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PERIPHERAL BIRATIONALITY FOR 3-DIMENSIONAL
CONVEX CO-COMPACT PSL2 C VARIETIES

by Ian AGOL & Franco VARGAS PALLETE (*)

Abstract. — Let M be a hyperbolizable 3-manifold with boundary, and let
χ0(M) be a component of the PSL2 C-character variety of M that contains the
convex co-compact characters. We show that the peripheral map i∗ : χ0(M) →
χ(∂M) to the character variety of ∂M is a birational isomorphism with its image,
and in particular is generically a one-to-one map. This generalizes work of Dunfield
(one cusped hyperbolic 3-manifolds) and Klaff–Tillmann (finite volume hyperbolic
3-manifolds). We use the Bonahon–Schläfli formula and volume rigidity of discrete
co-compact representations.

Résumé. — Soit M une variété hyperbolisable de dimension 3 à bord, et soit
χ0(M) un composant de la variété de caractères PSL2 C de M qui contient les
caractères co-compacts convexes. Nous montrons que l’application périphérique
i∗ : χ0(M) → χ(∂M) à la variété de caractères de ∂M est un isomorphisme bira-
tionnel avec son image, et en particulier est génériquement injective. Cela généralise
les travaux de Dunfield (variétés 3 hyperboliques cuspidées) et de Klaff–Tillmann
(variétés 3 hyperboliques à volumes finis). Nous utilisons la formule de Bonahon–
Schläfli et la rigidité volumique des représentations cocompactes discrètes.

1. Introduction

Given a connected 3-manifold M with boundary and a representation
ρ : π1(M) → G, G a Lie group (which will usually be PSL2(C)), it is nat-
ural to ask to what extent ρ is determined by ρ

∣∣
π1(∂M)? If the interior of

M admits a convex cocompact hyperbolic metric with holonomy ρ, then
it is known that ρ

∣∣
π1(∂M) determines ρ—in fact, the conformal structure

of the boundary determines the hyperbolic metric by results of Ahlfors–
Bers. For a manifold M with one cusp, Dunfield [9] proved that a main
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component of the character variety (the Zariski component containing a
discrete faithful representation) maps birationally to a factor of the A-
polynomial. In particular, for a Zariski open subset of this component, the
representation will be determined by its restriction to the boundary. This
was extended by Klaff and Tillmann [14] to the multiple cusped case (see
also Francaviglia [10], Francaviglia–Klaff [11]). However, in general there
may be families of representations which are constant on π1∂M .

We generalize the result of Dunfield to convex cocompact hyperbolic
manifolds. In this case, the space of discrete faithful representations is de-
termined by the Teichmüller space of the boundary, and its dimension is
half the dimension of the character variety of the boundary. Because of the
dimension agreeing, we know that the map is generically finite-to-one. We
show that the induced map by inclusion from the main component of the
character variety to its image in the character variety of the boundary is a
birational map, so it is actually generically one-to-one.

The tools that Dunfield uses are the Schläfli formula and representation
rigidity of Gromov which we adapt to the infinite volume case. An obvious
issue with geometrically finite manifolds of negative Euler characteristic
is that the volume is infinite. There is the notion of convex core volume,
but this is only well-defined for discrete faithful representations. Rather
than try to extend this to non-discrete representations, we choose pleated
surfaces with the same bending locus to define a notion of volume which
depends only on the restriction of the representation to the boundary. Al-
though such volumes require some choices, and such choices are not defined
everywhere, nevertheless we can show that there is a notion of volume de-
termined by the restriction to the boundary, making use of a version of
Schläfli’s formula due to Bonahon [4]. The other tool, representation rigid-
ity, then is proved at countably infinitely many representations for which
there is an extension to a finite-volume hyperbolic orbifold representation.
One could probably also extend the proof of volume rigidity to all repre-
sentations whose restriction to the boundary is discrete and faithful, but
rather than prove such a result, we decided to use what tools were already
at hand. Once we have extended these two tools, the proof proceeds simi-
larly to that of Dunfield. Suppose that a geometrically finite representation
and another representation have the same peripheral holonomy. Then the
volumes of the representations are the same. Hence by volume rigidity, they
are both discrete, and hence conjugate.

