On L p estimates for positivity-preserving Riesz transforms related to Schrödinger operators
[Sur les estimations L p des transformées de Riesz associées aux opérateurs de Schrödinger et préservant la positivité]
Annales de l'Institut Fourier, Online first, 42 p.

We study the L p , 1p, boundedness for Riesz transforms of the form V a (-1 2Δ+V) -a , where a>0 and V is a non-negative potential. We prove that V a (-1 2Δ+V) -a is bounded on L p ( d ) with 1<p2 whenever a1/p. We demonstrate that the L ( d ) boundedness holds if V satisfies an a-dependent integral condition that is resistant to small perturbations. Similar results with stronger assumptions on V are also obtained on L 1 ( d ). In particular our L and L 1 results apply to non-negative locally bounded potentials V which globally have a power growth or an exponential growth.

We also discuss a counterexample showing that the L ( d ) boundedness may fail.

Nous étudions le caractère borné sur L p , 1p, pour les transformées de Riesz de la forme V a (-1 2Δ+V) -a ,a>0 et V est un potentiel non-négatif. Nous prouvons que V a (-1 2Δ+V) -a est bornée sur L p ( d ) avec 1<p2 quand a1/p. Nous démontrons que le caractère borné sur L ( d ) est valable si V satisfait une condition intégrale dépendante de a et robuste aux petites perturbations. Des résultats similaires avec des hypothèses plus fortes sur V sont également obtenus sur L 1 ( d ). En particulier, nos résultats L et L 1 s’appliquent aux potentiels non négatifs et localement bornés V qui ont globalement une croissance en puissance ou une croissance exponentielle.

Nous discutons également d’un contre-exemple montrant que le caractère borné sur L ( d ) peut échouer.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3744
Classification : 47D08, 42B20, 42B37
Keywords: Riesz transform, Schrödinger operator, $L^p$ boundedness
Mots-clés : Transformée de Riesz, Opérateur de Schrödinger, borne $L^p$

Kucharski, Maciej 1 ; Wróbel, Błażej 2, 1

1 Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2, 50-384 Wrocław, Poland
2 Instytut Matematyczny, Polska Akademia Nauk, Śniadeckich 8,00-656 Warszawa
@unpublished{AIF_0__0_0_A32_0,
     author = {Kucharski, Maciej and Wr\'obel, B{\l}a\.zej},
     title = {On $L^p$ estimates for positivity-preserving {Riesz} transforms related to {Schr\"odinger} operators},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3744},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Kucharski, Maciej
AU  - Wróbel, Błażej
TI  - On $L^p$ estimates for positivity-preserving Riesz transforms related to Schrödinger operators
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3744
LA  - en
ID  - AIF_0__0_0_A32_0
ER  - 
%0 Unpublished Work
%A Kucharski, Maciej
%A Wróbel, Błażej
%T On $L^p$ estimates for positivity-preserving Riesz transforms related to Schrödinger operators
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3744
%G en
%F AIF_0__0_0_A32_0
Kucharski, Maciej; Wróbel, Błażej. On $L^p$ estimates for positivity-preserving Riesz transforms related to Schrödinger operators. Annales de l'Institut Fourier, Online first, 42 p.

[1] Assaad, Joyce; Ouhabaz, El Maati Riesz transforms of Schrödinger operators on manifolds, J. Geom. Anal., Volume 22 (2012) no. 4, pp. 1108-1136 | DOI | MR | Zbl

[2] Auscher, Pascal; Ben Ali, Besma Maximal inequalities and Riesz transform estimates on L p spaces for Schrödinger operators with nonnegative potentials, Ann. Inst. Fourier, Volume 57 (2007) no. 6, pp. 1975-2013 | DOI | MR | Numdam | Zbl

[3] Badr, Nadine; Ben Ali, Besma L p Boundedness of the Riesz transform related to Schrödinger operators on a manifold, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 8 (2009) no. 4, pp. 725-765 | MR | Numdam | Zbl

[4] Bongioanni, Bruno; Torrea, José L. Sobolev spaces associated to the harmonic oscillator, Proc. Indian Acad. Sci., Math. Sci., Volume 116 (2006) no. 3, pp. 337-360 | MR | Zbl | DOI

[5] Borodin, Andrei N. Stochastic Processes, Probability and Its Applications, Birkhäuser, 2017 | MR | Zbl | DOI

