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A DOUBLE (0, 1)-CATEGORICAL NERVE FOR
DOUBLE CATEGORIES

by Lyne MOSER (*)

ABSTRACT. We construct a nerve from double categories into double (oo, 1)-
categories and show that it gives a right Quillen and homotopically fully faithful
functor between the model structure for weakly horizontally invariant double cat-
egories and the model structure on bisimplicial spaces for double (oo, 1)-categories
seen as double Segal objects in spaces complete in the horizontal direction. We then
restrict the nerve along a homotopical horizontal embedding of 2-categories into
double categories, and show that it gives a right Quillen and homotopically fully
faithful functor between Lack’s model structure for 2-categories and the model
structure for 2-fold complete Segal spaces. We further show that Lack’s model
structure is right-induced along this nerve from the model structure for 2-fold
complete Segal spaces.

RESUME. — On construit un nerf des catégories doubles dans les (oo, 1)-caté-
gories doubles et prouve que cela réalise un foncteur de Quillen & droite qui est
homotopiquement pleinement fidele entre la catégorie de modeles pour les caté-
gories doubles faiblement horizontalement invariantes et la catégorie de modéles
sur les espaces bisimpliciaux pour les (0o, 1)-catégories doubles vues comme des es-
paces de Segal doubles qui sont complets dans la direction horizontale. On restreint
ensuite ce nerf le long d’un plongement horizontal homotopique des 2-catégories
dans les catégories doubles et prouve que cela réalise un foncteur de Quillen &
droite qui est homotopiquement pleinement fidele entre la catégorie de modeles
de Lack sur les 2-catégories et la catégorie de modeles pour les espaces de Segal
complets doubles. On montre de plus que la catégorie de modeles de Lack sur les
2-catégories peut étre obtenue comme la catégorie de modeéles transferrée le long de
ce nerf depuis la catégorie de modéles pour les espaces de Segal complets doubles.
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1. Introduction

Higher category theory aims to study more structured objects than cate-
gories. While categories consist of objects and morphisms between objects,
higher categories also have higher morphisms. In this perspective, a 2-
category is obtained by also adding 2-morphisms between the morphisms.
A 2-category can actually be seen as a category enriched in categories — its
morphisms and 2-morphisms between any pair of objects form a category.
Another type of 2-dimensional categories is given by internal categories
to categories, called double categories. Such a structure has two types of
morphisms between objects — horizontal and vertical morphisms — and its
2-morphisms are squares. In particular, a 2-category A can be seen as a
horizontal double category H.A in which every vertical morphism is triv-
ial; or equivalently, as an internal category to categories whose category of
objects is discrete.

Many aspects of 2-category theory benefit from a passage to double cat-
egories. For example, a good notion of limit for 2-categories is that of a
2-limit, where the universal property is expressed by an isomorphism be-
tween hom-categories, rather than hom-sets. As clingman and the author
show in [8], a 2-limit cannot be characterized as a 2-terminal object in
the 2-category of cones, but a passage to double categories allows such a
characterization by results of Grandis and Paré [12, 13]. Indeed, they show
that the 2-limit of a 2-functor F' is double terminal in the double category
of cones over the corresponding double functor HF'. This result also holds
in the more homotopical case of bi-limits, where the universal property is
expressed by an equivalence of hom-categories, as clingman and the author
show in [9].

These notions of categories, 2-categories, and double categories are often
too strict to accommodate many examples that appear in nature. In the
perspective of generalizing categories, an (0o, 1)-category is interpreted as
a categorical structure that admits morphisms in all dimensions with all k-
morphisms invertible for £ > 1, where compositions are only associative and
unital up to higher invertible morphisms. Such a higher structure should
be thought of as a homotopical version of a category. Similarly to the strict
case, we can then interpret an (oo, 2)-category, as a “category enriched
in (00, 1)-categories”, and a double (oo, 1)-categories, as an “internal cate-
gory to (oo, 1)-categories”. A natural expectation is that (oo, 2)-categories
also admit a “horizontal embedding” into double (oo, 1)-categories and that
2-categories and double categories embed into their more homotopical ver-
sions, in such a way that the following diagram commutes (maybe only up
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A DOUBLE (oo, 1)-CATEGORICAL NERVE 3

to “homotopy”).

{2-categories} < {(o0, 2)-categories}
H

{double categories} «——— {double (oo, 1)-categories}

The existence of such a commutative diagram would show that aspects of
the theory of (00, 2)-categories would also benefit from a passage to double
(00, 1)-categories. With this idea in mind, the author, Rasekh, and Rovelli
develop in [23] a notion of (0o, 2)-limits by defining a limit of an (oo, 2)-
functor as a terminal object in the double (oo, 1)-category of cones over the
induced “horizontal” double (oo, 1)-functor.

To make these oco-notions precise, the machinery used is often that of
model categories, introduced by Quillen in [27], and these oo-notions are
then defined as the fibrant objects of a given model structure. This is the
approach we will be taking here. As a model for (0o, 1)-category, we consider
complete Segal spaces, due to Rezk [28] and defined as the Segal objects
in spaces such that the space of objects is equivalent to the space of equiv-
alences, i.e., invertible morphisms up to higher morphisms. This last con-
dition is called the completeness condition and ensures that no extra data
has been added by considering a space of objects instead of a set of objects.
There are many other models of (0o, 1)-categories, but the choice we make
here is motivated by the fact that models of (oo, 2)-categories and double
(00, 1)-categories have been developed as “internal categories” to complete
Segal spaces, where the complete Segal space of objects is required to be
discrete in the case of (00, 2)-categories. More precisely, these are given by
2-fold complete Segal spaces defined by Barwick in [1] as the complete Segal
objects in complete Segal spaces, and by double (oo, 1)-categories defined by
Haugseng in [16] as the Segal objects in complete Segal spaces. Haugseng’s
definition of double (0o, 1)-categories requires the completeness condition
in the vertical direction, i.e., that the space of objects is equivalent to the
space of vertical equivalences. Since we want our double (0o, 1)-categories
to be compatible with the horizontal embedding of 2-categories into double
categories, we require instead horizontal completeness, i.e., that the space
of objects is equivalent to the space of horizontal equivalences. However,
these two models of double (oo, 1)-categories are equivalent via a trans-
pose functor. Furthermore, there are model structures 2CSS and DblCatZo
on bisimplicial spaces whose fibrant objects are the 2-fold complete Segal
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4 Lyne MOSER

spaces and the horizontally complete double (0o, 1)-categories, respectively.
We can obtain 2CSS as localization of DblCatZo, and this implies that the
identity functor id: 2CSS — DblCatI;O is a right Quillen functor, which
we interpret as the horizontal embedding of (oo, 2)-categories into double
(00, 1)-categories.

To define an embedding — called nerve — of 2-categories and double cate-
gories into their co-analogues, we also need model structures in this stricter
setting. In [20, 21], Lack endows the category 2Cat of 2-categories and 2-
functors with a model structure in which the weak equivalences are the
biequivalences, the trivial fibrations are the 2-functors which are surjective
on objects, full on morphisms, and fully faithful on 2-morphisms, and all
2-categories are fibrant.

In the double categorical case, several model structures for double cate-
gories are constructed by Fiore, Paoli, and Pronk in [10], but the horizontal
embedding of 2-categories into double categories does not induce a Quillen
pair between Lack’s model structure and any of these model structures.
Therefore, in [24], the author, Sarazola, and Verdugo construct a model
structure on the category DblCat of double categories and double func-
tors, obtained as a right-induced model structure from two copies of Lack’s
model structure on 2Cat, which is such that the horizontal embedding
H: 2Cat — DblCat is as well-behaved as possible: it is both left and right
Quillen, and homotopically fully faithful, and it preserves and reflects the
whole homotopical structure. However, in this model structure, all double
categories are fibrant, and the trivial fibrations are only surjective on verti-
cal morphisms, rather than full. These are both obstructions for the nerve
being right Quillen, as the cofibrations in DblCaLt};O are the monomorphisms
and the nerve of a double category is fibrant precisely when the double
category is weakly horizontally invariant (see Definition 2.24), as shown in
Theorem 5.30.

To remedy this issue, the author, Sarazola, and Verdugo construct in [25]
another model structure on DblCat whose trivial fibrations are the double
functors which are surjective on objects, full on horizontal and vertical
morphisms, and fully faithful on squares, and the fibrant objects are the
weakly horizontally invariant double categories. The existence of this model
structure was independently noticed by Campbell [5]. Since the horizontal
double category H.A associated to a 2-category A is not weakly horizontally
invariant in general, the horizontal embedding H: 2Cat — DblCat is not
right Quillen anymore. Instead, we need to consider a fibrant replacement
of H given by a more homotopical version H~: 2Cat — DblCat of H,

ANNALES DE L’INSTITUT FOURIER
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which sends a 2-category A to the double category H~.4 whose underlying
horizontal 2-category is still A, but whose vertical morphisms are given by
the adjoint equivalences of A. This gives a right Quillen and homotopically
fully faithful functor H=: 2Cat — DblCat, where DblCat is endowed with
the model structure for weakly horizontally invariant double categories.
In this paper, we construct a nerve functor N: DblCat — sSetA” XA
and we show in Theorems 5.17 and 5.20 that N is a right Quillen and
homotopically fully faithful functor from DblCat to DblCatZo.

THEOREM A. — The nerve functor
N: DblCat — DblCat/,

is right Quillen, and homotopically fully faithful from the model struc-
ture on DblCat for weakly horizontally invariant double categories to the
model structure on sSet®" 2™ for horizontally complete double (00, 1)-
categories.

Moreover, the nerve NA of a double category A is fibrant if and only if
A is weakly horizontally invariant.

We then restrict the nerve functor N along the homotopical horizontal
embedding H=: 2Cat — DblCat and show in Theorems 6.1 and 6.3 that
this gives a right Quillen and homotopically fully faithful functor from 2Cat
to 2CSS. Furthermore, the homotopy theory of 2-categories is completely
determined from that of 2-fold complete Segal spaces through its image
under NH=, as 2Cat is right-induced from 2CSS along NH~ as shown in
Theorem 6.5.

THEOREM B. — The nerve functor
NH=: 2Cat — 2CSS

is right Quillen, and homotopically fully faithful from Lack’s model struc-
ture on 2Cat to the model structure on sSet™ *2" for 2-fold complete
Segal spaces, i.e., (00, 2)-categories. Furthermore, Lack’s model structure
on 2Cat is right-induced from 2CSS along NH~.

While several nerves that fully embed the homotopy theory of 2-cate-
gories into the one of (o0,2)-categories have already been constructed:
into saturated 2-precomplicial sets by Ozornova and Rovelli in [26], into
2-quasi-categories by Campbell in [6], and into co-bicategories by Gagna,
Harpaz, and Lanari in [11], the nerve presented in the above theorem is,
to our knowledge, the first nerve to be constructed with good homotopical
properties into the model of 2-fold complete Segal spaces. In a subsequent
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6 Lyne MOSER

paper [22], the author, Ozornova, and Rovelli demonstrate that these dif-
ferent nerve constructions coincide up to a change of models, establishing
their equivalence at the oco-categorical level.

Theorems A and B then yield a commutative diagram of right Quillen,
and homotopically fully faithful functors as desired.

2Cat — U 90SS

DblCat ——— DblCatl,

However, we were hoping to find a nerve that is compatible with the
horizontal embedding functor H, but the nerve NH.A of a horizontal double
category HL.A associated to a 2-category is not generally a double (oo, 1)-
category nor a 2-fold complete Segal space (see Remark 5.31). We show in
Theorem 6.10 that NH~.4 gives a fibrant replacement of NH.A in 2CSS (or
in DblCat”).

THEOREM C. — There is a level-wise homotopy equivalence
NH.A — NH™A,

which exhibits NH™A as a fibrant replacement of NHA in 2CSS (or in
DblCatZo), for every 2-category A.

In particular, it follows from this result that we have a diagram of right
Quillen and homotopically fully faithful functors

2Cat NH= 2058

J -k

DblCat ¢ DblCatyy; —— DblCatl,

filled with a natural transformation which is level-wise a weak equivalence.
This gives the expected compatibility of the nerve N with the horizontal
embedding H.

1.1. Outline

In Section 2, we first recall the basic terminology for 2-categories and
double categories, and describe several functors between the categories
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2Cat and DblCat. We then introduce notions of horizontal equivalences
and weakly horizontally invertible squares in a double category, which al-
lows us to define weakly horizontally invariant double categories. In Sec-
tion 3, we recall the main features of Lack’s model structure on 2Cat and
of the model structure of [25] on DblCat. Then, in Section 4, we describe
the model structures DblCatg0 and 2CSS for horizontally complete double
(00, 1)-categories and 2-fold complete Segal spaces. Finally, in Section 5,
we construct a nerve functor N: DblCat — DblCat” and show that it is
right Quillen and homotopically fully faithful. By restricting N along the
homotopical horizontal embedding H~: 2Cat — DblCat, we show in Sec-
tion 6 that the nerve functor NH~: 2Cat — 2CSS is also right Quillen
and homotopically fully faithful. Furthermore, we prove that Lack’s model
structure on 2Cat is right-induced from 2CSS along the nerve NH™. We
then construct a level-wise homotopy equivalence NH.A — NH= A for every
2-category A, which exhibits NH=A as a fibrant replacement of NH.A.

The aim of Appendix A is to prove some technical results about weakly
horizontally invertible squares, which were recently introduced indepen-
dently by the author, Sarazola, and Verdugo in [24], and by Grandis and
Paré in [14]. In particular, we show that a horizontal pseudo-natural trans-
formation is an equivalence if and only if each of its square components
are weakly horizontally invertible squares. The aim of Appendix B is to
describe the lower simplices of the nerves NA, NH~ A4, and NH.A in order
to give intuition for the nerve construction of a double category or a 2-
category. In particular, this allows us to better understand the difference
between the nerves NH= A, and NH.A and provides intuition on why the
latter is not fibrant.
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8 Lyne MOSER
2. Preliminaries on 2-dimensional categories

In this paper, we consider two kinds of strict 2-dimensional categories:
2-categories and double categories. Every 2-category A can be seen as a
horizontal double category H.A with only trivial vertical morphisms, and
this yields a functor H: 2Cat — DblCat which admits both adjoints. In
particular, its right adjoint extracts from a double category A its underlying
horizontal 2-category HA. The horizontal embedding H is however not
homotopically well-behaved, and therefore we also need to consider its more
homotopical version H=: 2Cat — DblCat, which sends a 2-category A to
the double category H~.A whose underlying horizontal 2-category is still .A
itself, but its vertical morphisms are given by the adjoint equivalences of
A. We first recall these notions in Section 2.1.

Then, in Section 2.2, we recall the closed symmetric monoidal struc-
ture on 2Cat given by the Gray tensor product, introduced by Gray in [15],
which can be interpreted as a pseudo-version of the cartesian product. Sim-
ilarly, the category DblCat also admits a Gray tensor product, introduced
by Bohm in [4], which restricts along H to a tensoring functor of DblCat
over 2Cat. This provides a 2Cat-enrichment on DblCat, whose internal
homs are described more explicitly in Appendix A.3.

Finally, in Section 2.3, we define notions of weak horizontal invertibility
in a double category A for horizontal morphisms and squares. We then
introduce weakly horizontally invariant double categories, which are the
fibrant objects of the model structure on DblCat we consider. In particular,
they are precisely the double categories whose nerve is fibrant.

2.1. 2-categories, double categories, and their relations

Recall that a 2-category A consists of objects, morphisms f: A — B be-
tween objects, and 2-morphisms «: f = g between parallel morphisms, to-
gether with a horizontal composition law for morphisms and 2-morphisms
along common objects, and a vertical composition law for 2-morphisms
along common morphisms, which are associative, unital, and satisfy the
interchange law. A 2-functor F': A — B consists of assignments on ob-
jects, on morphisms, and on 2-morphisms which preserve the 2-categorical
structures strictly.

Notation 2.1. — We denote by 2Cat the category of 2-categories and
2-functors.

ANNALES DE L’INSTITUT FOURIER



A DOUBLE (oo, 1)-CATEGORICAL NERVE 9

Since 2-categories have not only morphisms, but also 2-morphisms, a
good notion of invertibility for a morphism in a 2-category is given by
requiring that it has an inverse up to invertible 2-morphism, rather than
strictly.

DEFINITION 2.2. — An equivalence f: A = Bina 2-category A is a
tuple (f, g,n,¢€) consisting of morphisms f: A — B and g: B — A and in-
vertible 2-morphisms 1: id 4 =N gf ande: fg = idp in A. An equivalence
(f,9,m,€) is an adjoint equivalence if the invertible 2-morphisms 7 and €
further satisfy the triangle identities.

We often denote the whole data (f,g,n,€) by just f.

Remark 2.3. — Every equivalence in a 2-category can be promoted to
an adjoint equivalence; see, for example, [29, Lemma 2.1.12].

We are now ready to introduce the other type of 2-dimensional categories
of interest in this paper: the double categories. While 2-categories are cat-
egories enriched over the category Cat of categories and functors, double
categories are internal categories to Cat.

DEFINITION 2.4. — A double category A consists of the following data:
(i) objects A, B, ...,
(ii) horizontal morphisms f: A — B with a horizontal identity ids for
each object A,
(iii) vertical morphisms u: A -» A" with a vertical identity e4 for each
object A,
(iv) squares a: (u }c, v) of the form

A$>B

A/ f/ N B/
with a vertical identity ey : (e A ; e B) for each horizontal morphism

f: A — B and a horizontal identity id,, : (u ;g: u) for each vertical

morphism u: A -e> A’,

(v) an associative and unital horizontal composition law for horizontal
morphisms, and squares along their vertical boundaries,

(vi) an associative and unital vertical composition law for vertical mor-
phisms, and squares along their horizontal boundaries,
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such that horizontal and vertical compositions of squares satisfy the inter-
change law.