ANNALES DE L’INSTITUT FOURIER
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1.1. Examples

Here are some examples for which the result can be proved more easily.
Suppose one has a compression body M . The 3-manifold M is constructed
by attaching 2-handles to a surface Σ. Then the fundamental group of M is
the free product of the surface groups ∂M \ Σ. The compressible boundary
component Σ surjects the fundamental group of M , and hence the represen-
tation variety of M embeds into the representation variety of the boundary
component Σ.

A slightly less non-trivial example is that of a book of I-bundles. We say
that M = B ∪A C is a book of I-bundles if:

(1) B is a I = [0, 1] bundle over a (possibly disconnected) compact-
with-boundary surface Σ. Each component of Σ is referred as a
page, inspired by the structure of the trivial case B = Σ × [0, 1].

(2) C is a disjoint collection of solid tori D2 × S1. Each core curve of C
is referred as a binding.

(3) A ⊆ ∂B is a collection of annuli obtained by restricting the bundle
to ∂Σ. We identify the components of A to homotopically non-
trivial disjoint annuli in ∂C.

In this case, when the representation of π1(M) is faithful, it determines
the representations of each page. For each binding, there will be boundary
components overlapping the pages meeting that binding. The representa-
tions of these boundary components determine how to “glue” together the
representations of adjacent pages. Hence the boundary holonomy deter-
mines the full representation generically (since faithful representations are
generic in the main component).

1.2. Outline

This paper is organized as follows. Section 2 explains the main tools we
will use. Section 2.1 reviews PSL2 C character varieties. Section 2.2 con-
structs the pleated surfaces we will use to compute the volume associate to
a character. Sections 2.3, 2.4 deal with the definition of bending cocycle and
its implementation in the Bonahon–Schläfli formula for change of volume.
Sections 2.2, 2.3 and 2.4 start each with a brief outline of work of Bona-
hon [2, 4] followed by a formal description for our particular application.
Section 3 uses all these tools and volume rigidity of co-compact characters
to prove our main result (stated below). We finish with some remarks where
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we discuss the surjectivity and finite-to-one nature of the peripheral map,
and also how to generalize the result for geometrically finite characters.

Main theorem. — Let M be a hyperbolizable compact 3-manifold
with boundary. Let χ0(M) be the connected component of the discrete and
faithful representations. Then the map i∗ : χ0(M) → χ(∂M) is a birational
isomorphism onto its image.

Acknowledgments

Both authors are thankful to F. Bonahon for his interest and helpful
comments.

2. Background

2.1. Character variety

For a comprehensive study of character varieties of 3-manifold groups,
we refer the reader to [7] for SL2 C characters and [5] for PSL2 C characters.
Here we present a factual recollection of the relevant definitions and results
from [5].

Let G be a finitely generated group. A PSL2 C-representation is a ho-
momorphism ρ : G → PSL2 C. The PSL2 C representation variety R(G) is
defined by

R(G) =
{
ρ

∣∣ ρ : G −→ PSL2 C homomorphism
}

In order to discuss the algebraic structure on R(G), we recall some defini-
tions and properties from algebraic geometry (see [12]). An affine algebraic
set in Cm is the zero locus of a finite collection of polynomials with complex
coefficients. Given U, V affine algebraic sets, we say that f : U → V is a reg-
ular map if f : U → Cm ⊇ V has polynomial coordinates and f(U) ⊆ V .
Regular maps are in bijection (by taking the pull-back) with homomor-
phism between the coordinate rings of regular functions A[V ] → A[U ].