[6] Cowling, Michael G. Harmonic analysis on semigroups, Ann. Math., Volume 117 (1983), pp. 267-283 | DOI | Zbl

[7] Davies, Edward B. Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1989 | DOI | MR | Zbl

[8] Deng, Qingquan; Ding, Yong; Yao, Xiaohua The L q estimates of Riesz transforms associated to Schrödinger operators, J. Aust. Math. Soc., Volume 101 (2016) no. 3, pp. 290-309 | DOI | MR | Zbl

[9] Devyver, Baptiste Heat kernel and Riesz transform of Schrödinger operators, Ann. Inst. Fourier, Volume 69 (2019) no. 2, pp. 457-513 | DOI | MR | Numdam | Zbl

[10] Doney, Ronald A.; Yor, Marc On a formula of Takács for Brownian motion with drift, J. Appl. Probab., Volume 35 (1998) no. 2, pp. 272-280 | DOI | MR | Zbl

[11] Dziubański, Jacek A note on Schrödinger operators with polynomial potentials, Colloq. Math., Volume 78 (1998) no. 1, pp. 149-161 | DOI | MR | Zbl

[12] Dziubański, Jacek; Głowacki, Paweł Sobolev spaces related to Schrödinger operators with polynomial potentials, Math. Z., Volume 262 (2009), pp. 881-894 | DOI

[13] Dziubański, Jacek; Zienkiewicz, Jacek Hardy spaces H 1 for Schrödinger operators with compactly supported potentials, Ann. Mat. Pura Appl., Volume 184 (2005), pp. 315-326 | MR | Zbl | DOI

[14] Gallouët, Thierry; Morel, Jean-Michel Resolution of a semilinear equation in L 1 , Proc. R. Soc. Edinb., Sect. A, Math., Volume 96 (1984) no. 3-4, pp. 275-288 | DOI | MR | Zbl

[15] Grafakos, Loukas Classical Fourier Analysis, Springer, 2008 | Zbl | DOI

[16] Kato, Tosio L p -Theory of Schrödinger Operators with a Singular Potential, Aspects of positivity in functional analysis (North-Holland Mathematics Studies), Volume 122, North-Holland, 1986, pp. 63-78 | Zbl

[17] Kucharski, Maciej Dimension-free estimates for Riesz transforms related to the harmonic oscillator, Colloq. Math., Volume 165 (2021) no. 1, pp. 139-161 | DOI | MR | Zbl

[18] Lőrinczi, József; Hiroshima, Fumio; Betz, Volker Feynman–Kac-Type Theorems and Gibbs Measures on Path Space. With applications to rigorous quantum field theory, De Gruyter Studies in Mathematics, 34, Walter de Gruyter, 2011 | MR | Zbl | DOI

[19] NIST Handbook of Mathematical Functions (Olver, Frank.; Lozier, Daniel; Boisvert, Ronald; Clark, Charles, eds.), Cambridge University Press, 2010 | Zbl

[20] Port, Sidney C.; Stone, Charles J. Brownian motion and classical potential theory, Academic Press Inc., 1978 | MR | Zbl

[21] Shen, Zhongwei L p estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier, Volume 45 (1995) no. 2, pp. 513-546 | DOI | MR | Numdam | Zbl

[22] Sikora, Adam Riesz transforms, Gaussian bounds and the method of wave equation, Math. Z., Volume 247 (2004), pp. 643-662 | MR | Zbl | DOI

[23] Stempak, Krzysztof; Torrea, José L. BMO results for operators associated to Hermite expansions, Ill. J. Math., Volume 49 (2005), pp. 1111-1131 | MR | Zbl

[24] Sznitman, Alain-Sol The Feynman–Kac Formula and Semigroups, Brownian Motion, Obstacles and Random Media (Springer Monographs in Mathematics), Springer, 1998, pp. 3-37 | MR | DOI

[25] Takács, Lajos On a generalization of the arc-sine law, Ann. Appl. Prob., Volume 6 (1996) no. 3, pp. 1035-1040 | MR | Zbl

[26] Thangavelu, Sundaram Lectures on Hermite and Laguerre expansions, Mathematical Notes, 42, Princeton University Press, 1993 | Zbl | MR

[27] Urban, Roman; Zienkiewicz, Jacek Dimension free estimates for Riesz transforms of some Schrödinger operators, Isr. J. Math., Volume 173 (2009), pp. 157-176 | MR | Zbl | DOI

Cité par Sources :