[Birationalité périphérique pour les variétés convexes-cocompactes tridimensionnelles]
Let be a hyperbolizable -manifold with boundary, and let be a component of the -character variety of that contains the convex co-compact characters. We show that the peripheral map to the character variety of is a birational isomorphism with its image, and in particular is generically a one-to-one map. This generalizes work of Dunfield (one cusped hyperbolic -manifolds) and Klaff–Tillmann (finite volume hyperbolic -manifolds). We use the Bonahon–Schläfli formula and volume rigidity of discrete co-compact representations.
Soit une variété hyperbolisable de dimension à bord, et soit un composant de la variété de caractères de qui contient les caractères co-compacts convexes. Nous montrons que l’application périphérique à la variété de caractères de est un isomorphisme birationnel avec son image, et en particulier est génériquement injective. Cela généralise les travaux de Dunfield (variétés hyperboliques cuspidées) et de Klaff–Tillmann (variétés hyperboliques à volumes finis). Nous utilisons la formule de Bonahon–Schläfli et la rigidité volumique des représentations cocompactes discrètes.
Accepté le :
Première publication :
Keywords: character variety, hyperbolic volume and rigidity, Culler–Shalen theory
Mots-clés : variété des caractères, volume hyperbolique et rigidité, théorie de Culler–Shalen
Agol, Ian 1 ; Vargas Pallete, Franco 2
@unpublished{AIF_0__0_0_A29_0, author = {Agol, Ian and Vargas Pallete, Franco}, title = {Peripheral birationality for 3-dimensional convex co-compact $\operatorname{PSL}_2\mathbb{C}$ varieties}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3741}, language = {en}, note = {Online first}, }
TY - UNPB AU - Agol, Ian AU - Vargas Pallete, Franco TI - Peripheral birationality for 3-dimensional convex co-compact $\operatorname{PSL}_2\mathbb{C}$ varieties JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3741 LA - en ID - AIF_0__0_0_A29_0 ER -
%0 Unpublished Work %A Agol, Ian %A Vargas Pallete, Franco %T Peripheral birationality for 3-dimensional convex co-compact $\operatorname{PSL}_2\mathbb{C}$ varieties %J Annales de l'Institut Fourier %D 2025 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3741 %G en %F AIF_0__0_0_A29_0
Agol, Ian; Vargas Pallete, Franco. Peripheral birationality for 3-dimensional convex co-compact $\operatorname{PSL}_2\mathbb{C}$ varieties. Annales de l'Institut Fourier, Online first, 23 p.
[1] Riemann’s mapping theorem for variable metrics, Ann. Math. (2), Volume 72 (1960), pp. 385-404 | DOI | MR | Zbl
[2] Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse, Math. (6), Volume 5 (1996) no. 2, pp. 233-297 | MR | DOI | Numdam | Zbl
[3] Transverse Hölder distributions for geodesic laminations, Topology, Volume 36 (1997) no. 1, pp. 103-122 | DOI | MR | Zbl
[4] A Schläfli-type formula for convex cores of hyperbolic -manifolds, J. Differ. Geom., Volume 50 (1998) no. 1, pp. 25-58 | MR | Zbl
[5] On Culler–Shalen seminorms and Dehn filling, Ann. Math. (2), Volume 148 (1998) no. 3, pp. 737-801 | DOI | MR | Zbl
[6] Circle packings and co-compact extensions of Kleinian groups, Invent. Math., Volume 86 (1986) no. 3, pp. 461-469 | DOI | MR | Zbl
[7] Varieties of group representations and splittings of -manifolds, Ann. Math. (2), Volume 117 (1983) no. 1, pp. 109-146 | DOI | MR | Zbl
[8] Slicing, skinning, and grafting, Am. J. Math., Volume 131 (2009) no. 5, pp. 1419-1429 | DOI | MR | Zbl
[9] Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math., Volume 136 (1999) no. 3, pp. 623-657 | DOI | MR | Zbl
[10] Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds, Int. Math. Res. Not. (2004) no. 9, pp. 425-459 | DOI | MR | Zbl
[11] Maximal volume representations are Fuchsian, Geom. Dedicata, Volume 117 (2006), pp. 111-124 | DOI | MR | Zbl
[12] Algebraic geometry, Graduate Texts in Mathematics, 133, Springer, 1992, xx+328 pages | DOI | MR | Zbl
[13] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | DOI | Zbl
[14] A birationality result for character varieties, Math. Res. Lett., Volume 23 (2016) no. 4, pp. 1099-1110 | DOI | MR | Zbl
[15] The geometry and topology of three-manifolds (2002) (online at https://library.slmath.org/nonmsri/gt3m/)
Cité par Sources :