DEFINITION 2.5. — A double functor F': A — B consists of assign-
ments on objects, on horizontal morphisms, on vertical morphisms, and on
squares, which are compatible with domains and codomains and preserve
all compositions and identities strictly.

Notation 2.6. — We denote by DblCat the category of double categories
and double functors.

In particular, a 2-category can be seen as an internal category to Cat
where the category of objects is discrete. This gives an embedding of 2Cat
into DblCat which associates to a 2-category its corresponding horizontal
double category.

DEFINITION 2.7. — We define the horizontal embedding functor
H: 2Cat — DblCat. It sends a 2-category A to the double category H.A
with the same objects as A, the morphisms of A as its horizontal mor-
phisms, only trivial vertical morphisms, and the 2-morphisms of A as its
squares. Compositions in HLA are induced by the ones in A. A 2-functor
F: A — B is sent to the double functor HF : HLA — HB which acts as F
does on the corresponding data.

The functor H admits both adjoints. Its right adjoint is given by the
following functor (see [10, Proposition 2.5]).

DEFINITION 2.8. — The functor H: 2Cat — DblCat admits a right ad-
joint given by the functor H: DblCat — 2Cat. It sends a double cate-
gory A to its underlying horizontal 2-category HA with the same objects
as A, whose morphisms are the horizontal morphisms of A, and whose
2-morphisms «: f = f' are the squares in A of the form

ALB

A T B .
Remark 2.9. — The functor H: 2Cat — DblCat also admits a left ad-
joint, denoted by L: DblCat — 2Cat, which sends a double category A
to a 2-category LA whose objects are equivalence classes of objects in A

under the following relation: two objects are identified if and only if they
are related by a zig-zag of vertical morphisms. The morphisms of LA are
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A DOUBLE (o0, 1)-CATEGORICAL NERVE 11

then generated by the horizontal morphisms of A, and the 2-morphisms of
LA are generated by the squares of A.

Since 2-categories can also be embedded vertically into double categories,
there are analogous functors for the vertical direction. However, in this
paper, a 2-category is always seen as a horizontal double category, unless
specified otherwise.

Remark 2.10. — Similarly, there is a functor V: 2Cat — DblCat sending
a 2-category A to the double category V.A with the same objects as A, only
trivial horizontal morphisms, the morphisms of A as its vertical morphisms,
and the 2-morphisms of A as its squares. This functor also admits both
adjoints, and its right adjoint V: DblCat — 2Cat sends a double category
to its underlying vertical 2-category.

As we will see in Section 3, the horizontal embedding H is not homotopi-
cally well-behaved. So we introduce another functor H~: 2Cat — DblCat,
which provides the correct homotopical replacement of H.

DEFINITION 2.11. — We define the functor H~: 2Cat — DblCat. It
sends a 2-category A to the double category H=.A with the same objects
as A, whose horizontal morphisms are the morphisms of A, whose verti-
cal morphisms are the adjoint equivalences (u,u’, 7y, €,) of A, and whose
squares

A—1 g

u= (u7u/777u7 EU)JZ a% 2'JU = ('U7'U/777v7€v)
A/ f/ N B/
are given by the 2-morphisms «: vf = f'u in A. Compositions in H=A
are induced by the ones in A. A 2-functor F: A — B is sent to the double

functor H=F: H= A — H~B which acts as F' does on the corresponding
data.

The functor H™ is not a left adjoint, since it does not preserve colimits;
see [25, Remark 2.17]. However, it admits a left adjoint, which we describe
below.

Remark 2.12. — By [25, Proposition 2.15], the functor H™ admits a left
adjoint, denoted by L~ : DblCat — 2Cat. It sends a double category A to
the 2-category L= A with the same objects as A, and whose morphisms are
generated by a morphism for each horizontal morphism in A and by an
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12 Lyne MOSER

adjoint equivalence for each vertical morphism in A. Its 2-morphisms are
further generated by the squares of A. See [25, Remark 2.16] for a precise
description.

2.2. Gray tensor products and 2Cat-enrichment

The category 2Cat admits a closed symmetric monoidal structure intro-
duced by Gray in [15].

DEFINITION 2.13. — Let Z and A be 2-categories. We denote by
[Z, Al2,ps the pseudo-hom 2-category of 2-functors T — A, pseudo-natural
transformations, and modifications. For a definition of these notions, see [19,
Definitions 4.2.1 and 4.4.1].

Then the Gray tensor product ®,: 2Cat x 2Cat — 2Cat endows the
category 2Cat with a closed symmetric monoidal structure with respect to
these pseudo-homs. More explicitly, for all 2-categories Z, A, and B, we
have a bijection

2Cat(Z @2 B, A) = 2Cat(B, [Z, Al ps)
natural in Z, A, and B.

Notation 2.14. — Leti: Z — Aand i : 7' — A’ be 2-functors. We denote
by iOg, i’ their pushout-product

i0g, it AT | | T@p A — A@y A
I®2T'

Similarly, the category DblCat also admits a closed symmetric monoidal
structure given by Bohm’s Gray tensor product [4], whose internal homs
have horizontal (resp. vertical) pseudo-natural transformations as its hor-
izontal (resp. vertical) morphisms. These transformations consist of the
same data as the horizontal (resp. vertical) transformations of double func-
tors with additional vertically (resp. horizontally) invertible squares giving
the pseudo-naturality conditions with respect to horizontal (resp. vertical)
morphisms.

DEFINITION 2.15. — Let I and A be double categories. We define the
pseudo-hom double category [I,A],s to be the double category of dou-
ble functors 1 — A, horizontal pseudo-natural transformations, vertical
pseudo-natural transformations, and modifications. See [4, Section 2.2] or
[12, Section 3.8] for more details.
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By [4, Section 3], the Gray tensor product ®¢: DblCat x DblCat —
DblCat endows the category DblCat with a closed symmetric monoidal
structure with respect to these pseudo-homs. More explicitly, for all double
categories I, A, and B, we have a bijection

DblCat(I ®¢ B, A) = DblCat(B, [I, A]ps)
natural in I, A, and B.

In this paper, we are interested in the underlying horizontal 2-categories
of these pseudo-hom double categories. This gives a tensored and coten-
sored 2Cat-enrichment on DblCat with tensoring functor obtained by re-
stricting the Gray tensor product for double categories defined above along
the horizontal embedding H in one of the variables.

DEFINITION 2.16. — Let I and A be double categories. We define the
pseudo-hom 2-category H[I, A, to be the 2-category of double functors

I — A, horizontal pseudo-natural transformations, and modifications; see
Definitions A.6 and A.7.

Then the Gray tensor product ®¢: DblCat x DblCat — DblCat restricts
to a tensoring functor

® = DblCat x 2Cat “2, DblCat x DblCat 2% DblCat

with respect to these pseudo-homs. More explicitly, for every pair of double
categories I and A, and every 2-category BB, we have a bijection

DblCat(I ® B, A) = 2Cat(B, H[I, A],s)
natural in I, A, and B. See [24, Proposition 7.5].

Notation 2.17. — Given a double functor I: I — A in DblCat and a
2-functor i: T — A in 2Cat, we denote by I g i their pushout-product

I0pi: AQT| |[To A— A0 A
I®T

2.3. Weak horizontal invertibility in a double category

As for 2-categories, a good notion of invertibility for a horizontal mor-
phism in a double category is not given by that of an isomorphism, but
rather by a weaker notion. Indeed, a double category has an underlying
horizontal 2-category which contains all horizontal morphisms, and which
we can use to define the notion of horizontal equivalences. Let us fix a
double category A.

TOME 0 (0), FASCICULE 0



14 Lyne MOSER

DEFINITION 2.18. — A horizontal morphism f: A — B in A is a hor-
izontal equivalence if f is an equivalence in the underlying horizontal 2-
category HA, i.e., if we have a tuple (f,g,n,¢€) of horizontal morphisms
f:A—= Bandg: B— A in A and vertically invertible squares n and € in
A as depicted below.

S A

BRI

B B

The horizontal morphism f: A — B is a horizontal adjoint equivalence
if f is an adjoint equivalence in the underlying horizontal 2-category HA,
i.e., if the vertically invertible squares n and e further satisfy the triangle
identities which require the following pastings to be the vertical identity
squares at f and g, respectively.

A a—1.p B—2 A A
” n R “ cf “ “ €g ” /I N
A—f—B—9— A—f— B B—9— A—f—B—9— A
” ef " € R w w € R ” €g "
A~ B=—=038 B B—— A

Remark 2.19. — By applying Remark 2.3 to the equivalences of the un-
derlying horizontal 2-category HA, we can see that every horizontal equiv-
alence in a double category A can be promoted to a horizontal adjoint
equivalence.

Before introducing the notion of weak horizontal invertibility, we first
settle the following notations.

Notation 2.20. — We denote by [n] the category given by the poset
{0 <1< ... <n}, for n > 0. In other words, it is the free category
on n composable morphisms. In particular, the category [0] is the terminal
category, and the category [1] is the free category {0 — 1} on a morphism.

We can extract from a double category A a 2-category VA := H[VI[1], A]ps
whose objects are the vertical morphisms of A, and whose morphisms are
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the squares of A. By considering the equivalences in this 2-category, we get a
notion of weak horizontal invertibility for squares. Technical, useful results
about weakly horizontally invertible squares are proven in Appendix A.

DEFINITION 2.21. — A square a: (u ’fc, v) in A is weakly horizontally
invertible if o is an equivalence in the 2-category H[V[1], A],s, I.e., if we have
the data of a square (3: (u Z, v) in A together with vertically invertible

squares 0, 7', €, and € satisfying the following pasting equalities.

A———— 4 A— 4
“ 1R “ Uf id,, iu
A—f—=B—9—A = N=——————y
f . f , f ” e ”
A B A A — B — o A
B4t .p B—2sa-1 p

oy
sy
I

o

B —¢— A —f'> B
B——85

B/—Bl

Note that the data (f,g,n,€) and (f’,g',n',€') are horizontal equivalences
in A, and we call B a weak inverse of o with respect to the horizontal
equivalence data (f,g,n,¢) and (f',¢',7,€).

Remark 2.22. — By applying Remark 2.3 to the 2-category H[V[1], A]s,
we can see that every weakly horizontally invertible square in a double cat-
egory A can be promoted to a weakly horizontally invertible square whose
horizontal equivalence data are horizontal adjoint equivalences. Indeed, a
square is an adjoint equivalence in the 2-category H[V[1], A}, if and only
if its horizontal equivalence data are horizontal adjoint equivalences.

Remark 2.23. — If the horizontal equivalence data of a weakly horizon-
tally invertible square are horizontal adjoint equivalences, we call them
horizontal adjoint equivalence data.
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With this terminology settled, we are now ready to introduce the fibrant
double categories of the considered model structure on DblCat.

DEFINITION 2.24. — A double category A is weakly horizontally invari-
ant if for every pair of horizontal equivalences f: A — B and f': A’ = B’
and every vertical morphism v: B -+ B’ in A, there is a vertical morphism
u: A o> A’ together with a weakly horizontally invertible square o in A as
depicted below.

A%B

3. Model structures on 2Cat and DblCat

Lack constructs in [20, 21] a model structure on the category 2Cat in
which the trivial fibrations are the 2-functors which are surjective on ob-
jects, full on morphisms, and fully faithful on 2-morphisms, and every
2-category is fibrant. In particular, the weak equivalences in this model
structure are the biequivalences. Since 2-categories can be horizontally em-
bedded into double categories, we then expect that the category DblCat
can be endowed with a model structure which is compatible with that of
2-categories through this horizontal embedding.

The first positive answer is given in [24], in which we construct a model
structure on DblCat right-induced along the functor (H,V): DblCat —
2Cat x 2Cat. With respect to this model structure, the horizontal embed-
ding H: 2Cat — DblCat is as well-behaved as possible: it is both left and
right Quillen, and homotopically fully faithful. However, the trivial fibra-
tions are only surjective on vertical morphisms, rather than full, and all
double categories are fibrant, which are both obstructions for the nerve
from double categories to double (oo, 1)-categories to be right Quillen.

Therefore, in [25], we construct another model structure on DblCat in
which the trivial fibrations are the double functors which are surjective
on objects, full on horizontal and vertical morphisms, and fully faithful
on squares, and the fibrant objects are given by the weakly horizontally
invariant double categories, which are precisely those double categories
whose nerve is fibrant (see Theorem 5.30). While the horizontal embedding
H is still left Quillen and homotopically fully faithful, it is not right Quillen

ANNALES DE L’INSTITUT FOURIER



A DOUBLE (o0, 1)-CATEGORICAL NERVE 17

anymore. Instead, its more homotopical version H= fulfills this role, and
actually provides a level-wise fibrant replacement of H.

We recall in Section 3.1 the main features of Lack’s model structure on
2Cat, and in Section 3.2 those of the model structure on DblCat of [25]. In
particular, we characterize the cofibrations of these model structures since
these descriptions will be used to prove that the left adjoint of the double
(00, 1)-categorical nerve is left Quillen.

3.1. Lack’s model structure for 2-categories

Let us first recall the definition of a biequivalence between 2-categories,
and give generating sets of cofibrations and trivial cofibrations for Lack’s
model structure on 2Cat.

DEFINITION 3.1. — A 2-functor is a biequivalence if it is surjective on
objects up to equivalence, full on morphisms up to invertible 2-morphism,
and fully faithful on 2-morphisms.

Remark 3.2. — Through the canonical inclusion Cat < 2Cat, we regard
any category as a 2-category without further specification. Moreover, we
denote by X: Cat — 2Cat the suspension functor sending a category C to
the 2-category C with two objects 0 and 1, and hom-categories

%C(0,0) = £C(1,1) = [0], ¥C(1,0)=0, and %C(0,1)=C.

Notation 3.3. — We denote by Z, the set containing the following 2-
functors:
(i) the unique map i;: @ — [0],
(ii) the inclusion i5: [0] U [0] — [1] of the two end points into the free-
living morphism,
(iii) the inclusion iz: 0X[1] — X[1] of the two parallel morphisms into
the free-living 2-morphism, where 90%[1] := 3([0] U [0]),
(iv) the 2-functor i4: X[1]s — X[1] sending the two non-trivial parallel
2-morphisms of X[1]2 to the non-trivial 2-morphism of [1], where
[1]2 := [1] Ujojujoy [1] is the free category on two parallel morphisms.
We denote by 7> the set containing the following 2-functors:
(i) the inclusion jy: [0] = Eaqj, where the 2-category FE,q; is the “free-
living adjoint equivalence”,
(ii) the inclusion ja: [1] — X1, where the category I = {z = y} is the
“free-living isomorphism”.
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THEOREM 3.4. — There is a cofibrantly generated model structure on
2Cat, in which the weak equivalences are the biequivalences, generating
sets of cofibrations and trivial cofibrations are given by the sets Iy and [Ja,
respectively, and every 2-category is fibrant.

Moreover, this model structure is monoidal with respect to the Gray
tensor product ®s.

Proof. — The existence of the model structure is given in [21, Theo-
rem 4] (which is a slightly modified version of [20, Theorem 3.3]). The sets
of generating (trivial) cofibrations are described at the beginning of [20,
Section 3], and the monoidality is the content of [20, Theorem 7.5]. O

Remark 3.5. — In particular, the model structure on 2Cat being mo-
noidal with respect to ®9 means that the pushout-product ¢Og, i’ (see
Notation 2.14) of two cofibrations ¢ and ¢’ in 2Cat is a cofibration in 2Cat,
which is trivial if ¢ or ¢’ is a biequivalence.

The following results provide characterizations of cofibrations and of cofi-
brant objects in 2Cat. We denote by U: 2Cat — Cat the functor sending
a 2-category to its underlying category.

PROPOSITION 3.6. — A 2-functor F': A — B is a cofibration in 2Cat if
and only if
(i) it is injective on objects and faithful on morphisms, and
(ii) the underlying category UB is a retract of a category obtained from
the image of UA under UF by freely adjoining objects and then
morphisms between objects.

Proof. — This follows from [20, Lemma 4.1 and Corollary 4.12]. O

COROLLARY 3.7. — A 2-category A is cofibrant in 2Cat if and only if
its underlying category U A is free.

Proof. — This is given by [20, Theorem 4.8]. O

3.2. Model structure for weakly horizontally invariant double
categories

While the weak equivalences in the model structure on DblCat for weakly
horizontally invariant double categories constructed in [25] do not admit
an explicit description, they contain the double biequivalences. These cor-
respond to the weak equivalences of the model structure on DblCat of [24],
and were first introduced in [24, Definition 3.6].
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DEFINITION 3.8. — A double functor is a double biequivalence if it
is surjective on objects up to horizontal equivalence, full on horizontal
morphisms up to vertically invertible square with trivial vertical bound-
aries, surjective on vertical morphisms up to weakly horizontally invertible
square, and fully faithful on squares.

We now introduce a set of generating cofibrations for the model structure
on DblCat of [25].

Notation 3.9. — We denote by Z the set containing the following double
functors:
(i) the unique map Ir: § — [0],

(ii) the inclusion I: [0] U [0] — HJ[1],

(iii) the inclusion Is: [0] U [0] — V1],

(iv) the inclusion I,: S — S, where S := H[1] x V[1] is the free double
category on a square, and JS is its sub-double category containing
the boundary of the square, i.e. it is free on two horizontal mor-
phisms and two vertical morphisms sharing some boundaries,

(v) the 2-functor I5: So — S sending the two non-trivial squares of Sy
to the non-trivial square of S, where S, is the free double category
on two parallel squares.

THEOREM 3.10. — There is a model structure on DblCat in which the
cofibrations are generated by the set T and the fibrant objects are the
weakly horizontally invariant double categories. The class of weak equiva-
lences contains the double biequivalences.

Moreover, the model structure on DblCat is monoidal with respect to the
Gray tensor product ®¢, and it is enriched over Lack’s model structure on
2Cat with respect to the 2Cat-enrichment H[—, —]s.