We say that two affine algebraic sets U ⊆ Cm, V ⊆ Cn are isomorphic
if there exists regular maps f : U → V , g : V → U with polynomial coor-
dinates so that g ◦ f = idU , f ◦ g = idV . An affine algebraic set is called
irreducible if it is the zero locus of a finite collection of polynomials that
generate a prime ideal. Every affine algebraic set U is canonically decom-
posed (respecting isomorphisms) as the finite union of (irreducible) affine

ANNALES DE L’INSTITUT FOURIER
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algebraic varieties, each of which is known as an irreducible component
of U .

The adjoint representation PSL2 C → Aut(sl2 C) realizes PSL2 C as an
affine algebraic set. Hence if we take {g1, . . . , gn} a collection of genera-
tors of G, the map R(G) → (PSL2 C)n, ρ 7→

(
ρ(g1), . . . , ρ(gn)

)
identifies

R(G) with an affine algebraic set. Since a different choice of generators
will produce an isomorphic affine algebraic set, we identify R(G) with an
isomorphism class of affine algebraic sets.

We say two representations ρ1, ρ2 ∈ R(G) are conjugated if there exists
g∈GL2 C so that ρ2 =g−1ρ1g. This defines an equivalence relation in R(G),
where any pair of equivalent representations belong to the same irreducible
component of R(G).

We say that a representation ρ ∈ R(G) is irreducible if the only subspaces
of C2 invariant by ρ(G) are {0} and C2, otherwise we say that ρ is reducible.
Irreducibility is preserved by conjugation. Moreover, the set of reducible
representations is a subvariety of R(G). Hence by an irreducible component
of R(G) of irreducible representations we refer to an irreducible component
of R(G) (in the algebro-geometric sense) so that the subvariety of reducible
representations is proper.

We define the character variety χ(G) as the algebro-geometric quotient
R(G)/PSL2 C by considering the affine algebraic set matching the subring
APSL2 C[

R(G)
]

⊆ A
[
R(G)

]
of regular functions invariant by the natural

PSL2 C action. Hence we have a surjective regular map χ : R(G) → χ(G)
that is constant in the PSL2 C orbits, and for any g ∈ G we have that the
map τg : χ(G) → C, χρ 7→

(
tr

(
ρ(g)

))2 is a well-defined regular map.
We introduce some definitions for rational maps between affine algebraic

varieties.

Definition 2.1. — Let X ⊆ Cm, Y ⊆ Cn be affine algebraic vari-
eties. We say that ϕ = (ϕ1, . . . , ϕn) is a rational map from X to Y if
each ϕ1, . . . , ϕn is given by a rational function in X, and whenever defined,
ϕ(x) ∈ Y . We denote this by ϕ : X 99K Y . We say that ϕ : X 99K Y is dom-
inant if, given U ⊆ X Zariski open set where ϕ is defined, then the Zariski
closure of ϕ(U) is equal to Y . We say that ϕ is birational if there exists
inverse ψ : Y 99K X. In such case we say that X and Y are birationally
isomorphic.

Now we consider the convex co-compact PSL2 C representations of a
3-manifold M with boundary. These representations are irreducible and
it is known (see for instance [8, Section 6]) that their Zariski closure in
R

(
π1(M)

)
is an irreducible component R0, so their characters have Zariski

TOME 0 (0), FASCICULE 0
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closure an irreducible component of χ(M). We denote this component by
χ0(M). By fixing paths from a basepoint to each component of the bound-
ary ∂M = Σ1 ⊔ · · · ⊔ Σk we have the regular maps between representation
varieties induced by the inclusion ∂M ↪→ M

iℓ∗ : R
(
π1(M)

)
−→ R

(
π1(Σℓ)

)
, 1 ⩽ ℓ ⩽ k.

Hence by taking the pullback we have ring homomorphisms

φℓ : A
[
R

(
π1(Σℓ)

)]
−→ A

[
R

(
π1(∂M)

)]
.

It is not hard to see that φℓ is equivariant with respect to the natural
PSL2 C action on each ring, so in particular satisfies

φℓ

(
APSL2 C[

R
(
π1(Σℓ)

)])
⊆ APSL2 C[

R
(
π1(M)

)]
.

