%G en
%F AIF_0__0_0_A38_0
Moser, Lyne. A double $(\infty ,1)$-categorical nerve for double categories. Annales de l'Institut Fourier, Online first, 81 p.

[1] Barwick, Clark (,n)-Cat as a closed model category, Ph. D. Thesis, University of Pennsylvania (2005)

[2] Bergner, Julia E.; Rezk, Charles Reedy categories and the 𝛩-construction, Math. Z., Volume 274 (2013) no. 1-2, pp. 499-514 | DOI | MR | Zbl

[3] Bergner, Julia E.; Rezk, Charles Comparison of models for (,n)-categories, II, J. Topol., Volume 13 (2020) no. 4, pp. 1554-1581 | DOI | MR | Zbl

[4] Böhm, Gabriella The Gray Monoidal Product of Double Categories, Appl. Categ. Struct., Volume 28 (2020), pp. 477-515 | DOI | Zbl | MR

[5] Campbell, Alexander The folk model structure for double categories (seminar talk, http://web.science.mq.edu.au/groups/coact/seminar/cgi-bin/abstract.cgi?talkid=1616)

[6] Campbell, Alexander A homotopy coherent cellular nerve for bicategories, Adv. Math., Volume 368 (2020), 107138, 66 pages | DOI | MR | Zbl

[7] Cisinski, Denis-Charles Higher categories and homotopical algebra, Cambridge Studies in Advanced Mathematics, 180, Cambridge University Press, 2019, xviii+430 pages | DOI | MR | Zbl

[8] clingman, tslil; Moser, Lyne 2-limits and 2-terminal objects are too different, Appl. Categ. Struct., Volume 30 (2022) no. 6, pp. 1283-1304 | DOI | MR | Zbl

[9] clingman, tslil; Moser, Lyne Bi-initial objects and bi-representations are not so different, Cah. Topol. Géom. Différ. Catég., Volume 63 (2022) no. 3, pp. 259-330 | MR | Zbl

[10] Fiore, Thomas M.; Paoli, Simona; Pronk, Dorette Model structures on the category of small double categories, Algebr. Geom. Topol., Volume 8 (2008) no. 4, pp. 1855-1959 | DOI | MR | Zbl

[11] Gagna, Andrea; Harpaz, Yonatan; Lanari, Edoardo On the equivalence of all models for (,2)-categories, J. Lond. Math. Soc. (2), Volume 106 (2022) no. 3, pp. 1920-1982 | DOI | MR | Zbl

[12] Grandis, Marco Higher dimensional categories. From double to multiple categories, World Scientific, 2020, xi+522 pages | Zbl | MR

[13] Grandis, Marco; Paré, Robert Limits in double categories, Cah. Topol. Géom. Différ. Catég., Volume 40 (1999) no. 3, pp. 162-220 | MR | Numdam | Zbl

[14] Grandis, Marco; Paré, Robert Persistent double limits, Cah. Topol. Géom. Différ. Catég., Volume 60 (2019) no. 3, pp. 255-297 | MR | Zbl

[15] Gray, John W. Formal category theory: adjointness for 2-categories, Lecture Notes in Mathematics, 391, Springer, 1974, xii+282 pages | MR | Zbl

[16] Haugseng, Rune Weakly Enriched Higher Categories, Ph. D. Thesis, Massachusetts Institute of Technology (2013)

[17] Hirschhorn, Philip S. Model categories and their localizations, Mathematical Surveys and Monographs, 99, American Mathematical Society, 2003, xvi+457 pages | MR | Zbl

[18] Hovey, Mark Model categories, Mathematical Surveys and Monographs, 63, American Mathematical Society, 1999, xii+209 pages | MR | Zbl

[19] Johnson, Niles; Yau, Donald 2-dimensional categories, Oxford University Press, 2021, xix+615 pages | DOI | MR | Zbl

[20] Lack, Stephen A Quillen model structure for 2-categories, K-Theory, Volume 26 (2002) no. 2, pp. 171-205 | DOI | MR | Zbl

[21] Lack, Stephen A Quillen model structure for bicategories, K-Theory, Volume 33 (2004) no. 3, pp. 185-197 | DOI | MR | Zbl

[22] Moser, Lyne; Ozornova, Viktoriya; Rovelli, Martina Model independence of (,2)-categorical nerves (2022) | arXiv | Zbl

[23] Moser, Lyne; Rasekh, Nima; Rovelli, Martina (,n)-Limits I: Definition and first consistency results (2023) | arXiv

[24] Moser, Lyne; Sarazola, Maru; Verdugo, Paula A 2Cat-inspired model structure for double categories, Cah. Topol. Géom. Différ. Catég., Volume 63 (2022) no. 2, pp. 184-236 | MR | Zbl

[25] Moser, Lyne; Sarazola, Maru; Verdugo, Paula A model structure for weakly horizontally invariant double categories, Algebr. Geom. Topol., Volume 23 (2023) no. 4, pp. 1725-1786 | DOI | MR | Zbl

[26] Ozornova, Viktoriya; Rovelli, Martina Nerves of 2-categories and 2-categorification of (,2)-categories, Adv. Math., Volume 391 (2021), 107948, 39 pages | DOI | MR | Zbl

[27] Quillen, Daniel G. Homotopical algebra, Lecture Notes in Mathematics, 43, Springer, 1967, iv+156 pages | MR | DOI | Zbl

[28] Rezk, Charles A model for the homotopy theory of homotopy theory, Trans. Am. Math. Soc., Volume 353 (2001) no. 3, pp. 973-1007 | DOI | MR | Zbl

[29] Riehl, Emily; Verity, Dominic Elements of -category theory, Cambridge Studies in Advanced Mathematics, 194, Cambridge University Press, 2022, xix+759 pages | DOI | MR | Zbl

[30] Street, Ross The algebra of oriented simplexes, J. Pure Appl. Algebra, Volume 49 (1987) no. 3, pp. 283-335 | DOI | MR | Zbl

Cité par Sources :