Proof. — The existence of the model structure is given in [25, Theo-
rem 3.26]. The monoidality and enrichment are the content of [25, Theo-
rem 7.8 and Remark 7.9]. O

Remark 3.11. — In particular, the model structure on DblCat being en-
riched over 2Cat with respect to H[—, —|,s means that the pushout-product
I0g i (see Notation 2.17) of a cofibration I in DblCat and a cofibration 4 in
2Cat is a cofibration in DblCat, which is trivial if I is a double biequivalence
or 7 is a biequivalence.

Remark 3.12. — The weak equivalences of the model structure on DblCat
of Theorem 3.10 can be described as those double functors which induce a
double biequivalence between fibrant replacements.
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The following results state characterizations of cofibrations and cofibrant
objects in DblCat.

PROPOSITION 3.13. — A double functor F': A — B is a cofibration in
DblCat if and only if

(i) it is injective on objects and faithful on horizontal and vertical
morphisms,

(ii) the horizontal (resp. vertical) underlying category UHB (resp.
UVB) is a retract of a category obtained from the image of the
category UHA (resp. UVA) under the functor UHF' (resp. UVF')
by freely adjoining objects and then morphisms between objects.

Proof. — This follows from [20, Lemma 4.1] and [25, Theorem 3.11]. O

COROLLARY 3.14. — A double category A is cofibrant in DblCat if and
only if its underlying horizontal and vertical categories UHA and UV A
are free.

Proof. — This is [25, Corollary 3.13]. O

The horizontal embedding functor H is not right Quillen with respect
to Lack’s model structure on 2Cat and the model structure on DblCat of
Theorem 3.10 since the horizontal double category H.A associated to a 2-
category A is not always weakly horizontally invariant; see [25, Remark 6.4].
However, its better suited homotopical version H~ is such a right Quillen
functor and it gives a homotopically full embedding of 2-categories into
double categories.

THEOREM 3.15. — The adjunction
L:
/_\
2Cat 1 DblCat
~_ 7
H=
is a Quillen pair between Lack’s model structure on 2Cat and the model
structure on DblCat for weakly horizontally invariant double categories.

Moreover, the derived counit of this adjunction is level-wise a biequivalence
in 2Cat.

Proof. — This is [25, Theorem 6.6]. a

Remark 3.16. — By [25, Theorem 6.5], the inclusion HA — H~A is a
double biequivalence and hence exhibits H~=A as a fibrant replacement of
HA in the model structure on DblCat for weakly horizontally invariant
double categories.
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4. Model structures for (co,2)-categories and double
(00, 1)-categories

The model for (oo, 1)-categories we are considering here is that of com-
plete Segal spaces, due to Rezk [28]. An (oo, 2)-category can then be defined
as a complete Segal object in complete Segal spaces; this is the notion of 2-
fold complete Segal space, due to Barwick [1]. Haugseng then defines double
(00, 1)-categories as the Segal objects in complete Segal spaces in [16], where
the completeness condition is consequently in the vertical direction. How-
ever, the model of double (0o, 1)-categories we use here requires complete-
ness in the horizontal direction instead, so that the embedding of (oo, 2)-
categories into double (0o, 1)-categories is compatible with the homotopical
horizontal embedding of 2-categories into double categories after applying
the nerves. Nevertheless, these two models of double (0o, 1)-categories are
Quillen equivalent through a transpose functor.

In Section 4.1, we introduce horizontally complete double (oo, 1)-cate-
gories and show that they are the fibrant objects in a model structure on
bisimplicial spaces. Then, in Section 4.2, we recall the definition of a 2-
fold complete Segal space and show how to obtain the model structure on
bisimplicial spaces in which they are the fibrant objects as a localization of
the model structure for horizontally complete double (oo, 1)-categories. The
construction of these two model structures are inspired from constructions
given by Bergner and Rezk in [3]. In particular, the model structure for
2-fold complete Segal spaces is precisely the model structure of [3, Corol-
lary 7.2] for n =2 and ¢ = 1.

4.1. Model structures for double (oo, 1)-categories

Let us denote by A the simplex category and by sSet = Set®™ the cate-
gory of simplicial sets. We endow the category sSet with the Quillen model
structure, constructed in [27], and consider the Reedy or injective model
structure on sSetAopXAop, which coincide; see, for example, [2, Proposi-
tion 3.10]. This allows us to describe both the (trivial) cofibrations and the
fibrant objects of this model structure.

The objects of study here are bisimplicial spaces, i.e., trisimplicial sets,
and we introduce notations for the representables in each of the three copies

of A°P,

Notation 4.1. — We denote by F"[m], F¥[k], and A[n] the representable
bisimplicial spaces in the first, second, and third variable, respectively. We
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refer to the first direction as the horizontal direction, the second as the
vertical direction, and the third as the space direction. We also denote by
o OFMm) — Fhm], 2 OFY[k] — FU[k], and (5: OA[n] — Aln] the
boundary inclusions, and by £;, ,: A*[n] — Aln] the (n,t)-horn inclusion in

Aln].

Notation 4.2. — Givenmaps f: X — Y and f': X’ = Y’ insSet®” 2"
we denote by f [y f’ their pushout-product
FOF Y x X || XxY' —YxY'
XxX'

Remark 4.3. — A set of generating cofibrations for the Reedy/injective
model structure on sSet®” *A”" is given by the collection of maps

((h,: OF"m] — Fhim]) Oy (12: OF°[k] — FU[k])) Ox (15 0A[n] — Aln))
for m, k,n > 0, and a set of generating trivial cofibrations by the collection
of maps

(el OF"m] — F"m]) Oy (L} OFY[k] — FV[k])) Ox (Efl,t: At[n] — Aln])
for m,k > 0, n > 1, and 0 < ¢t < n. In particular, the cofibrations are

precisely the monomorphisms.

DEFINITION 4.4. — A bisimplicial space X : A°P x A°P — sSet is said
to be Reedy/injectively fibrant if the map

Xm,k = Map(Fh[m] X Fv[k]?X)

|

Map(9F"[m] x F* k] UaF’l[m]xaF”[k] F*m] x OF"[k], X)

induced by !, Oy ¥ is a Kan fibration in sSet, for all m,k > 0, where
Map(—, —) denotes the mapping simplicial set in sSet® " A" In other
words, this says that the bisimplicial space X has the right lifting property
against all generating trivial cofibrations (., Ox %) Ox ¢;, + of Remark 4.3.

We also introduce the following notation.

Notation 4.5. — We denote by N*: Cat — Set(™)” the discrete nerve
constant in the vertical and space directions. At a category C, it is given
by (N"C)p k.m = Cat([m],C).

Example 4.6. — Let I = {x = y} € Cat be the “free-living isomorphism”.
Its discrete nerve is given by (N"I),, x, = Cat([m],I). In particular, a
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functor [m] — I can be described as a word of m + 1 letters in {z,y}.
For example, when m = 0, we have that (N"I)o ., = {z,y}; and, when
m =1, (N"I)1 xn = {zz, 7y, y2, yy} Where zx and yy are degenerate and
represent the identities at x and y, and xy and yx represent the two inverse
morphisms between x and y. In particular, for X € sSet®" A" and k > 0
such that X_ € sSet®” is a Segal space, then

Map(N"T x FY[k], X) = (X, ;)"

is the space of homotopy equivalences in X j, as described in [28, Sec-
tion 5.7].

We now present the co-version of double categories of use in this paper.
Notation 4.7. — For k > 0, we write
gi‘) GU[]C} = Fv[l] I—IFU[O] - uFu[O] Fv[l] — FU[]C}

for the spine inclusion of F[k] induced by the maps {i,4+ 1}: [1] — [k] of
A, for all 0 < ¢ < k — 1. Similarly, for m > 0, we write

gﬁz: Gh[m] = Fh[l] Upnio) - - - Upr[o] Fh[].] — F‘h[ﬂ%]7

for the spine inclusion of F"*[m] induced by the maps {j,7 + 1}: [1] = [m)]
of A, for all 0 < 7 < m — 1. Finally, we write
e FM"0] — NI

for the inclusion induced by the functor z: [0] — I = {& = y}, where [ is
the “free-living isomorphism”.

DEFINITION 4.8. — A horizontally complete double (oo, 1)-category is
a bisimplicial space X : A°P x A°P — sSet such that

(i) X is Reedy/injectively fibrant,

(i) Xp,—: A% — sSet is a Segal space, for all m > 0, i.e., the Segal
maps

X = Map(F"[m] x FV[k], X)

k

Xing XXpo -+ XXmo Xm,1 = Map(F"[m] x G¥[k], X)

induced by idpny,,) X gy are weak equivalences in sSet, for all m, k >
0,
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(iif) X_ x: AP — sSet is a Segal space, for all k > 0, i.e., the Segal
maps

Xon ke = Map(F"[m] x FV[k], X)

k

X1k XXop - X X0, X1, = Map(Gh[m] x FV[k], X)

induced by gl x idpoy) are weak equivalences in sSet, for allm > 0,
(iv) the Segal space X_ j,: A°" — sSet is complete, i.e., the map

Map(N"I x FU[k], X) = (X1 )4 =5 Xo1, = Map(F"[0] x F*[k], X)
induced by e x idpepy) is a weak equivalence in sSet, for all k > 0.

We obtain a model structure on sSet®” *2™ for horizontally complete

double (00, 1)-category by localizing the Reedy/injective model structure
with respect to monomorphisms, i.e., cofibrations, with respect to which
being local corresponds precisely to satisfying conditions (ii) and (iii) of
the above definition.

THEOREM 4.9. — There is a model structure on sSetAopXAop, denoted

by DblCatZo, obtained as a left Bousfield localization of the Reedy/injective
model structure in which the fibrant objects are precisely the horizontally
complete double (0o, 1)-categories.

Proof. — We localize the Reedy/injective model structure with respect

to the cofibrations

o idpnpy X g F'm] x G*[k] — F"[m] x FV[k], for all m, k > 0,

o gl xidpep: G"[m] x FUlk] — F"[m] x F*[k], for all m,k >0,

o el x idpop) : FV[K] = Fh0] x FY[k] — N"I x FV[k], for all k > 0.
The existence of this model structure is given by [17, Theorem 4.1.1]. More-
over, a Reedy/injectively fibrant bisimplicial set is local with respect to this
collection of maps if and only if it is a horizontally complete double (co, 1)-
category. 0

Remark 4.10. — We could also have defined a notion of double (oo, 1)-
category, where the completeness is in the vertical direction. These corre-
spond to the Segal objects in complete Segal spaces defined by Haugseng
in [16, Definition 2.2.2.1]. Let us denote by DblCat?, the model structure
for these vertically complete double (00, 1)-category. Then the functor

t: AP x A% —5 AP 5 AP ([m], [k]) — ([k], [m])
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. op op op op
induces a functor #*: sSet® 27" 5 gQet®” XA

equivalence

, and we get a Quillen

t*

/_\
DblCat, L DblCat?
~_ 7

t*

between the two model structures for double (0o, 1)-categories. This functor
t* can be thought of as a transpose functor.

4.2. Model structure for 2-fold complete Segal spaces

We now recall the definition of a 2-fold complete Segal space.

Notation 4.11. — We denote by NV: Cat — Set (™) the discrete nerve
constant in the horizontal and space directions. It is given by (NVC)y, k.n =
Cat([k],C) at a category C.

Notation 4.12. — We write e”: F?[0] — N"I for the inclusion induced by
the functor z: [0] = I = {x = y}, where I is the “free-living isomorphism”,
and ¢} : FY[0] — F"[k] for the inclusion induced by the map 0: [0] — [k] of
A, for k>0

DEFINITION 4.13. — A 2-fold complete Segal space (or (oo, 2)-category)
is a bisimplicial space X : A°P x A°P — sSet such that
(i) X is Reedy/injectively fibrant,
(if) Xpm,—: A% — sSet is a complete Segal space, for all m > 0, i.e., we
have the Segal condition as in Definition 4.8 (ii), and the map

Map(F"[m] x NI, X) 2 (X,,1)4 = X,,,. 0 = Map(F"[m] x F*[0],

X)

induced by idpn(y,) X €” is a weak equivalence in sSet, for allm > 0,

(iii) X_ x: A% — sSet is a complete Segal space, for every k > 0,

(iv) XO,_. A°P — sSet is essentially constant, for all k > 0, i.e., the
map

Map(F"[k], X) & Xox — Xo,0 = Map(F"[0], X)
induced by c} is a weak equivalence in sSet, for all k > 0.

We obtain a model structure for 2-fold complete Segal spaces as a left
Bousfield localization of the model structure for horizontally complete dou-
ble (o0, 1)-categories.
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THEOREM 4.14. — There is a model structure on sSetAopXAop, denoted
by 2CSS, obtained as a left Bousfield localization of the model structure
DblCatI;O for horizontally complete double categories in which the fibrant
objects are precisely the 2-fold complete Segal spaces, i.e., the (co,2)-
categories.

Proof. — We localize the model structure DblCat” with respect to the
cofibrations
o idpnp, xe”: Fhm] = F"m] x F[0] — F"m]x NI, for all m > 0,
o ¢} FV[0] — FV[k], for all k > 0.
The existence of this model structure is given by [17, Theorem 4.1.1]. More-
over, a horizontally complete double (00, 1)-category is local with respect to
this collection of maps if and only if it is a 2-fold complete Segal space. [

The following result is obtained as a direct consequence of the fact that
2CSS is a localization of DblCath, and tells us that the identity functor

id: 2CSS — DblCat” can be interpreted as the co-version of the horizontal
embedding.

COROLLARY 4.15. — The identity adjunction on sSet®" **™ induces
a Quillen pair

id
}/\
2CSS 1 DblCat”_
\_/I
id

Moreover, the derived counit is level-wise a weak equivalence. In particular,
this gives a homotopically full embedding of 2CSS into DblCat};o.

5. Nerve of double categories

We now give the construction of a nerve functor from double categories to
bisimplicial spaces. In Section 5.1, we define the nerve and its left adjoint,
and in Section 5.2, we show that they form a Quillen pair between the model
structure on DblCat for weakly horizontally invariant double categories
and the model structure DblCat”, for horizontally complete double (0o, 1)-
categories. Once this fact is established, we prove in Section 5.3 that the
nerve functor is homotopically fully faithful, by showing that the derived
counit of the adjunction is level-wise a weak equivalence in DblCat. Finally,
in Section 5.4, we show that the nerve of a double category is almost fibrant;
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namely, it satisfies all conditions of a horizontally complete double (oo, 1)-
category except for the Reedy /injective fibrancy condition in the vertical
direction. We show that the latter condition is satisfied by the nerve if and
only if the double category considered is weakly horizontally invariant.

5.1. Definition of the nerve

To define the nerve we make use of truncated versions of the n-orientals
O(n), introduced by Street in [30]. More precisely:

DEFINITION 5.1. — For n > 0, we define the 2-truncated n-oriental
Oz(n) to be the 2-category described by the following data.
(i) Its set of objects is given by {0,...,n},
(ii) For 0 < z,2’ < n, its hom-category Oz(n)(x, ') is given by the
poset
[C [z, |z eI} ifa <,
Os(n)(,2) = {IC [z, 2] | z,x }oifa <z
0 if x>,
where [z,2'] = {y €{0,...,n} |z <y <2}
We also define O5'(n) as the 2-category obtained from O(n) by for-

mally inverting every 2-morphism, and we define O2(n) as the 2-category
obtained from O3 (n) by formally making every morphism into an adjoint

—_—

equivalence. The 2-categories O3 (n) and O2(n) can be obtained as the
following pushouts, respectively.

Y[1] — Oz(n) L] [1] ——— O05(n)
oz<z/' <z’ <n oz<z’'<n
| | | i
I —— 05 (n) U EBagg — 03(n)
oz<z/ <z’ <n oz<z’'<n

In order to have a better sense of what these 2-categories look like, we
describe the lower cases.

—~—

Example 5.2. — For n = 0, the 2-categories O2(0), O3 (0), and O2(0) are
all given by the terminal (2-)category [0].

For n = 1, the 2-categories O3(1) and O3'(1) are both given by the free
(2-)category [1] on a morphism, while the 2-category Os(1) is the “free-
living adjoint equivalence” E,g;.
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—_~—

For n = 2, the 2-categories O3(2), 05 (2), and O2(2) are generated,
respectively, by the following data,

1 1 1
O/w\2 O/ﬂz\2 O/ﬂNQ

where = denotes the data of an adjoint equivalence.
For n = 3, the 2-category O2(3) is generated by the following data

PARNI

and the 2-category O5(3) is generated by the corresponding 2-category

W N

with all 2-morphisms invertible, while the 2-category O2(3) is generated by
the corresponding 2-category with all morphisms being adjoint equivalences
and all 2-morphisms being invertible.

The nerve functor is then defined as the right adjoint of the left Kan
extension of the following tricosimplicial double category along the Yoneda
embedding. Recall the tensoring functor ®: DblCat x 2Cat — DblCat in-
troduced in Definition 2.16.

DEFINITION 5.3. — We define the tricosimplicial double category

X: A x A x A — DblCat,

([m], [K], [n]) — X k.n = (VO3 (k) © O5'(m)) © Oz(n),

where the cosimplicial maps are induced by the ones of the cosimplicial
objects
A — DblCat, [k] — VO3 (k)

A — 2Cat, [m]+—— 05 (m), and [n] — Oz(n).

PROPOSITION 5.4. — The tricosimplicial double category X induces an

adjunction

AxAxA—=DblCat ,

| =

Set(4™)™ :
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where C is the left Kan extension of X along the Yoneda embedding, and
we have that

(NA)p,k,n = DbICat((VO3' (k) ® O3'(m)) ® Oz(n), A),
for all A € DblCat and all m,k,n > 0,
Proof. — This is a direct application of [7, Theorem 1.1.10]. O

Remark 5.5. — As expected from a nerve construction, the 0-simplices
of the simplicial set (NA)g are given by the objects of A, the ones of
(NA)1 ¢ by the horizontal morphisms of A, the ones of (NA)y; by the
vertical morphisms of A, and the ones of (NA); 1 by the squares of A. These
can therefore be thought of as the spaces of objects, horizontal morphisms,
vertical morphisms, and squares. For a description of the 1- and 2-simplices
of these simplicial sets, we refer the reader to Appendix B.1. For m > 2
or k > 2, the simplicial sets (NA),, » witness “compositions” in A of the
above data.

