[Sur les estimations des transformées de Riesz associées aux opérateurs de Schrödinger et préservant la positivité]
We study the boundedness for Riesz transforms of the form where and is a non-negative potential. We prove that is bounded on with whenever We demonstrate that the boundedness holds if satisfies an -dependent integral condition that is resistant to small perturbations. Similar results with stronger assumptions on are also obtained on In particular our and results apply to non-negative locally bounded potentials which globally have a power growth or an exponential growth.
We also discuss a counterexample showing that the boundedness may fail.
Nous étudions le caractère borné sur , , pour les transformées de Riesz de la forme où et est un potentiel non-négatif. Nous prouvons que est bornée sur avec quand Nous démontrons que le caractère borné sur est valable si satisfait une condition intégrale dépendante de et robuste aux petites perturbations. Des résultats similaires avec des hypothèses plus fortes sur sont également obtenus sur En particulier, nos résultats et s’appliquent aux potentiels non négatifs et localement bornés qui ont globalement une croissance en puissance ou une croissance exponentielle.
Nous discutons également d’un contre-exemple montrant que le caractère borné sur peut échouer.
Révisé le :
Accepté le :
Première publication :
Keywords: Riesz transform, Schrödinger operator, $L^p$ boundedness
Mots-clés : Transformée de Riesz, Opérateur de Schrödinger, borne $L^p$
Kucharski, Maciej 1 ; Wróbel, Błażej 2, 1
@unpublished{AIF_0__0_0_A32_0, author = {Kucharski, Maciej and Wr\'obel, B{\l}a\.zej}, title = {On $L^p$ estimates for positivity-preserving {Riesz} transforms related to {Schr\"odinger} operators}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3744}, language = {en}, note = {Online first}, }
TY - UNPB AU - Kucharski, Maciej AU - Wróbel, Błażej TI - On $L^p$ estimates for positivity-preserving Riesz transforms related to Schrödinger operators JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3744 LA - en ID - AIF_0__0_0_A32_0 ER -
%0 Unpublished Work %A Kucharski, Maciej %A Wróbel, Błażej %T On $L^p$ estimates for positivity-preserving Riesz transforms related to Schrödinger operators %J Annales de l'Institut Fourier %D 2025 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3744 %G en %F AIF_0__0_0_A32_0
Kucharski, Maciej; Wróbel, Błażej. On $L^p$ estimates for positivity-preserving Riesz transforms related to Schrödinger operators. Annales de l'Institut Fourier, Online first, 42 p.
[1] Riesz transforms of Schrödinger operators on manifolds, J. Geom. Anal., Volume 22 (2012) no. 4, pp. 1108-1136 | DOI | MR | Zbl
[2] Maximal inequalities and Riesz transform estimates on spaces for Schrödinger operators with nonnegative potentials, Ann. Inst. Fourier, Volume 57 (2007) no. 6, pp. 1975-2013 | DOI | MR | Numdam | Zbl
[3] Boundedness of the Riesz transform related to Schrödinger operators on a manifold, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 8 (2009) no. 4, pp. 725-765 | MR | Numdam | Zbl
[4] Sobolev spaces associated to the harmonic oscillator, Proc. Indian Acad. Sci., Math. Sci., Volume 116 (2006) no. 3, pp. 337-360 | MR | Zbl | DOI
[5] Stochastic Processes, Probability and Its Applications, Birkhäuser, 2017 | MR | Zbl | DOI
[6] Harmonic analysis on semigroups, Ann. Math., Volume 117 (1983), pp. 267-283 | DOI | Zbl
[7] Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1989 | DOI | MR | Zbl
[8] The estimates of Riesz transforms associated to Schrödinger operators, J. Aust. Math. Soc., Volume 101 (2016) no. 3, pp. 290-309 | DOI | MR | Zbl
[9] Heat kernel and Riesz transform of Schrödinger operators, Ann. Inst. Fourier, Volume 69 (2019) no. 2, pp. 457-513 | DOI | MR | Numdam | Zbl
[10] On a formula of Takács for Brownian motion with drift, J. Appl. Probab., Volume 35 (1998) no. 2, pp. 272-280 | DOI | MR | Zbl
[11] A note on Schrödinger operators with polynomial potentials, Colloq. Math., Volume 78 (1998) no. 1, pp. 149-161 | DOI | MR | Zbl
[12] Sobolev spaces related to Schrödinger operators with polynomial potentials, Math. Z., Volume 262 (2009), pp. 881-894 | DOI
[13] Hardy spaces for Schrödinger operators with compactly supported potentials, Ann. Mat. Pura Appl., Volume 184 (2005), pp. 315-326 | MR | Zbl | DOI
[14] Resolution of a semilinear equation in , Proc. R. Soc. Edinb., Sect. A, Math., Volume 96 (1984) no. 3-4, pp. 275-288 | DOI | MR | Zbl
[15] Classical Fourier Analysis, Springer, 2008 | Zbl | DOI
[16] -Theory of Schrödinger Operators with a Singular Potential, Aspects of positivity in functional analysis (North-Holland Mathematics Studies), Volume 122, North-Holland, 1986, pp. 63-78 | Zbl
[17] Dimension-free estimates for Riesz transforms related to the harmonic oscillator, Colloq. Math., Volume 165 (2021) no. 1, pp. 139-161 | DOI | MR | Zbl
[18] Feynman–Kac-Type Theorems and Gibbs Measures on Path Space. With applications to rigorous quantum field theory, De Gruyter Studies in Mathematics, 34, Walter de Gruyter, 2011 | MR | Zbl | DOI
[19] NIST Handbook of Mathematical Functions (Olver, Frank.; Lozier, Daniel; Boisvert, Ronald; Clark, Charles, eds.), Cambridge University Press, 2010 | Zbl
[20] Brownian motion and classical potential theory, Academic Press Inc., 1978 | MR | Zbl
[21] estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier, Volume 45 (1995) no. 2, pp. 513-546 | DOI | MR | Numdam | Zbl
[22] Riesz transforms, Gaussian bounds and the method of wave equation, Math. Z., Volume 247 (2004), pp. 643-662 | MR | Zbl | DOI
[23] BMO results for operators associated to Hermite expansions, Ill. J. Math., Volume 49 (2005), pp. 1111-1131 | MR | Zbl
[24] The Feynman–Kac Formula and Semigroups, Brownian Motion, Obstacles and Random Media (Springer Monographs in Mathematics), Springer, 1998, pp. 3-37 | MR | DOI
[25] On a generalization of the arc-sine law, Ann. Appl. Prob., Volume 6 (1996) no. 3, pp. 1035-1040 | MR | Zbl
[26] Lectures on Hermite and Laguerre expansions, Mathematical Notes, 42, Princeton University Press, 1993 | Zbl | MR
[27] Dimension free estimates for Riesz transforms of some Schrödinger operators, Isr. J. Math., Volume 173 (2009), pp. 157-176 | MR | Zbl | DOI
Cité par Sources :