Remark 5.6. — Since C is the left Kan extension of X along the Yoneda
embedding, it is given on representables by

C(FU[k] x F"[m] x An]) = Xpkon-

In particular, we have that

C(F°[K]) = VO3 (k), C(F"[m]) =HOy(m) and C(A[n]) = HOs(n).

We also introduce a functor C, which takes values in 2-categories and
coincides with C in the horizontal and space directions.

Notation 5.7. — We define the tricosimplicial 2-category
X: A xAxA— 2Cat,

([m], [K], [n]) — X pon = O3 (m) @2 Oa(n)

and we denote by C: SetA™)* 5 9Cat the left Kan extension of X along
the Yoneda embedding, where ®4: 2Cat x 2Cat — 2Cat is the Gray tensor
product; see Definition 2.13.

Remark 5.8. — Note that X,,, 0., = ]H[Xm’o,n. Therefore, if X € Set(Aup)XS
is constant in the vertical direction, then CX = HCX. In particular,
we have that C(F"[m]) = HC(F"[m]) and C(A[n]) = HC(A[n]), where

C(F"'[m]) = O3 (m) and C(A[n]) = Oz(n).
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Finally, we comment on why we choose to define the nerve in this specific
way instead of using the more direct inclusion of double categories into
bisimplicial spaces.

Remark 5.9. — Using simplices instead of their fattening given by the
o 3
orientals, one can define a nerve NV: DblCat — Set(A™) given at a double
category A and m, k,n > 0 by

(NA)m.n = DblCat(H[m] x V[k] x HI[n], A),

where I[n] is the contractible groupoid on n+ 1 points. While this defines a
right adjoint at the point-set level, it will not have the required homotopi-
cal properties: it does not define a right Quillen functor from the model
structure on DblCat for weakly horizontally invariant double categories
to the model structure on sSet®” *4™ for horizontally complete double

(00, 1)-categories.

5.2. The nerve N is right Quillen

We now want to prove that the adjunction C 4 N is a Quillen pair
between DblCat and DblCat”_ . To prove this result, we make use of the
following theorem.

THEOREM 5.10. — Let M and N be model categories and suppose that

F
L T~
N L M
~_

U

is a Quillen pair. Let C be a set of cofibrations in M such that the left
Bousfield localization Le M of M with respect to C exists. If F' sends every
morphism in C to a weak equivalence in N, then the adjunction

F
o~
N 1 LcM
~_
U

is also a Quillen pair.

Proof. — This is a direct consequence of [17, Theorem 3.3.20], since the
localization of N with respect to maps in FC is NV itself as maps in FC are
already weak equivalences in V. O
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To apply this theorem, we first show that C 4 N is a Quillen pair between
the model structure on DblCat and the Reedy/injective model structure

on sSet™"XA™,
PROPOSITION 5.11. — The adjunction
C
/\ . B
DblCat L sSetA PXA®P
~_
N

is a Quillen pair between the model structure on DblCat of Theorem 3.10
and the Reedy/injective model structure on sSetA” XA

Proof. — It is enough to show that C sends generating cofibrations and

op op . . -
XA™ t6 cofibrations and trivial

generating trivial cofibrations in sSet?
cofibrations in DblCat, respectively. Recall from Remark 4.3 that generat-
ing cofibrations and generating trivial cofibrations are given by pushout-
product of maps (v Oy ¢/) Oy ¢, and (¢f Oy o)) Oy €5 4, respectively. Note
that the map ¢} is constant in the horizontal and space directions, the map

h
m

¢}, + are constant in the horizontal and vertical directions. Therefore, since
the functor C preserves colimits and by Remark 5.8, we have that

C((¢k Ox tm) Ox ¢3,) 2 (Ce Og Cepy) Og €, = (Cif Og Coyy,) Og Ty,

Ly, is constant in the vertical and space directions, and the maps ¢; and

and similarly for £7 , in place of ¢, Since the model structure DblCat is
enriched over 2Cat, pushout-products of cofibrations with respect to ® are
cofibrations, which are trivial if one of the morphisms involved is a weak
equivalence, by Remark 3.11. Therefore, it is enough to show that C.} is a
cofibration in DblCat, for all k > 0, that Ci!, and C:3 are cofibrations in
2Cat, for all m,n > 0, and that @ffm is a trivial cofibration in 2Cat, for
all n > 1, 0 <t < n. These statements are verified in Lemmas 5.14 to 5.16
below. g

To prove that the boundary and horn inclusions mentioned above are sent
to cofibrations in 2Cat and DblCat, we introduce the following definitions
of the boundary and (n,t)-horn of O3(n), which are used to describe the
images under C of the boundary and horn inclusions.

DEFINITION 5.12. — For n > 0, we define the boundary 2-category
003(n) as the coequalizer in 2Cat

|_| 02<n—2)4> I_l OQ(H-I)%@OQ(N),
0<i<ggsn 0<i<n
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where the maps in the (i, j)-copy are induced by the cosimplicial identities
did? = d7=1d', where d": O2(n—2) — Oa(n—1) and d*: Oz(n—1) — Oz(n)
denote the face maps for r = i,j and s = i,j — 1. In particular, there is an
inclusion d03(n) — Oa(n) induced by the face maps d*: Oz(n—1) — Oz(n)
for 0 < i < n. More explicitly, these 2-categories are given by the following:

o forn =0, 002(0) = 0 with 002(0) = 0 — O2(0) = [0] given by the
unique map,

o forn =1, 005(1) = [0] U [0] with 0O02(1) = [0] U [0] = O2(1) = [1]
given by including the two copies of [0] as the two endpoints of the
morphism in [1],

o for n = 2, 005(2) is the sub-2-category of O3(2) where the 2-
morphism is missing and the inclusion 002(2) — O2(2) is given
by the following 2-functor,

N, =\

o for n = 3, 005(3) is the sub-2-category of O3(3) where only the
equality between the two pasting diagrams in O2(3) — as depicted
in Example 5.2 — is missing,

o forn >4, 003(n) = Oz(n).

—_~—

Similarly, we define the boundary 2-categories 005 (n) and Oz (n).

DEFINITION 5.13. — Forn > 1 and 0 < t < n, we define the (n,t)-horn
2-category A'Oz(n) as the coequalizer in 2Cat

U Ox(n—2)—/= |J Ox(n—1)—=A'Os(n),
0<i<j<n 0<i<n
it it it

where the maps in the (i, j)-copy are induced by the cosimplicial identities
did’ = d?=1d’, where d": O3(n—2) — Oa(n—1) and d*: Oz(n—1) — Oa(n)
denote the face maps for r = i,j and s = i,j — 1. In particular, there is
an inclusion A'Oz(n) — Oz(n) induced by the face maps d*: Og(n — 1) —
Os(n) for 0 < i < n, @ # t. More explicitly, these 2-categories are given by
the following:

o forn =1, A'Oy(1) = [0] with A'O5(1) = [0] — O2(1) = [1] given
by the inclusion of [0] at the source of the morphism in [1] ift =1
and at the target if t = 0,
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o forn = 2, A205(2), A*02(2), and A°0O4(2) are generated, respec-
tively, by the following data

1 1 1

\ /N /

00— 2 0 2 00— 2

with the obvious inclusions into Os(2),

e form =3 and 0 < t < 3, At02(3) is the sub-2-category where
the equality between the two pasting diagrams in O2(3) and the 2-
morphism opposite to the object t are missing. For example, when
t = 0, the inclusion A°Oq(3) — O4(3) is given by the following.

A Ei PARR

e forn >4 and 0 <t <n, A!Os(n) = Oz(n).
Similarly, we define the (n,t)-horn 2-categories A'O5’(n) and Até;/(n).

We are now ready to prove the promised lemmas which complete the
proof of Proposition 5.11.

LEMMA 5.14. — For all k > 0, the double functor
C(e): C(OF"[k]) — C(F"[K])
is a cofibration in DblCat.

Proof. — The boundary 0F"[k] of the representable F"[k] can be com-
puted as the following coequalizer in sSet™ IXAT

U Flk—21—= |l Flk—1 —— 0F"[k],
0<i<ji<k 0<igk

where the maps in the (¢, j)-copy are induced by the cosimplicial iden-
tities d'd’ = d’~*d'. By construction of dO5 (k) (see Definition 5.12), by
Remark 5.6, and since C preserves colimits, we find that

C(OF"[k]) = V003 (k) and C(F"[k]) = VO35 (k),
for all k > 0. Therefore, the double functors C(¢}) are given by

e for k = 0, the generating cofibration I;: § — [0],
e for k =1, the generating cofibration I5: [0] Ll [0] — V1],

TOME 0 (0), FASCICULE 0



34 Lyne MOSER

e for k = 2, the inclusion

0=——0

O

N —0— — <—e—
M(—Q*H(—Q*O

9 — 9 ——
which is a cofibration by Proposition 3.13 since it is the identity
on underlying horizontal and vertical categories,

e for k = 3, the inclusion VOO3 (3) — VO3 (3), which is a cofibration
by Proposition 3.13 since it is the identity on underlying horizontal
and vertical categories,

e for k > 4, the identity.

This shows that the double functor C(¢}) is a cofibration in DblCat, for all
k>=0. O

LEMMA 5.15. — For all m,n > 0, the 2-functors
C(h): C(OF"[m]) — C(F"[m]) and C(.5): C(OA[n]) — C(A[n))
are cofibrations in 2Cat.

Proof. — We first prove the statement for C(:?). As in the proof of
Lemma 5.14 and by Remark 5.8, we find that

C(OF"[m]) = 905 (m) and C(F"[m]) = O3 (m),
for all m > 0. Therefore, the 2-functors C(:1,) are given by
e for m = 0, the generating cofibration iy : ) — [0],
e for m = 1, the generating cofibration i5: [0] U [0] — [1],
o for m = 2, the inclusion 003 (2) — 05'(2), which is a cofibration
by Proposition 3.6 since it is the identity on underlying categories,
e for m = 3, the inclusion 903 (3) — 05'(3), which is a cofibration
by Proposition 3.6 since it is the identity on underlying categories,
e for m > 4, the identity.
Therefore, the 2-functor C(:%,) is a cofibration in 2Cat, for all m > 0.
We now prove the statement for C(¢3). As above, we find that

C(0A[n]) = 902(n) and C(A[n]) = O2(n),

for all n > 0. Therefore the 2-functors C(:2): 902(n) — Oz(n) can be
described as the 2-functors C(:!)) above, but where all the morphisms of
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the 2-categories in play are adjoint equivalences. In particular, the 2-functor
C(13) is also a cofibration in 2Cat, for all n > 0. O

LEMMA 5.16. — For alln > 1 and 0 < t < n, the 2-functor

): C(A'[n]) — C(A[n])

C(es

n,t

is a trivial cofibration in 2Cat.

Proof. — The (n,t)-horn A'[n] of the representable A[n] can be com-
puted as the following coequalizer in sSetAXA™
L An-21—/=X || An—-1] —— A'n],

0<i<j<n 0<i<n
it £t it

where the maps in the (7, j)-copy are induced by the cosimplicial identi-
ties d'd’ = d’~1d'. By construction of A'Os(n) (see Definition 5.13), by
Remark 5.8, and since C preserves colimits, we find that

—~—

C(A'[n]) = A'O2(n) and C(A[n]) = Oz(n),

—_—~

foralln > 1 and 0 < t < n. So the 2-functors (E(Efm): AOz(n) — Oz(n)
are given by

e forn=1and 0 <t < 1, the generating trivial cofibration j; : [0] —

O2(1) = E,qj, including [0] as one of the two end points,

e for n = 2 and 0 < t < 2, the inclusion A'O2(2) — O3(2), which
is a cofibration by Proposition 3.6 since it is given by adding two
morphisms * — y and y — =z freely between objects x < y €
{0,1,2} \ {t} on underlying categories. Moreover, it is a biequiva-
lence, since it is bijective on objects, essentially full on morphisms,

and fully faithful on 2-morphisms, where essential fullness on mor-
phisms can be shown using the fact that all the morphisms are
adjoint equivalences.

—_—~

e for n =3 and 0 < ¢t < 3, the inclusion A'O5(3) — O2(3), which is a
cofibration by Proposition 3.6 since it is the identity on underlying
categories. Moreover, it is a biequivalence, since it is bijective on
objects and morphisms, and it is fully faithful on 2-morphisms,
where fully faithfulness follows from the fact that there is a unique
invertible 2-morphism filling the triangle of the missing invertible
2-morphism and it is given by the obvious composite of the three
other invertible 2-morphisms.

e for n > 4 and 0 < t < n, the identity.
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Therefore, the 2-functor @(éfw) is a trivial cofibration in 2Cat, for alln > 1,
0<t<n. O

We now show that the nerve functor is right Quillen from DblCat to
DblCat” .

THEOREM 5.17. — The adjunction

C

/\
DblCat L DblCat”,
\_/!

N

is a Quillen pair between the model structure on DblCat for weakly horizon-
tally invariant double categories and the model structure on sSetA XA

for horizontally complete double (oo, 1)-categories.

Proof. — By Theorem 5.10 and Proposition 5.11, it is enough to show
that the cofibrations gy xid g [, id po] x gl and id popg) X e, with respect

A°PXA°P .
m

to which we localize the Reedy/injective model structure on sSet
order to obtain the model structure DblCa‘cgO of Theorem 4.9, are sent by
C to weak equivalences in DblCat. By definition of C and by Remark 5.8,

we have that
Clgh  idpnmy) = Clg}) ® idggnyy = Clgh) Os (0 — TF[m)),
and similarly that
Clidpopy % gpm) = (0 — CFY[k]) Og C(gp,),

C(idpopy x €") = (0 — CF[k]) Og C(e").
Since C is left Quillen from the Reedy/injective model structure on the
category sSet®”" A" in which every object is cofibrant, the unique maps
) — CF"m] and § — CF"[k] are cofibrations in 2Cat and DblCat, re-
spectively. Moreover, the maps C(g¥), C(g") and C(e") are cofibrations in
DblCat and 2Cat, since they are images of monomorphisms in sSetAT XA
As the model structure on DblCat is 2Cat-enriched, it is enough to show
that C(g7) is a weak equivalence in DblCat and that C(g"), and C(e")
are biequivalences by Remark 3.11. These statements are the content of
Lemmas 5.18 and 5.19, respectively. O

The following two lemmas complete the proof of Theorem 5.17.
LEMMA 5.18. — For all k > 0, the double functor
Clgr): C(G*[K]) — C(F[K])
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is a double biequivalence in DblCat. In particular, it is a weak equivalence
in DblCat.

Proof. — Since C preserve colimits and [k] = [1] Uy ... Upoj [1], we have
that
C(G"[K]) = V[k] and C(F"[k]) = VO3 (k),
for all k& > 0. First note that, when k = 0,1, the double functor C(g}) is
an identity. For £ > 2, let us give an example. When k£ = 2, the double
functor C(g3) is given by the inclusion

0
H {
2
Having this example in mind, we can see that, for all £ > 0, the double
functor C(g}): V[k] — VO3’ (k) is the identity on objects and horizontal

morphisms, and it is fully faithful on squares, since all squares in V[k] are
trivial. The double functor C(g}) is also injective on vertical morphisms.

N <{—0—— —e— O
N —0———0— O

Moreover, since every vertical morphism i -+ j in VO3’ (k) is related by a
horizontally invertible square to the composite i o+ i+1 -+ --- -e> j, then
C(gy}) is essentially full on vertical morphisms. This shows that the double

functor C(gy) is a double biequivalence and hence a weak equivalence in
DblCat, for all £ > 0. O

LEMMA 5.19. — For all m > 0, the 2-functors

C(gk): C(G"m])) — C(F"[m]) and C(e"): C(F"[0]) — C(N"I)
are biequivalences in 2Cat.

Proof. — We first show the desired result for C(g" ). As in the proof of
Lemma 5.18 and by Remark 5.8, we have that

C(G"[m]) = [m] and C(F"[m]) = O3 (m),

for all m > 0. One can prove that the 2-functor C(g" ) is the identity on
objects, essentially full on morphisms, and fully faithful on squares as in
the proof of Lemma 5.18. Hence the 2-functor C(g",) is a biequivalence, for
all m > 0.

It remains to show that C(e") is a biequivalence. First note that we have
that C(F"[0]) = [0], and we compute C(N"T). Recall from Example 4.6
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that m-simplices of the bisimplicial space NI constant in the vertical and
space directions are given by words of m letters in {z,y}. Since C(N"T) is
obtained by gluing a copy of O3 (m) for each m-simplex of N"I, we have
that C(N"I) has
e two objects 0 and 1, given by the 0-simplices x and y,
e two non-trivial morphisms f: 0 — 1 and ¢g: 1 — 0, given by the
1-simplices zy and yux,
e two non-trivial invertible 2-morphisms 7: id, = gf and €: idy, = fg,
given by the 2-simplices zyx and yxy,
such that 7 and e satisfy the triangle identities, expressed by the 3-simplices
yxyx and zyxy. Higher simplices of N"I do not add any relations. There-
fore, the 2-category C(N"I) = E,q; is the “free-living adjoint equivalence”,
and C(e") = j1: [0] — FEaq; is a generating trivial cofibration in 2Cat. [J

5.3. The nerve N is homotopically fully faithful

We now show that the nerve functor is homotopically fully faithful. For
this, we show that the derived counit of the adjunction C 4 N is a weak
equivalence in DblCat. More precisely, we show that it is a trivial fibration,
i.e., a double functor which is surjective on objects, full on horizontal and
vertical morphisms, and fully faithful on squares. Note that, since all objects
are cofibrant in DblCatZo, the derived counit coincides with the counit.

THEOREM 5.20. — The components €5: CNA — A of the (derived)
counit are trivial fibrations in DblCat, for all (fibrant) double categories
A. In particular, these are weak equivalences in DblCat and therefore the
nerve functor N: DblCat — Dbl(]at};O is homotopically fully faithful.

Proof. — Let A be a double category. We first compute the double cat-
egory CNA. By a formula for left Kan extensions, we have that

CNA = colim(Y | NA — A x A x A = DblCat),

where V: A X A x A — Set(Aop)XB denotes the Yoneda embedding and
Y | NA is the slice category over NA. An object in )V | NA is a map
F"m] x FV[k] x A[n] — NA, or equivalently a double functor (VO3 (k) ®

—_—

05 (m)) ®O02(n) — A, by the adjunction C 4 N. Therefore, for each double
functor (VO3 (k) @ 05 (m)) @ Oz(n) — A, we glue a copy of X, 5, =

—~—

(VO3 (k) @ O35’ (m)) ® Oz(n) in CNA.
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The double category CNA is cofibrant, since every object in DblCa‘c};0
is cofibrant and C is left Quillen. Therefore its underlying horizontal and
vertical categories are free by Corollary 3.14 and it is enough to describe
the generating morphisms. First note that CNA has the same objects as A.
Its horizontal morphisms are freely generated by

e a horizontal morphism f: A — B, for each horizontal morphism f
of A,

e a horizontal morphism f( f.gme) s A — B together with a horizontal
morphism gs g n e

(f.g,m,¢€) in A,

where id 4, f(idA,idA,id;dA,id;dA)a and §(idA,idA,ididA,ididA) are identified with
the identity id 4 at the object A of CNA. The vertical morphisms in CNA
are freely generated by a vertical morphism @: A -+ A’, for each vertical
morphism w of A, where €4 is identified with the identity e 4 at the object
A of CNA. Finally, the squares of CNA are generated by:

y: B — A, for each horizontal adjoint equivalence

e vertically invertible squares

TN(f,g.me) - (eA ’i;?' eA) and €(f,g,9,¢) (eB ifdi eB)

satisfying the triangle identities, for each horizontal adjoint equiv-
alence (f,g,n,€) in A,

e a square Q: j;, 5), for each square « in A,

e a square a: (u I .U |, for each square a in A whose horizontal

/N
N

boundaries a
(f',g'sn's€),
e a vertically invertible square 7 Fikygh (e A %% ec>7 for each verti-

=

f
e horizontal adjoint equivalences (f,g,n,¢) and

cally invertible square 6 in A as depicted beiovv7

A$>B%>C

B

R
3

where g and h are horizontal adjoint equivalences,
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e a vertically invertible square ¢y ; 5, (e A % ec), for each vertically
invertible square ¢ in A as depicted below,

h
[ LN

A
“ @ IR
A

fBg

Q=——0Q

o a vertically invertible square @ ¢ p,: (e A ﬁ? ec) , for each vertically
g

invertible square ¢ in A as above, but where the morphisms f, g,
and h are all horizontal adjoint equivalences,
e a horizontally invertible square 1) : (w %g;‘”

UV, W "

v ﬂ), for each hor-
izontally invertible square 1) : (w %Cdi;‘// vu) in A.

Furthermore, these squares are submitted to relations represented by dou-

—~—

ble functors (VO35 (k) ® O5'(m)) ® O2(n) — A, where k+m +n > 3. In
particular, these relations hold for the squares that represent them in A.
Then the double functor e€5: CNA — A is given by the identity on ob-
jects and by sending each horizontal morphism, vertical morphism, and
square in CNA to the horizontal morphism, vertical morphism, and square
in A representing it. This defines a double functor since the underlying
horizontal and vertical categories are free, and the relations on squares in
CNA are satisfied by the squares representing them in A. Moreover, it is
straightforward to see that this double functor is surjective on objects, full
on horizontal morphisms, full on vertical morphisms, and full on squares.
Faithfulness on squares follows from the fact that, given a boundary in
CNA, for each square in A in the representing boundary, we added a unique
square in CNA with that boundary, and the fact that the relations satisfied
for squares in A are also satisfied in CNA. O

Remark 5.21. — Note that, since the functor €4 : CNA — A is fully faith-
ful on squares, the relations imposed on the generating squares in CNA are
completely determined by their image in A under the double functor €.

Remark 5.22. — Since DblCat”_ is obtained as a localization of the
Reedy/injective model structure on sSetAopXAop, all objects are cofibrant
in DblCat” | and hence the functor C: DblCat”  — DblCat preserves weak
equivalences by Ken Brown’s Lemma (see [18, Lemma 1.1.12]). Therefore,

since the components €5 : CNA — A of the counit are weak equivalences
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by Theorem 5.20, for all A € DblCat, the nerve N: DblCat — DblCa‘c};0
reflects weak equivalences by 2-out-of-3.

5.4. Level of fibrancy of nerves of double categories

The nerve of any double category is almost fibrant in the model structure
DblCatZ<> of Theorem 4.9. Indeed, aside from the vertical Reedy /injective
fibrancy condition, the nerve of a double category satisfies the conditions
of a horizontally complete double (o0, 1)-category.

THEOREM 5.23. — The nerve of a double category A is such that
(i) (NA)_ p: A°P — sSet is Reedy/injectively fibrant, for all k > 0,
(i) (NA),, —: A°P — sSet satisfies the Segal condition, for all m > 0,
(iii) (NA)_ : A°P — sSet is a complete Segal space, for all k > 0.

To show this theorem we will need several technical results. The first piece
is a Quillen pair between 2Cat and sSet whose left adjoint is given by the

OP y« AOP

restriction of the functor C: sSet® — 2Cat to its space component.

DEFINITION 5.24. — We define the cosimplicial 2-category

Xo: A — 2Cat, [n] — Oa(n).

PROPOSITION 5.25. — The cosimplicial 2-category X5 induces an ad-
Jjunction
X
A —— 2Cat,
Ca
>
Set®™ Na

where Cs is the left Kan extension of X along the Yoneda embedding, and
we have that

—_~—

(N2 A)n = 2Cat(02(n), A),
for all A € 2Cat and alln > 0.
Proof. — This is a direct application of [7, Theorem 1.1.10]. O

PROPOSITION 5.26. — The adjunction

(&
>~
2Cat 1 sSet
\/r

Na
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is a Quillen pair between Lack’s model structure on 2Cat and the Quillen
model structure on sSet.

Proof. — It is enough to show that Cy sends generating cofibrations and
generating trivial cofibrations in sSet to cofibrations and trivial cofibrations
in 2Cat, respectively. Recall that generating cofibrations and generating
trivial cofibrations in sSet are given by the inclusions ¢ : OA[n] — Aln],
for n > 0, and £, ,: A*[n] — A[n], for n > 1 and 0 < ¢t < 7, respec-
tively. Note that we have Ca(15) = C(:5) and Co(£5, ;) = C(€5 ;). Therefore,
by Lemmas 5.15 and 5.16, we see that these are cofibrations and trivial
cofibrations in 2Cat, respectively. O

We now reformulate conditions (i)—(iii) of Theorem 5.23, which are for
now given in terms of weak equivalences between mapping spaces, using
the right Quillen functor N> of the above proposition. This can be done by
applying the following lemma.

LEMMA 5.27. — Let X € sSet®” *2"" be a bisimplicial space which is
constant in the space direction. Then, for every double category A, we have
an isomorphism of simplicial sets

Map(X,NA) =2 Ny (H[C(X), Alps)
natural in X and A.

Proof. — For all n > 0, we have natural isomorphisms of sets

Map(X,NA), = sSet®" 2™ (X x A[n],NA) = DblCat(C(X x Aln]), A)

DblCat(C(X) ® Os(n), A) = 2Cat(0(n), HC(X), Alps)
= N2(H[(C(X)aA]p5)n>

where the first isomorphism holds by definition of the mapping space, the
second by the adjunction C 4 N, the third by definition of C and the
fact that X is constant in the space direction, the fourth by the uni-
versal property of ® (see Definition 2.16), and the last isomorphism by
definition of N3. These isomorphisms of sets assemble into an isomor-
phism Map(X,NA) = Ny(H[C(X), A],s) of simplicial sets, natural in X
and A. g
We now prove Theorem 5.23 assuming Lemmas 5.28 and 5.29 below.

Proof of Theorem 5.23. — Let A be a double category. By Lemmas 5.28
and 5.29 below, for all m,k > 0, the 2-functor H[C(id pvpz) % ), Alps is a
fibration in 2Cat, and the 2-functors H[C(id pv ) X g, Alps, H[C(id g [k] X
"), Alps, and H[C(gp X idpn[m)),Alps are trivial fibrations in 2Cat. As

12
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N3: 2Cat — sSet is right Quillen by Proposition 5.26, these are sent by
N3 to fibrations and trivial fibrations in sSet, respectively. As the map
idpep) X b is constant in the space direction, by Lemma 5.27, we have
that

Map(id o) X ¢, NA) 2 Ny (H[C(idpepi) X t1), Alps)-
By the above arguments, this is a fibration in sSet, for all m, k > 0, which
shows (i) saying that (NA)_ , is Reedy/injectively fibrant. Similarly, we
have that

Map(idpor X gh, NA) = No(H[C(idpopg) X gry), Alps),

Map(id gy x €, NA) = Np(H[C(idpopg x "), Alps),

Map(gk X lth[m NA) NQ( [ (gg X ith[m])aA]pS)’
and these are trivial fibrations in sSet by the above arguments, for all
m, k > 0. The maps Map(id po ) x gl  NA) and Map(id popg) x e NA) being
weak equivalences in sSet shows that (iii) holds, i.e., we have the Segal and
completeness conditions for (NA)_ 5, and the maps Map(gy, x idpn ), NA)

being weak equivalences in sSet gives (ii), i.e., the Segal condition for
(NA)p,,—. O

LEMMA 5.28. — Let A be a double category. The 2-functor
H[C(id gy % th), Alps
is a fibration in 2Cat, and the 2-functors
H[C(idpop % g), Alps and H[C(idpopy x €"), Alps
are trivial fibrations in 2Cat, for all m,k > 0

Proof. — By promoting the bijections in Definition 2.16 of the tensor ®,
we get isomorphisms of 2-categories as in the following commutative square.

H[(C(ldp [k] X L ) A]ps
H[VO3 (k) ® 05 (m), Alps —————— H[VO5 (k) © 005" (m), Al s

:J Jz

[03(m), H[VO3'(k), Alps2,ps ———— [005"(m), H[VOy (), Alps]2,ps
[C(eh), HVO3 (K), Alps)a ps

As every 2-category is fibrant and, by Lemma 5.15, C(.")) is a cofibration
in 2Cat, the 2-functor [C(:2,), H[VO3 (k), A]ps]2.ps is a fibration in 2Cat
by monoidality of Lack’s model structure. Hence H[C(id o) X ¢1%,), A s is
also a fibration in 2Cat.
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Similarly, we have isomorphisms
H[C(idpopg % gm), Alps = [Clgp,), HIVOS (), Alps]a,ps,
H[C(id oy x €"), Alps 2 [C(e"), H[VOZ (k), Alps]2,ps-
By Lemma 5.19 and since C preserves cofibrations, the 2-functors C(g”,)

and C(e”) are trivial cofibrations in 2Cat. Therefore, by monoidality of
Lack’s model structure, the 2-functors

[C(gp), HIVO3 (k), Alps]2ps and [C(e"), H[VO3 (k), Alps]2,ps

are trivial fibrations in 2Cat, which shows the second part of the statement.

d
The last piece for the proof of Theorem 5.23 makes use of the data
in the 2-category H[—, —|,s of double functors, horizontal pseudo-natural

transformations, and modifications, whose definitions can be found in Ap-
pendix A.3.

LEMMA 5.29. — Let A be a double category. The 2-functor
H[C(gy, x idpnpm)), Alps
is a trivial fibration in 2Cat, for all m,k > 0.
Proof. — By promoting the bijections in Definition 2.15 of the Gray

tensor ®¢, we get isomorphisms of 2-categories as in the following commu-
tative square.

H[C(Qk X 1dF’"‘ [m] ) A]Pb
H[VO3 (k) © O3 (m), Alps H[V[E] @ O3 (m), Alps

ﬂ F

H[VOy (k). [HO3 (m), Alps]ps —————— H[V[K], [HO3 (m), Alps]ps
H[C(g}), [HOZ (), Alps]ps

Hence, to see that the 2-functor H[C(g} X id pn ), Alps is a trivial fibration
in 2Cat, it is enough to show that the 2-functor
H[C(g5.), Blps: H[VOy (k), Blps — HIVIE], Blys

is a trivial fibration in 2Cat, for any B € DblCat.

We first describe the double functor C(gy): V[k] — VO3’ (k) on objects
and vertical morphisms. Since the horizontal morphisms and squares of V[k]
are all trivial, this describes the image of C(g}) completely. We denote
by u;:i-ei+1, for 0 < i < k, the generating vertical morphisms of
V[k]. Then the double functor C(g}) is the identity on objects and sends a
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generating vertical morphism wu;: i > i+1 of V[k] to the vertical morphism
i > i+ 1 of VO3 (k) represented by {i,7 + 1}.

Now let B be a double category. We show that the 2-functor H[C(g},), B]ps
is a trivial fibration in 2Cat, by verifying that it is surjective on objects,
full on morphisms, and fully faithful on 2-morphisms.

Given a double functor F': V[k] — B, consider the composite

VO3 (k) 5 VK] -5 B,

where 7: O3 (k) — [k] is the identity on objects and acts on hom-categories
as the unique functor 05 (k)(i,7) — [k](¢,7) = [0]. The composite above
is a double functor in H[VO3 (k), B] such that F o V& o C(g}) = F', which
proves surjectivity on objects.

Let F,G: VO3 (k) — B be double functors, and ¢: FC(g;) = GC(g})
be a horizontal pseudo-natural transformation in H[V[k], B],s. We define
a horizontal pseudo-natural transformation @: F' = G in H[VO5' (k), B
such that @C(g}) = ¢. For this, it is enough to define @ on the generating
vertical morphisms of VO3 (k) which are represented by {4, j} for i < j.
When j =i+ 1, we set @f;;41} = ¢u;. For j > i+ 1, let § denote the
unique horizontally invertible square in VO3’ (k) from the vertical morphism
represented by {i,j} to the vertical composite of morphisms represented
by [i,j] = {l | i <1< j}. Then there is a unique way of defining @y, ;3 so
that @ is natural; namely as follows.

Fi=—————Fy Gi=—Gi
F{i,iﬂ}f Pu, iG{itiﬁ»l}
Fi—— Gi Fi+1) —G@E+1)

FW& Py iG(m‘} = Fuje Fo i Puipr i (Go)y~t oG

L

Fj Fj Gj ———Gj

Fj—— Gj

This defines a horizontal pseudo-natural transformation @: F' = G which
maps to ¢ via H[C(g}), B],s, and hence shows fullness on morphisms.

Let @,7: F = G be two horizontal pseudo-natural transformations in
H[VO3 (k),Blys, and let pu: ¢ = @C(g?) — 9 = ¥C(g¥) be a modifi-
cation in H[V[k],B]ps. The modification p comprises the data of squares
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i (epi o eGi>, for 0 < i < k, natural with respect to the square com-
ponents of ¢ and 1. By the relations between the square components of
@ and ¢, and the ones of 1 and v as indicated in the pasting equality
above, one can show that the squares p; of p are also natural with re-
spect to the square components of @ and ). Therefore p also defines a
modification p: @ — 9 in H[VO3 (k), B],s. As it is the unique such mod-
ification in H[VO3 (k), B],s that maps to p via H[C(g}), B]ps, this shows
fully faithfulness on 2-morphisms. g

Finally, we show that the nerve of a double category satisfies the missing
condition of a horizontally complete double (oo, 1)-category in the list of
Theorem 5.23, namely the Reedy/injective fibrancy in the vertical direc-
tion, precisely when the double category is weakly horizontally invariant.
Recall that the weakly horizontally invariant double categories are the fi-
brant objects in the model structure on DblCat of Theorem 3.10.

THEOREM 5.30. — The nerve NA of a double category A is such that
(NA),;, -+ AP — sSet
is Reedy /injectively fibrant, for all m > 0, if and only if the double category
A is weakly horizontally invariant.

Proof. — Let A be a double category. If A is weakly horizontally in-
variant, then NA is a horizontally complete double (oo, 1)-category since
N: DblCat — DblCa‘cgo is right Quillen. In particular, this says that

(NA),;, -+ AP — sSet

is Reedy/injectively fibrant, for all m > 0.

Conversely, suppose that (NA),, _: A°? — sSet is Reedy/injectively fi-
brant, for all m > 0. Then (NA)y _ is Reedy/injectively fibrant and there-
fore the map

(¢7)": (NA)o,1 = Map(F“[1], NA) — Map(0F"[1],NA) = (NA)o,0x (NA)o 0.
is a fibration in sSet, by Definition 4.4. In particular, it has the right lifting

property with respect to /7 ,: A[0] — A[l], i.e., there is a lift in every
commutative diagram as below left.

A[0 Y NA
[0] —>S Jo,1 A i B
4 Ué//// (3)* uf o~ fu
Lo A = B
All] ﬁf 3 (NA)o,0 x (NA)g 0 b
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By Descriptions B.2 and B.4, the upper map v is the data of a vertical
morphism v: B > B’ in A, while the bottom map (f, f’) is the data of
a pair of horizontal adjoint equivalences (f: A = B,f: A’ = B’) in
A. Therefore, by Description B.4 the existence of a lift in each diagram
as above corresponds to the existence of a weakly horizontally invertible
square in A as depicted above right, for each such data (v, f, f’). In other
words, this says that A is weakly horizontally invariant. O

Remark 5.31. — In particular, since a horizontal double category is not
generally weakly horizontally invariant (see [25, Remark 6.4]), the nerve
NHA of a 2-category A is not generally fibrant in DblCat};O. Since every
2-category is fibrant in Lack’s model structure on 2Cat, this shows that the
composite NH is not right Quillen from 2Cat to DblCat];o. Therefore, we
will need to define the nerve for 2-categories differently in the next section.

6. Nerve of 2-categories

As 2-categories are horizontally embedded in double categories, we hope
that the nerve functor N: DblCat — DblCat';0 restricts to a nerve functor
2Cat — 2CSS. Since the nerve of a double category H.A associated to a
2-category A is not generally fibrant, as explained in Remark 5.31, we need
to define the nerve of a 2-category as the nerve of the fibrant replacement
H=A of HA in DblCat; see Remark 3.16. In Section 6.1, we show that the
composite of the Quillen pairs L= 4 H= and C 4 N restrict to a Quillen
pair between 2Cat and 2CSS, whose derived counit is level-wise a biequiv-
alence. Hence the nerve NH~ gives a homotopically full embedding of 2Cat
into 2CSS. We further show in Section 6.2 that Lack’s model on 2Cat is
right-induced from 2CSS along NH~, which implies that the homotopy
theory of 2-categories is completely determined by that of 2-fold complete
Segal spaces through its image under NH™. In Section 6.3, we compare the
nerve of the double categories H.A and H= A, by showing that the nerve of
the latter is a fibrant replacement of the nerve of the former in 2CSS, and
hence also in DblCat!.
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6.1. The nerve NH= is right Quillen and homotopically fully
faithful

We consider the composite of the Quillen pairs
L= C
/\ /\ \
2Cat 1 DblCat 1 DblCat, ,
\_/ \_/
H~= N
and show that this gives a Quillen pair between 2Cat and the localization
2CSS of DblCat’.
THEOREM 6.1. — The adjunction
L=C
/\
2Cat 1 2CSS
\_/
NH™

is a Quillen pair between Lack’s model structure on 2Cat and the model

structure on sSet™” *2"" for 2-fold complete Segal spaces, i.e., (00,2)-

categories.

Remark 6.2. — Note that the functor L~: DblCat — 2Cat does not
preserve tensors. For example, the 2-category L=(V[1]®][1]) is generated by
a non-invertible 2-morphism as below left, while the 2-category L= (V[1])®2
[1] is generated by an invertible 2-morphism as below right.

0——1 0——1
ZJ( Y J{: :J{ :/ J{fz
0/ 3 1/ 0/ N 1/

However, the fact that the left-hand 2-morphism is not invertible in a square
coming from a pair of a vertical morphism and a horizontal morphism is
the only difference between L=(— ® —) and L=(—) ®2 L=(—).

Proof. — First note that the adjunction L=C 4 NH= is a Quillen pair
between 2Cat and DblCaut];07 since it is a composite of two Quillen pairs.
By Theorem 5.10, it is enough to show that the functor L=C sends the
cofibrations €” x id pny,,) and ¢y, with respect to which we localize DblCatZo

to obtain 2CSS, to weak equivalences in 2Cat.
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We first show that L=C(e” X idpn[y)) is a biequivalence. By a similar
computation to the one of C(N"I) in the proof of Lemma 5.19, we obtain
that

L=C(N"I x F"[m]) = (V02(1) ® 05 (m)).
Then the squares in the tensor VOQ( ) ® O3 (m) induced from vertical

—~—

morphisms in VO3(1) and morphisms in O2 (m) must be weakly vertically
invertible, since all vertical morphisms in VOQ( ) are vertical equivalences,
and these correspond to invertible 2-morphisms in L= (VO/Q\(_l/) ®05 (m)), by
a dual version of Lemma A.5. By Remark 6.2, we deduce that L™ preserves
this tensor:

L(VO,(1) ® 05 (m)) = 05(1) @ O3 (m) = L*C(N"I) © L*C(F"m)).

Therefore, L=C(e” X idpn(y)) = L¥C(e”) g, (I = L=CF"[m]). Both
morphisms in this pushout-product are cofibrations in 2Cat since L~C
is left Quillen from DblCatZo, and therefore, by Remark 3.5, it is enough to
show that L=C(e") is a biequivalence. But this is clear since the 2-functor
L=C(e?): L=C(F"[0]) - L=C(N"I) can be identified with the generating
trivial cofibration j;: [0] = E,qj in 2Cat.

We now show that the 2-functor L~C(c}): L~C(FV[0]) — L=C(F"[k])
is a biequivalence. It is given by the inclusion [0] — 5—2\/(k) at 0. First note
that for £ = 0, this is the identity. For k > 1, it is a biequivalence since it is

e bi-essentially surjective on objects as every object in Oy (k) is related
by an adjoint equivalence to the object 0,
e essentially full on morphisms since every composite of adjoint equiv-

alences 0 — 0 in Oz(k) is related by an invertible 2-morphism to
idg, which is given by a pasting of units and counits of the corre-
sponding adjoint equivalences,
o fully faithful on 2-morphisms since the only 2-morphism idy = idg
in Oz(k) is the identity. O
As in the double categorical case, the nerve NH= is homotopically fully
faithful.

THEOREM 6.3. — The derived counit of the adjunction L=C 4 NH~ is
level-wise a biequivalence. In particular, the nerve NH=: 2Cat — 2CSS is
homotopically fully faithful.

Proof. — This follows from the fact that the derived counits of the ad-
junctions C 4 N and L= 4 H~ are level-wise weak equivalences, by Theo-
rems 3.15 and 5.20, respectively. O
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Remark 6.4. — Let us denote by D: Cat — 2Cat the functor sending
a category C to the locally discrete 2-category DC with the same ob-
jects and morphisms as C and only trivial 2-morphisms. The functor D
has a left adjoint P: 2Cat — Cat given by base change along the func-
tor my: Cat — Set sending a category to its set of connected components.
By [20, Theorem 8.2], these functors form a Quillen pair between the canon-
ical model structure on Cat and Lack’s model structure on 2Cat, and its
derived counit is level-wise an equivalence of categories.

By composing with the Quillen pair of Theorem 6.1, we obtain a Quillen
pair

P L~C
/\ /\
Cat 1 2Cat 1 2CSS
~_ ~_
D NH~

between the canonical model structure on Cat and the model structure on
sSet®™ A" for 2-fold complete Segal spaces, i.e., (00, 2)-categories, whose
derived counit is level-wise an equivalence of categories.

6.2. 2Cat is right-induced from 2CSS along NH~

We now show that Lack’s model structure on 2Cat is right-induced from
2CSS along the nerve NH=. In particular, this says that the homotopy the-
ory of 2-categories is determined by the homotopy theory of 2-fold complete
Segal spaces through its image under NH=.

THEOREM 6.5. — Lack’s model structure on 2Cat is right-induced along
the adjunction
L~C
o~
2Cat 1 2CSS,
~_
NH~

where 2CSS denotes the model structure on sSet®” **” for 2-fold complete

Segal spaces.

Proof. — It is enough to show that a 2-functor F' is a weak equiva-
lence (resp. fibration) in 2Cat if and only if NH™F is a weak equivalence
(resp. fibration) in 2CSS, as model structures are uniquely determined by
their classes of weak equivalences and fibrations.

Since the functor NH™ is right Quillen, it preserves fibrations. Moreover,
since all objects are fibrant in 2Cat, the functor NH~ also preserves weak
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equivalences by Ken Brown’s Lemma (see [18, Lemma 1.1.12]). This shows
that, if F' is a weak equivalence (resp. fibration) in 2Cat, then NH=F is a
weak equivalence (resp. fibration) in 2CSS.

Now let F': A — B be a 2-functor such that NH=F': NH~A — NH~B
is a weak equivalence in 2CSS. Since all objects are cofibrant in 2CSS, by
Ken Brown’s Lemma, the left Quillen functor L=C preserves weak equiv-
alences, and the 2-functor L~CNH=F is a biequivalence. We then have a
commutative square

r~cNH~A ZEE 1~CcNE=B

where the vertical 2-functors are biequivalences by Theorem 6.3, since the
components of the counit coincide with that of the derived counit as all
objects in 2CSS are cofibrant. By 2-out-of-3, we get that F is also a biequiv-
alence.

Finally, let F': A — B be a 2-functor such that NH= F': NH~A — NH~B
is a fibration in 2CSS. We show that F' has the right lifting property with
respect to the generating trivial cofibrations ji: [0] — Faqj and js: [1] —
Y1 in 2Cat as described in Notation 3.3. First note that (NH™F),,  is a
fibration in sSet for all m, k > 0, since fibrations between fibrant objects in
2CSS are in particular level-wise fibrations.

By taking m = k = 0, as (NH™F)g is a fibration in sSet, there is a lift
in every commutative diagram as below left.

A[O] E— (NH:A)O’O [O} 4}( A
P 2
f‘;,lJ /,/// J(NHNF)Q,O ,7'1J //// JF
All] —— (NE*B)o, Butj ——— B

By Description B.8, a 0-simplex in (NH=.A)q is an object of A, and a
1-simplex in (NH™A)g o is an adjoint equivalence in A. Therefore, the ex-
istence of a lift in each diagram as above left corresponds to the existence
of a lift in each diagram as above right. This shows that F' has the right
lifting property with respect to j;.

TOME 0 (0), FASCICULE 0



52 Lyne MOSER

Now take m = 1 and k = 0. As (NH=.A); ¢ is a fibration in sSet, there
is a lift in every commutative diagram as below left.

A[0] ——— (NH=A)1 0 1] ——— A
1 7

fﬁ{ J{(NHNF)LO [1] @, J{ JF

A[l] —— (NH=B), ¢ 1] ®2 Eag; —— B

By Description B.9, a 0-simplex in (NH™A); ¢ is a morphism of A, and a
1-simplex in (NH™A); o is an invertible 2-morphism in A, as depicted in
Description B.9(1). Therefore, the existence of a lift in each diagram as
above left corresponds to the existence of a lift in each diagram as above
right.

Now we show that the generating trivial cofibration js: [1] — XTI is a
retract of the 2-functor [1] ®2 j; of the following form

1] [1] [1]

jzl (1] ®2 le J]‘z

Zlﬁ [1] ®2 Eadj 4) ZI

T

If we denote the data of the 2-categories X1 and [1] ®2 Eaq; as below left
and right, respectively,

T [
v
f’ 0/ ﬁ 1/

then the 2-functor i: X1 — [1] ®2 Faqj is given by sending the object z,
resp. y, to the object 0, resp. 1’; the morphism f, resp. f’, to the composite
0—1— 1, resp. 0 — 0’ — 1’; and the invertible 2-morphism of XI to
the invertible 2-morphism of [1] ®3 Eaqj. On the other hand, the 2-functor
r: [1] ®2 Faqj — X1 is given by sending the objects 0, 1, resp. 0/,1’, to the
object x, resp. ¥; the morphism 1 — 1/, resp. 0 — 0/, to the morphism f,
resp. f’; the adjoint equivalences of E,q; to identities; and the invertible
2-morphism of [1] ®3 F,qj to the invertible 2-morphism of X1I.

Therefore, since F has the right lifting property with respect to [1] ®2 j1,
then F' also has the right lifting property with respect to js. This shows
that F is a fibration in 2Cat and concludes the proof. O
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6.3. Comparison between the nerves NH and NH~

We now want to compare the nerves NH.4 and NH~A of a 2-category
A. For this, we will construct a homotopy equivalence between the spaces
(NHA),, , and (NH™A),, ;. Their sets of n-simplices are given by

(NHA), k. = DbICat (X, . n, HA) = 2Cat(LX 4., A)
and
(NH=A) k. = DblCat (X, g n, HTA) = 2Cat(L=X,, g 0, A).
Let us first describe the 2-categories L=X,, k. and LX, k p.

DESCRIPTION 6.6. — The 2-category LX,, ., is obtained from the dou-
ble category

by identifying the objects (x,y,z) ~ (x,y’,z), forall 0 < . < m, 0 < y,y’ <
k, and 0 < z < n, and by identifying the vertical morphisms

(x7g7z)' (x7yﬂz) s ($7y/7z)7

where g € 05 (k)(y,y'), with the identity at (x,y,z) ~ (x,y’, z). We denote
by [z, z] the equivalence class {(x,y,z) | 0 < y < k}. Then, the 2-category
LX,, k,n has
e objects [z,z] forall 0 < z < m and 0 < z < n,
e morphisms freely generated by
— a morphism (f,y,z): [z,2] — [2/,2] where f € O3 (m)(z,z’)
is represented by the set {z,z'}, for all 0 < z < 2/ < m,
0<y<k,and 0 < z < n,
— a morphism (x,y,h): [z, z] — [z, 2] where h € O(n)(z,2") is
represented by the set {z,2'}, for all 0 < x < m, 0 <y <k,
and 0 < 2,2’ < n with z # 2/,
e 2-morphisms are generated by

—~—

— a 2-morphism o: f = f’ for each square o: (u . v) in Xy, kn
subject to the minimal relations making the projection X, . n —
HLX,, k,n into a double functor. Here X, ., — HLX,, 1., sends
an object (x,y, z) to the object [z, z], horizontal morphisms (f,y, z)

and (x,y,h) to the morphisms (f,y,z) and (z,y,h), vertical mor-

phisms (x,u, z) to the identity at [z, z|, and squares a:: (u j; v) to

the corresponding 2-morphism a: f = f’.

TOME 0 (0), FASCICULE 0



54 Lyne MOSER

DESCRIPTION 6.7. — The 2-category L=X,, i.n has

e the same objects as the double category

—_~—

X kn = (VO3 (k) © Oy (m)) ® Oz(n),

ie., triples (z,y,z) with0 <z <m,0<y<k, 0<z<n,
e morphisms freely generated by
— amorphism (f,y,z):(z,y,2)— (2, y, z) where f € 05 (m)(z, ')
is represented by the set {z,z'}, for all 0 < z < 2/ < m,
0<y<k,and 0 < z < n,
— amorphism (x,y,h): (z,y,2)—(x,y, 2") where h€ O2(n)(z, 2')
is represented by the set {z,2'}, for all 0 < x <m, 0 <y < k,
and 0 < 2,2’ < n with z # 2/,
— an adjoint equivalence (x, g, 2): (x,y,z) — (x,y', z) where g €
05 (k)(y,y') is represented by the set {y,y'}, for all 0 < z < m,
0<y<y <k,and0<z<n,
e 2-morphisms are generated by

— a 2-morphism «a: vf = flu for each square «: (u j;, v) in
Xm,k,n;

subject to relations which are equivalent to requiring that the pro-
Jjection 2-functor mp, g n: L=Xp kn — LXg k. Is fully faithful on
2-morphisms. Here Ty, jn: L=Xp kn — LXy, kn sends an object
(z,y, z) to the object [x, z], morphisms (f,y, z) and (z,y,h) to the
morphisms (f,y, z) and (x,y, h), adjoint equivalences (z, g, z) to the
identity at [z, 2], and 2-morphisms a: vf = f u to the correspond-
ing 2-morphism o f = f(

Example 6.8. — We compute these 2-categories in the case where m = 1,
k =1, and n = 0. Let us denote by u: 0’ -> 1’ the vertical morphism in
V1] and by f: 0 — 1 the morphism in [1]. We have that L(V[1]®[1]) is the
free 2-category on a 2-morphism as depicted below left, while L=(V[1]®[1])
is the 2-category as depicted below right. We omit the z-component here
since it is always 0.

0,0) L% (1,01

T
[0] ﬂ(fu) [1] Ou) |~  w  ~|(1,u)
~_ (f,u)
(f7 1,) (0’ 1/) (17 1/)

(£;1)
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Remark 6.9. — Using these descriptions, we can see that the 0-simplices
of the simplicial sets (NH.A)p o and (NH=A)q o are the objects of A, and
the ones of (NHA); o and (NH™.A); o the morphisms of .A. The 0-simplices
in (NH.A); ; are the 2-morphisms of A as in the left-hand diagram of Ex-
ample 6.8, while the ones of (NH™.A); ; are the 2-morphisms of A as in the
right-hand diagram of Example 6.8. Finally, the 0-simplices in (NH.A)g 1
are just objects of \A, while the ones of (NH>™.A)y ; are adjoint equivalences
in A. We describe these simplicial sets in greater detail in Appendices B.2
and B.3.

Recall the comparison 2-functor 7, kpn: LXK kn — LXpy k. intro-
duced at the end of Description 6.7. Then this 2-functor is clearly sur-
jective on objects, full on morphisms, and fully faithful on 2-morphisms.
By constructing an inverse 2-functor up to pseudo-natural equivalence to
this comparison 2-functor m, 1 », we obtain the following result.

THEOREM 6.10. — Let A be a 2-category. The map 7*: NH.A — NH~.A
induced by the comparison 2-functors mp, g pn: L™ X pn — LXpy n IS
level-wise a homotopy equivalence in sSet®”" XA particular, this ex-

hibits NH™ A as a fibrant replacement of NHA in 2CSS (or in DblCat” ).

Proof. — We first construct an inverse 2-functor up to pseudo-natural
equivalence

bm,kn: LXm,k,n — L_Xm,k,n

to the 2-functor 7, i, such that the composite 7y, i ntm, k.n is the identity
at LX,, x.n. It sends an object [z,z] to the object (,0,2), a generating
morphism (f,y,2): [x,2] = [2/,2] with f € O3 (m)(z,2") represented by
the set {x, 2’} to the composite

(2,0, 2) (lNﬂ (2,y,2) w2, (2, y,2) % (2,0, 2),

and a generating morphism (x,y, h): [z, 2] — [z, 2] with h € Oz(n)(z, 2’)
represented by the set {z, 2’} to the composite

(2,0,2) LD, (2, 2) I (2,y,2) LI (0, 2),

—_—~ —_~

where g € O5(k)(0,y) is represented by the set {0,y} and ¢’ € Oz(k)(y, 0)
is its weak inverse. The assignment on 2-morphisms is uniquely deter-
mined by these assignments on objects and morphisms, since the 2-functor
Tm, k,n 15 fully faithful on 2-morphisms and we imposed that m, g ntm kn =
idrx,, ...~ In particular, since the morphisms in the 2-category LX, i are
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freely generated by the morphisms (f,y, z) and (x,y, h), this defines a 2-
functor ¢y, pn: LXpn kn = L™K kon-
We now construct a pseudo-natural adjoint equivalence

€m,kn' bmknTmkn = idL:Xm,k,n-

At an object (2,y,2) € L™Xp g n, we define €(, , .y to be the morphism

e(az,y,z) = (.’I},g,Z)Z (.’L',O,Z) i> (.’I},y,Z),

P

where g € O2(k)(0,y) is represented by the set {0,y}. Note that the mor-
phism €, , ) as defined above is an adjoint equivalence. Given a morphism
(f,y,2): (z,9,2) = (2,y, 2), we define (¢, .y to be the following invertible
2-morphism

(2,0,2) 22D (g 2) L2 (o gy o) L2 (41 02
€(z,y,2) = (l‘-’g’Z)J/N = é NJIE(I’,',U,Z) = (JJI,gA,Z)
!
(@, 7) - (@,y,2)

(o]

induced by the counit g¢’ = id, of the adjoint equivalence (g, g’). We define
€(z,y,n) for a morphism (x,y,h): (z,y,2) = (x,y, 2') similarly. This defines
a pseudo-natural adjoint equivalence €m kn: tmknTmkn = idr=x, , .
which can be represented by a 2-functor O2(1) = [L™X, k.n, L= Xon k0] 2,ps
since it corresponds to an adjoint equivalence in the pseudo-hom 2-category.
By definition of the Gray tensor product ®s (see Definition 2.13), this

pseudo-natural adjoint equivalence can equivalently be seen as a 2-functor

LEXch,n

. Lm,kn © Tm,k,n
e dol \

LEXm,k:,n ®2 02(1) €m,k,n —— Lgxm,k,n i

wora] ="

Lsz,k,n
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We claim that these 2-functors €, induce a homotopy €, ;. as in

(NH=A),p, x

5
* *

. 0 7Tm,k ° [’m,k

id x d

(NH=A)p i % All] —— €t — (NHZA) s |

| /

(NH=A),, &

where the nth component of €, , is obtained by applying the functor
2Cat(—, A) to € k,n, for all n > 0.

For each F' € (NH™A),, k., we want to describe the corresponding
(A[n] x A[l])-prism of the homotopy, which coincide with Fiy, g nTm kn
at 0 € A[l] and with F at 1 € A[1]. Note that a (A[n] x A[1])-prism in
(NH=A),,, i corresponds to a 2-functor

L=((VO5 (k) ® O (m)) @ (O(n) ®2 02(1))) — A.

The squares induced by vertical morphisms in VO3 (k) and morphisms

in Oy(1) must be weakly horizontally invertible in the double category

(VO3 (k) ® O3 (m)) ® (02( ) Q2 02( )), since the morphisms in Oy(1) are
adjoint equivalences. It follows from Lemma A. 5 that the corresponding

2-morphisms in L= (VO3 (k) ® O3 (m)) ® (02( ) ®2 Oz(1 ))) are invertible
and therefore, by Remark 6.2, we get that

L*((VO3 (k) @ O3 (m)) ® (O2(n) @5 02(1)))
=~ [*((VO5 (k) ® 05 (m)) ® Os(n)) @2 Os(1)
= L:Xm,k,n 29D 5_2\(_1/)

This says that a (An] x A[l])-prism in (NH™A),, ; corresponds to a 2-
functor

L=Xp kn ®2 02(1) — A.
Hence we can define the component of the homotopy at F' € (NH™A), 1.
to be Fey, 1 n. This shows the claim.

Since by © Tk = 1dmay,, , and by the above homotopy, we see
that ¢7 , and 77 , give a homotopy equivalence between (NHA),, 1 and
(NH= A)m’;€7 for all m,k > 0. These assemble into maps ¢* and 7* of
sSet®™" A" which give a level-wise weak equivalence between NH.A and
NH>A. This is in particular a weak equivalence in 2CSS and in DblCat”
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Since NH= A is fibrant in 2CSS and in DblCatZo, we conclude that it gives
a fibrant replacement of NH.A. a

Remark 6.11. — Note that the comparison map 7*: NHA — NH=A is

also a monomorphism, hence 7* is in fact level-wise a trivial cofibration in
S tAOP x A°P
sSe .

Remark 6.12. — Recall from Remark 6.4 the Quillen pair P 4 D between
Cat and 2Cat and let C be a category. The nerve of the double category
HDC is given by

(NHDC) 1, ko, = 2Cat(LX ko, DC) = Cat(PLX k0, C),

for all m,k,n > 0. By applying the functor P to the 2-category LX,, i n
as given in Description 6.6, we can see that PLX,, ; , = [m] x I[n], where
I[n] is the category with object set {0,...,n} and a unique isomorphism
between any two objects. Therefore,

(NHDC) 1o, = Cat([m] x I[n],C) = Nrewk(C)mn

is given by the Rezk nerve (defined in [28, Section 3.5]) constant in the
vertical direction. On the other hand, the nerve of the double category
H=DC is given by

(NH*DC) o = 2Cat(L=Xpn n, DC) 2 Cat(PL=Xpn o, C)
= Cat((I[k] x [m]) x I[n],C),

for all m,k,n > 0. Then, by Theorem 6.10, there is a level-wise homo-
topy equivalence NHDC — NH=~DC which exhibits NH=DC as a fibrant
replacement of the Rezk nerve of C in 2CSS (or DblCat” ).
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Appendix A. Weakly horizontally invertible squares

In this first appendix, we give some technical results about weakly hor-
izontally invertible squares, which will be of use to describe the nerves in
low dimensions in Appendix B. These results also find their utility in the
papers [24, 25] by the author, Sarazola, and Verdugo. Some of the lemmas
presented here (Lemmas A.1, A.2 and A.8) were also proven independently
in another context by proven by Grandis and Paré in [14] — their ter-
minology for weakly horizontally invertible squares is that of equivalence
cells. In Appendix A.1, we first prove that the weak inverse of a weakly
horizontally invertible square is unique when one first fixes horizontal ad-
Jjoint equivalence data. In Appendix A.2;, we consider weakly horizontally
invertible squares of special forms and characterize them. Finally, in Appen-
dix A.3, we give a definition of horizontal pseudo-natural transformations
and modifications, which correspond to the morphisms and 2-morphisms in
the pseudo-hom 2-categories H[—, —|,5 of the 2Cat-enrichment of DblCat
given in Definition 2.16. We then characterize the equivalences in these
pseudo-hom 2-categories.

A.1. Unique inverse lemma

We first show the existence and uniqueness of a weak inverse for a weakly
horizontally invertible square with respect to fixed horizontal adjoint equiv-
alence data.

LEMMA A.1. — Let a: (u ;, v) be a weakly horizontally invertible

square in a double category A. Suppose (f,g,n,¢) and (f',¢',n',€') are

horizontal adjoint equivalences. Then there is a unique square [3: (v z, U

in A which is the weak inverse of o with respect to the horizontal adjoint
equivalence data (f,g,n,¢€) and (f',¢',7,€).

Proof. — Since « is weakly horizontally invertible, by definition, there
is a weak inverse vy of a with respect to horizontal adjoint equivalence
data (f, h, p,d) and (f', R/, 1, 8"). We define 3 to be given by the following
pasting.
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B— A = B —h— A
v f 153 fu = v id, v f Y fl
B’ s A = B/ — > A’

'—g—= A —f =B —n—> A

n €g’ n (W)=t “

B’ A=

/

g

We check that 5 is a weak inverse of a with respect to the horizontal
adjoint equivalence data (f,g,n,€) and (f,¢’,n',€'). We have that

A A A
“ 7 1R “ R “
A=A A—f—B—9—>A—f—B—h— A
“ 1R ” w er w € IR “ en "
A—f—B—9— A A—f—>B=—————=B—h— A
A —f =B —gd— A A —f'> B =B —W—> A
n )=t “ “ ey “ (GO R n en “
A=A A —f—=>B —g—=A —f—=>B —nw—>A
“ ()=t “ ()~ e “
A A A
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A=A

N

b

Il
e
—eo—
=}
<
—o—
2
e
Il
e
—eo—
g
S
D><—t

A/ 7f/4> B/ 7},//# A/ A/ !/
” ()=t “
A/ _ AI

where the first equality holds by definition of 3, the second by the triangle
identities for (n,¢) and (n',€'), and the last by definition of v being a
weak inverse of o with respect to the horizontal adjoint equivalence data
(f, h,u,0) and (f', ', ', 6"). The other pasting equality for «, 3, €1, and €’
also holds by definition of v being a weak inverse of «, and by the triangle
identities for (u,d) and (u’,0"). This shows that 8 is a weak inverse of
« with respect to the horizontal adjoint equivalence data (f,g,n,€) and
(f'.g'n's€).

Now suppose that 3’: (11 f’] , u) is another weak inverse of o with respect
to the horizontal adjoint equivalence data (f, g,n,€) and (f',¢’,n’,€'). Then
we have that

g

B——— 3B A
“ el IR n €g n
B—1—4 B—9—A—f—B—9— A B—1-4
S
B —— A B —g— A —f—= B —g— A B —— A
L
B ————DB —— A

!

where the first equality holds by definition of 8 being a weak inverse of
a with respect to the horizontal adjoint equivalence data (f,g,n,€) and
(f',¢',n',€), the third by definition of 8’ being a weak inverse of o with re-
spect to the horizontal adjoint equivalence data (f, g,n,€) and (f',¢', 7', €')
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and by the triangle identities for (1, €) and (n’,€¢'). This shows that 5’ = g
and therefore such a weak inverse is unique. O

A.2. Weakly horizontally invertible square in HA, H~A, and L=A

We first show that weakly horizontally invertible squares with trivial ver-
tical boundaries correspond to vertically invertible squares between hori-
zontal equivalences.

LEMMA A.2. — Let a be a square in a double category A of the form

A'—f>B

A 4>f’ B
where f and f' are horizontal equivalences in A. Then the square « is
weakly horizontally invertible if and only if it is vertically invertible.

Proof. — Suppose first that « is weakly horizontally invertible. Let [
be its weak inverse with respect to horizontal adjoint equivalence data
(f,g,m,€) and (f',¢',n',€"). We define ~ to be given by the following past-
ing.

A=A ! B

1R “

A—f—B—9—A ¢r

SR

AL
“7
Af

Then one can show that v = o~ ! is the vertical inverse of o by using the
definition of S being a weak inverse of a with respect to horizontal adjoint
equivalence data (f,g,n,€) and (f/,¢’,7,€), and the triangle identities for

(n,€) and (1, €').
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Suppose now that « is vertically invertible. Let (f, g,n,€) be an adjoint
equivalence data and define ' and € to be the following pasting, respec-

tively.
A A B4t 5
” R h “ ” —1 R ”
A—f—B—i— A B—i—A—f— B
” a IR ” €g h “ € IR ”
A A B———— B

—— B ——
f g
Then (f’,g,7',€') is a horizontal adjoint equivalence, and e  is a weak in-
verse of o with respect to the horizontal adjoint equivalence data (f, g, 7, €)
and (f',g,m,¢'). This shows that « is weakly horizontally invertible. [

Remark A.3. — Given a 2-category A, Lemma A.2 shows that a square in
H.A is weakly horizontally invertible if and only if its associated 2-morphism
is invertible.

We now use the result above to characterize the weakly horizontally
invertible squares in H~A as invertible 2-morphisms.

LEMMA A.4. — Let A be a 2-category and let «: (u ch/ v) be a square in

H=A, where f and f' are equivalences in A. Then « is weakly horizontally
invertible if and only if its associated 2-morphism a:: vf = f’'u is invertible.

Proof. — Consider a square a in H=A as below right, where f and f’
are horizontal equivalences.

f f

A—— B A——B——>7p
u = (u,u Ny, EH)JVZ ”;/ ZJVW = (0,0, My, €) aﬂ H
A — B A= A —— B

Then the corresponding 2-morphism «: vf = f’u also gives rise to a square
@ in H=A as above right, where the composites vf and f’u are horizontal
equivalences. We show that « is weakly horizontally invertible if and only
if its associated square & is weakly horizontally invertible. We can then
conclude by applying Lemma A.2.
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Let us fix adjoint equivalence data (f,g,n,€) and (f',¢’,7,€'). Suppose
first that the square 8 in H=A

is a weak inverse of o with respect to the adjoint equivalence data (f, g, 7, €)
and (f',g’,n,€). Then its mate i

v’ g9 v

B ——B— A B’%B—ul
7 | 8, \
B. =
H ! \ [ 2

B — A — A B~ A — A
g

is a weak inverse for the square & with respect to the composite of the
adjoint equivalence data (f,g,n,€) with (v,v',n,,€,), and of (u,u’, 7y, €,)
with (f’,¢’',7',€). This follows from the triangle identities for (7, €,) and
(N, €,) and the definition of 8 being a weak inverse of o with respect to
the adjoint equivalence data (f,g,n,¢), (f',¢,n',€).

Conversely, suppose that the following square /8 in H™ A

H 5l

B —— A — 5 A

is a weak inverse of @ with respect to the composite of the adjoint equiva-
lence data (f,g,7,€) with (v,v", 7y, €,), and (u, u', 9y, €u) with (f', g',n’, €).
Then its mate 3,

g

B——— A B *> A—L s q
3, Y
UJR 6/ lu = / T ﬂ T /
o
B —— A’ B— B —— A’
g

is a weak inverse of a with respect to the adjoint equivalence data (f, g, 7, €),
(fl7g/?77/’6/)' D
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In particular, we can see that a 2-morphism in L=A corresponding to a
weakly horizontally invertible square in a double category A is invertible,
where L~ : DblCat — 2Cat of the functor H~.

LEMMA A.5. — Let A be a double category.

(i) If f: A — B is a horizontal equivalence in A, then the corresponding
morphism f: A — B in LA is an equivalence.

(i) If a: (u i, ’U) is a weakly horizontally invertible square in A, then

the corresponding 2-morphism «: vf = f'u in L=A is invertible.

Proof. — Given a horizontal equivalence (f,g,7,¢) in A, then there are
corresponding morphisms f and ¢ and corresponding invertible 2-mor-
phisms 7:id = ¢gf and €: fg = id in LTA, i.e., this is the data of an
equivalence in L=A. This proves (i).

Now, given a weakly horizontally invertible square a: (u }0, v) in A, then

the corresponding morphisms f and f’ are equivalences in L=A by (i). The
relations expressing the fact that « is a weakly horizontally invertible square
in A translate to relations in H=L~A implying that the corresponding
square

is weakly horizontally invertible in H=L=A. By Lemma A.4, we obtain that
the associated 2-morphism a: vf = f'u is invertible. g

A.3. Horizontal pseudo-natural equivalences

We now give complete definitions of the morphisms and 2-morphisms of
the pseudo-hom 2-category HII, A],s of double functors defined in Defini-
tion 2.16.

DEFINITION A.6. — Let F,G: 1 — A be double functors. A horizontal
pseudo-natural transformation ¢: F' = G consists of

(i) a horizontal morphism ¢;: Fi — Gi in A, for each object i € I,
(ii) asquarep,: (Fu &, Gu)in A, for each vertical morphismu: i o+ i’
in T,
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iii) a vertically invertible square p¢: |ep; (Gf AR eq; | in A, for each
Y @i (Ff) &9
horizontal morphism f: i — j in |

such that the following conditions hold:

(1) for every object i € I, @, = ey, (ep; & eai),

(2) for every pair of composable vertical morphisms w: i -+ 4’ and
v: i > 4" in I, the vertical composite of the squares @, and @,
is given by the square .,

(3) for every object i € I, @ia, = ey, : (eri & €Gi),

(4) for every pair of composable horizontal morphisms f: i — j and

g:j—kinl
i G, . G
Fi 2 qi -2 65 -9 o
; G
N eriR N e “ Fi — Gi ﬂ Gk
Fi—-Ff> Fj—vi»>Gj —-Gg> Gk = n Paf IR “
“ erf “ Pg Il “ FikaTGk,
Fi 7 Fy Fo Fk or Gk
(5) for every square a: (u }c, v) in 1,
i G, . i G .
FiLGiAGJ FiLGi*f>Gj
” PriR N Fui Pu G’Ui Ga va
F
Fi—— Fj—vi»Gj = Fi-v+Gi =r Gy’
Fuf Fa fF'u Pu va “ PrriR H
. -/ -/ . -/ ./
FZTﬂ)Fj WG] FZTf,>F] WG]'

DEFINITION A.7. — Let p,¢: FF = G be horizontal pseudo-natural
transformations between double functors F,G: 1 — A. A modification

1 — 1 consists of a square pui;: (epi il eGZ—) in A, for each object i € 1,
such that:
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(1) for every horizontal morphisms f: i — j in I,

. e , ; G, .
Fi 2 ¢ 2L G Fi 2 qi -9 g
“ PriR ” N 124 N eGf “
Fi-Ff+ Fj—9i»Gj = Fi—vi~ Gi—-Gf+Gj
w Erf w i ” “ vy R “
Fin>FJTj>GJ FiF—JuFJTJJGJ,

(2) for every vertical morphism w: i - ' in I,

Fi —2 Gi Fi —2 Gi
F% . iau w ” w

Fil —¢v5 GQi! = Fi—ti~ Gi

” Hir n Fui Py qu
Fil —— Gif Fil —— Gi'.

In particular, we show that an equivalence in the 2-category HIL, Al is
precisely a horizontal pseudo-natural transformation whose square compo-
nents are weakly horizontally invertible squares.

LEMMA A.8. — Let ¢: F = G be a horizontal pseudo-natural transfor-
mation between double functors F,G: 1 — A. Then ¢ is an equivalence in
the 2-category H[I, Al if and only if the square ¢, : (Fu &, Gu) is weakly
horizontally invertible, for every vertical morphism u: i - ' in I. In par-
ticular, the horizontal morphism y;: Fi — Gt is a horizontal equivalence,
for every object i € 1.

Proof. — Suppose first that (¢, 1,7, €) is an equivalence in the 2-category
HI[I, Alps, i.e., we have the data of horizontal pseudo-natural transforma-
tions ¢: FF = G and ¢: G = F together with invertible modifications
n: idp = ¢ and €: g = idg. By applying condition (2) of Definition A.7
to the modifications 7 and e, we directly get that (¢.,1,) are weak in-
verses with respect to the horizontal equivalence data (p;, 1, n;,€;) and
(@i, iy miry €r), for every vertical morphism w: ¢ -e+ 4’ in A. This shows
that every square ¢, is weakly horizontally invertible.
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Now suppose that the square ¢, : (Fu &, Gu) is weakly horizontally in-

vertible, for every vertical morphism u: i -e> ¢’ in I. For each object i € T,
let us fix a horizontal adjoint equivalence data (p;,¥;, n;, €;). For each ver-

tical morphism wu: i -+ i’ in I, we denote by ), :

(Gu b Fu) the unique
weak inverse of ¢, given by Lemma A.1 with respect to the horizontal
adjoint equivalence data (p;,¥;, n;,€;) and (@i, Vi, nir, €57).

We define a horizontal pseudo-natural transformation ¢: G = F which
is given by the horizontal morphism ;: Gi — Fi, at each object i € I, the
square Y, : (Gu wzl Fu), at each vertical morphism u: 7 -+ ¢ in I, and by

the vertically invertible square 1)

i r . .
Gi g Fj Fj
“ eFf H 5 1R
b Ff . . . .
Gi —— Fi —— Fj ey, Fi—Ff>Fj—vi» Gj —j> Fj

o

“ o7t IR

|

Gi?f}GjTFj Gi —vi—~> Fi —vi— Gi —Gf> Gj ey
J
€ 1R “ eGf “
. . i Jar
Gi Gi—gpr &0 =57 1

at each horizontal morphism f: i — j in 1. We show that this data assem-
ble into a horizontal pseudo-natural transformation ¢): G = F by verifying
conditions (1)—(5) of Definition A.6. We have (1), since 1., is the inverse
of ¢,,, which is unique by Lemma A.1 and therefore must be equal to ey, .
Condition (2) follows from the fact that the vertical composite of 1, and
1y, and the square 1, are both weak inverse of ¢,,, with respect to the hor-
izontal adjoint equivalence data (p;, 1;,m;, €;) and (@i, Vi, nir, €i); they
must therefore be equal since such a weak inverse is unique by Lemma A.1.
Conditions (3) and (4) follow from the definition of ©¢ and the triangle iden-
tities for (n;, €;), for each i € I. The last condition follows from the definition
of 1 and condition (5) for the horizontal pseudo-natural transformation
. Moreover, it is straightforward to check that the vertically invertible
squares 1; and €; assemble into invertible modifications 7: idp = ¢ and
¢: o1 = idg. This shows that (¢, 1, n, €) is an equivalence in H[A, B],s. O
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Appendix B. Explicit description of the nerves in lower
dimensions

In this appendix, we describe the nerves of the different double categories
considered in this paper in lower dimensions; namely, for 0 < m,k < 1 and
0 < n < 2. The aim of these descriptions is to give the intuition that the
space of the nerve at (m, k) = (0,0) models the space of objects, the one at
(m, k) = (1,0) the space of horizontal morphisms, the one at (m, k) = (0,1)
the space of vertical morphisms, and the one at (m,k) = (1,1) the space
of squares of the corresponding double category. In Appendix B.1, we first
describe the nerve N of a general double category. Then, in Appendix B.2,
we describe the nerve NH™ of a 2-category. Finally, in Appendix B.3, we
also describe the nerve NH of a 2-category, in order to compare it with its
fibrant replacement NH=.

B.1. Nerve of a double category

Let A be a double category. We first want to describe the 0-, 1-, and
2-simplices of the space (NA),, ; for 0 < m,k < 1.

DESCRIPTION B.1. — By definition of N, we have that

(NA) k. = DbICat((VO3 (k) ® O3 (m)) @ O2(n), NA)

= 2Cat(0O2(n), HVO3 (k) @ 05 (m), Alps)-
Therefore we can describe the 0-, 1-, and 2-simplices of the space (NA),,
as follows.
(0) A 0-simplex in (NA),,  is a double functor

F: VO3 (k) ® 05 (m) — A.

(1) A 1-simplex in (NA),,  is an adjoint equivalence in the 2-category
H[VO3 (k) ® 03 (m), Alps, i.e., by Lemma A.8, a horizontal pseudo-
natural transformation

F
/\
VO3 (k)@ O3 (m) v A

~_ "
G

such that, the horizontal morphism ;: Fi — G4 is a horizontal
adjoint equivalence in A, for each object i € VO3 (k) ® O5'(m), and
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the square @, : (Fu !, Gu) is weakly horizontally invertible, for
each vertical morphism u in VO3’ (k) ® O3’ (m). In what follows, we
call such a ¢ a horizontal pseudo-natural adjoint equivalence and
we write p: F = G.

(2) A 2-simplex is the data of three horizontal pseudo-natural adjoint
equivalences o: F = G, ¢¥: G = H, and 0: F = H together

with an invertible modification p as follows.
G
P Y
/L /m*g
F=————H

We first compute the space (NA)g o, which is given by the space of ob-
jects. As expected from the completeness condition being in the horizontal
direction, its O-simplices are given by the objects, and its 1-simplices by
the horizontal adjoint equivalences.

DESCRIPTION B.2 (m = 0, k = 0). — We describe the space (NA)g 0.
First note that the double category VO3 (0) @ O5'(0) = [0] is the terminal
(double) category.

(0) A 0-simplex in (NA)g o is a double functor A: [0] — A, i.e., the data
of an object A € A.

(1) A 1-simplex in the space (NA)g o is a horizontal pseudo-natural
adjoint equivalence p: A = B, i.e., the data of a horizontal adjoint

equivalence ¢: A => C' in A.

(2) A 2-simplex in (NA)o, is an invertible modification pu: 6 = o
between such horizontal pseudo-natural adjoint equivalences, i.e.,
the data of a vertically invertible square in A

A0 g

I

A——C——E.
)

We now turn our attention to the space of horizontal morphisms (NA) o.
We observe that the squares appearing as n-simplices of this space all
have trivial vertical boundaries. In particular, this prevents a completeness
condition for (NA); _ for a general double category.
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DESCRIPTION B.3 (m =1, k = 0). — We describe the space (NA) .
First note that VO3 (0) ® O3 (1) = H[1] is the free double category on a
horizontal morphism.

(0) A O-simplex in (NA) o is a double functor f: H[1] — A, ie., the
data of a horizontal morphism f: A — B in A.

(1) A 1-simplex in the space (NA)y ¢ is a horizontal pseudo-natural
adjoint equivalence ¢: f = g, i.e., the data of two horizontal ad-

joint equivalences ¢g: A = C and ¢1: B = D together with a
vertically invertible square in A

A%CLD

B

A T B % D

(2) A 2-simplex in (NA)q is an invertible modification pu: 6 = o
between such horizontal pseudo-natural adjoint equivalences, i.e.,
the data of two vertically invertible squares ug and p, in A satisfying
the following pasting equality.

9
A ~ E—sF
o 1R “ €h A 9:0 B h F
A—3C—" s E—h— F 0 I
o o ;
€ w PR = A—fﬂB%E
A———(C—9—D—5F “ ey “ 1 12 ”
%o U1
QIR ey, = =
h Y A 7 B o D " F
A 7 B 821 D 1/71 F

We now compute the lower simplices of the space (NA)q ; — the space of
vertical morphisms. As expected from the horizontal completeness condi-
tion, its O-simplices are given by the vertical morphisms, and its 1-simplices
by the weakly horizontally invertible squares.

DESCRIPTION B.4 (m = 0, k = 1). — We describe the space (NA)g 1.
First note that VO3 (1) ® O3’ (0) = V[1] is the free double category on a
vertical morphism.
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(0) A O-simplex in (NA)g; is a double functor u: V[1] — A, i.e., the
data of a vertical morphism u: A - A’ in A.

(1) A 1-simplex in the space (NA)g1 is a horizontal pseudo-natural
adjoint equivalence ¢: u = w, ie., the data of two horizontal

adjoint equivalences ¢: A = C and ¢': A’ =5 C' together with a
weakly horizontally invertible square in A

A—=c

A=

(2) A 2-simplex in (NA)o1 is an invertible modification p: 6 = o
between such horizontal pseudo-natural adjoint equivalences, i.e.,
the data of two vertically invertible squares p and p' in A satisfying
the following pasting equality.

= Q 9~, N

u f ) f; “ woR ”

A —= o = B A =, ' =, B
@ v ¢’ Y

Finally, we consider the space of squares (NA) 1.

DESCRIPTION B.5 (m =1, k = 1). — We describe the space (NA); 1.
First note that VO3 (1) ® 05 (1) = V[1] x HJ1] is the free double category
on a square.

(0) A O-simplex in (NA); 1 is a double functor a: V[1] x H[1] — A, i.e.,
the data of a square « in A

A—— B
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(1) A l-simplex in the space (NA);; is a horizontal pseudo-natural
adjoint equivalence ¢: « = B, ie.,
adjoint equivalences o, p1, @f, and ¢}, two vertically invertible
squares ¢ and @', and two weakly horizontally invertible squares

o and @1 in A fitting in the following pasting equality.

g

A—2s0-2

®1

A—f—B———D

uf « vi 1~

A/ f N B/ N DI

o1

(2) A 2-simplex in (NA)y1 is an invertible modification p: 6 =
between such horizontal pseudo-natural adjoint equivalences, i.e.,

g

A—2s0c-25p

Po fw Jé] fﬂc

A —— ' —g = D

©
” o' R “

A/ f N B/ N D/

1

the data of four vertically invertible squares in A

—>

A > E
w Ho R “
A——C——E

10

%%
A/ — N El

o

A’ ol s B!
99 ‘/o

for i = 0,1, such that

o (uo, 1) satisfies the pasting equality as in Description B.3(2)
with respect to ¢, 1, and 6,

o (ug, 1) satisfies the pasting equality as in Description B.3(2)
with respect to ¢', 1)/, and ¢,

o (po, pyy) satisfies the pasting equality as in Description B.4(2)
with respect to g, %, and 0,

o (u1,p)) satisfies the pasting equality as in Description B.4(2)
with respect to 1, {/}vl, and ;.
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To further get intuition on higher simplex directions, we further describe
the 0- and 1-simplices of the spaces (NA)z o and (NA)g 2. These should be
thought of as the spaces of horizontal composites and vertical composites,
respectively.

DESCRIPTION B.6 (m = 2, k = 0). — We describe the space (NA)s .
First note that VO3 (0) ® O3 (2) = HO3 (2) is the horizontal double cate-
gory associated to O3 (2).

(0) A O-simplex in (NA)s ¢ is a double functor a: HO3 (2) — A, i.e.,
the data of a vertically invertible square o in A

A—>

ot

(1) A 1-simplex in the space (NA)s o is a horizontal pseudo-natural
adjoint equivalence ¢: « = o , 1.e., the data of three horizontal
adjoint equivalences g, 1, and @-, and three vertically invertible

squares @ ¢, ¢q, and ¢, in A fitting in the following pasting equality.

h/

A—" A c'
€0 “ a’ IR A i) A i c’
A A== B —g= (' “ on IR ”
@5 ” 2% A h C f c’
A—f— B % B —g—=C' “ a R “ o ”
e Pg IR A 7 B——C 52 C’

A—— B——C—~C

DESCRIPTION B.7 (m = 0, k = 2). — We describe the space (NA)g o.

First note that VO3’ (2) ® 05 (2)
associated to O3 (2).
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(0) A 0-simplex in (NA)g 2 is a double functor oc: VO3 (2) — A, i.e.,
the data of a horizontally invertible square o in A

A=——A
iu

u'e o= A
b
Al == A",

(1) A 1-simplex in the space (NA)g o is a horizontal pseudo-natural
adjoint equivalence p: « =N B, i.e., the data of three horizontal

adjoint equivalences p, ¢’, and ¢", and three weakly horizontally
invertible squares @, @', and @' fitting in the following pasting

equality.
— C——
— "

B.2. Nerve of a 2-category

A=——= A—F—

Q(—Q—Q

QH—Q(—Q—Q

A—F—
u” a = A
AI/

A// ) Cl/ A/I

By computing the nerve of a 2-category, we expect to see the space of
objects at (m, k) = (0,0), the space of morphisms at (m, k) = (1,0), and the
space of 2-morphisms at (m, k) = (1,1), while the space at (m, k) = (0,1)
should be weakly equivalent to the space of objects, since the first column
of 2-fold complete Segal space is essentially constant.

Let A be a 2-category. Recall that its nerve is given by the nerve of its
associated double category H~.A. We therefore translate Descriptions B.2
to B.5 to this setting. In particular, we first obtain the space of objects
(NH=A),, whose 0-simplices are the objects, and whose 1-simplices are
the adjoint equivalences of A, as expected by the completeness condition.
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DESCRIPTION B.8 (m = 0, k = 0). — We describe the space (NH=A)g o
(0) A O-simplex in (NH™A)q o is the data of an object A € A.
(1) A 1-simplex in (NH=A)g is the data of an adjoint equivalence
A= Cin A
(2) A 2-simplex in (NH™A) ¢ is the data of an invertible 2-morphism
as in the following diagram.

A EN E
\ﬁ_/

As for the space of morphisms (NH™A); o, we can see that the complete-
ness condition is now satisfied for (NH>A); _, since vertical morphisms are

now adjoint equivalences in A and they therefore also appear in the hori-
zontal direction.

DESCRIPTION B.9 (m =1, k = 0). — We describe the space (NH™A)1 0.
(0) A O-simplex in (NH=.A), o is the data of a morphism f: A — B in
A.
(1) A 1-simplex in (NH™A)1 ¢ is the data of two adjoint equivalences
and an invertible 2-morphism in A as in the following diagram.

A——C
fJ 4 Jg
B——=—D
(2) A 2-simplex in (NH™A)q ¢ is the data of two invertible 2-morphisms

filling the trjangles of the following pasting equality.

AR

oA \ﬂ/

The space (NH=A)g ; is actually given by the space of adjoint equiv-
alences. Since the “free-living adjoint equivalence” is biequivalent to the

point, this space can be interpreted as “homotopically the same” as the
space of objects.
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DESCRIPTION B.10 (m=0, k=1). — We describe the space (NH™A)g 1.

(0) A 0-simplex in (NH™A)o, is the data of an adjoint equivalence
u: A= A in A

(1) A 1l-simplex in (NH™A)q; is the data of an invertible 2-morphism
as in the following diagram, by Lemma A.4.

(2) A 2-simplex in (NH™A) ; is the data of two invertible 2-morphisms
filling the triangles of the following pasting equality.

A = E A = E
J{\‘M'E/J( J{ =~ J{
ullR — = Uy = u|R % AY
v |

!

J o A = B
NG % SRS

Finally, we compute the space of 2-morphisms (NH™A); ;. Although its
0-simplices are not precisely the 2-morphisms of A, homotopically they give
the right notion as the vertical morphisms u and v in the square below are
adjoint equivalences.

DESCRIPTION B.11. — We describe the space (NH~A); 1.

(0) A 0-simplex in (NH=A); ; is the data of a 2-morphism in A as in
the following diagram.
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(1) A 1-simplex in (NH=A); ; is the data of four adjoint equivalences
and four invertible 2-morphisms in A as in the following diagram.

C C
PN FYO,
A - = D A /= . D
an f\ B /{x = ulz/ ¢ \g,ﬁ\ sz

A’ &a J J* D’ D’

A =
P A

B/

(2) A 2-simplex in (NH~A); ; is the data of four invertible 2-morph-
isms filling triangles satisfying relations as described in Descrip-
tion B.9(2) and Description B.10(2).

B.3. Nerve of a horizontal double category

Finally, we compute the nerve of a horizontal double category H.A in
lower dimensions, where A is a 2-category, in order to compare it with
the nerve NH~A described above. Since H.A and H=.A have the same un-
derlying horizontal 2-category, namely A itself, then the spaces (NH.A)g o
and (NH.A)q o are equal to the spaces (NH™A)g ¢ and (NH=A); ¢ and they
can therefore be described as in Descriptions B.8 and B.9, respectively. In
particular, they are the desired space of objects and space of morphisms.

We now turn our attention to the space (NH.A)q 1. Unlike (NH™A)g 1,
this space has as 0-simplices the objects of A. This prohibits a completeness
condition in the vertical direction since equalities are not homotopically
good enough.

DESCRIPTION B.12 (m = 0, k = 1). — We describe the space (NH.A)g 1.

(0) A 0-simplex in (NH.A)q 1 is the data of an object A € A.
(1) A l-simplex in (NH.A)g 1 is the data of an invertible 2-morphism as
in the following diagram, by Lemma A.2.

A C

(=)
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(2) A 2-simplex in (NH.A)g ; is the data of two invertible 2-morphisms
filling the triangles of the following pasting equality.

~

m

~

A — E

Finally, we compute the space of 2-morphisms (NH.A); 1, which appears

to have precisely the 2-morphisms of A as 0-simplices. However, as ex-
plained above, this description is not homotopically well-behaved, since we
would also need to consider adjoint equivalences in the vertical direction.
DESCRIPTION B.13. — We describe the space (NHA)1 1.
(0) A 0-simplex in (NH.A)q ;1 is the data of a 2-morphism in A

(1) A 1-simplex in (NH.A), 1 is the data of four adjoint equivalences
and four invertible 2-morphisms in A as in the following diagram.

/

~
Q_ﬂ/&

(2) A 2-simplex in (NH.A); 1 is the data of four invertible 2-morph-
isms filling triangles satisfying relations as described in Descrip-
tion B.9(2) and Description B.12(2).

&:ﬂ \,
1 g\,x

\g/

D = D

Q/

12

Z
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