This means that we have regular maps (which we also denote by iℓ∗)
iℓ∗ : χ

(
π1(M)

)
→ χ

(
π1(Σℓ)

)
that make the following diagram commute.

R
(
π1(M)

)
R

(
π1(Σℓ)

)
χ

(
π1(M)

)
χ

(
π1(Σℓ)

)
iℓ∗

χ χ

iℓ∗

We should observe that while each iℓ∗ at the level of representation
varieties depended on the choice of basepoint and paths in M , the maps iℓ∗
at the level of character varieties are well-defined, since a change of paths
conjugates representations. We define then the peripheral map of χ(M) as
the regular map

i∗ = (i1∗, . . . , ik∗) : χ
(
π1(M)

)
−→ χ(∂M) := χ

(
π1(Σ1)

)
× · · · ×χ

(
π1(Σk)

)
.

By Ahlfors–Bers [1] we have that i∗ evaluated at a convex co-compact
PSL2 C character of π1(M) gives a collection of convex co-compact PSL2 C
characters for each Σℓ. This collection of characters have closure included in
the convex co-compact irreducible component of χ(∂M), which we denote
by χ0(∂M). Observe that the map i∗ : χ0(M) → i∗

(
χ0(M)

)
⊂ χ0(∂M) is a

diffeomorphism between convex co-compact characters and their image. It
is well-known (see for instance [13, Chapter I.3]) that dimC

(
i∗

(
χ0(M)

))
⩽

dimC
(
χ0(M)

)
, as dimension corresponds to the Krull dimension of local

rings, and since i∗ has dense image then the induced map at the level of
local rings is injective. Since dimension agrees with the dimension of smooth
points (such as the convex co-compact characters), we know that the map

i∗ : χ0(M) −→ i∗
(
χ0(M)

)
⊂ χ0(∂M)

ANNALES DE L’INSTITUT FOURIER
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is a dominant (i.e. dense image) regular map between algebraic varieties of
the same dimension.

2.2. Pleated surfaces

Let S be a genus g surface. Let us fix an auxiliary hyperbolic metric m0
and Γ = {γi}1⩽i⩽3g−3 a maximal collection of oriented, disjoint, essential,
pairwise non-isotopic, simple closed curves (i.e. an oriented pants decom-
position). Take λ0 to be the maximal lamination extension of Γ so that
any leaf of λ0 that accumulates at γi ∈ Γ does it in the direction of the
orientation (see Figure 2.1). Equivalently, the orientation for each γi ∈ Γ
gives a preferred endpoint for any lift γ̃i of γi in the universal cover. Then
any ideal triangle in the lift (S̃, λ̃0) uses only preferred endpoints as ideal
vertices.

Γ

λ0

γ1 γ2

η

Figure 2.1. Lamination λ0 defined by the collection of oriented
curves Γ. The component η of λ0 accumulates at γ1, γ2, according
to their orientation.

Take representations ρt : π1(S) → PSL(2,C) so that ρ(γi) is neither par-
abolic nor the identity (so there is a well-defined axis), and the endpoints
of ρ(γi), ρ(γj) are distinct for i ̸= j. Assume as well that we have a given
equivariant orientation/endpoint for axis of each lift of γi, which we denote
by ζ. If so we say that ρt is Γ-adapted and we define the (abstract) pleated
surface (f̃ζ = f̃ : S̃ → H3, ρ) as follows.

(1) For any lift γ̃i of γi, map its preferred endpoint to the corresponding
endpoint given by ζ.

TOME 0 (0), FASCICULE 0
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(2) For any lift of a component of λ0 \ Γ, send it to the geodesic in H3

joining the corresponding preferred endpoints. This is possible since
by assumption the preferred endpoints in ∂∞H3 are distinct.

(3) For any lift of an ideal triangle in S̃ \ λ̃0, send it to the ideal triangle
spanned by the distinct corresponding endpoints.

(4) Finally, extend continuously to Γ̃. This makes the map f̃ : S̃ → H3

equivariant by ρ.

Note that if every ρ(γi) was loxodromic and the orientation ζ agrees with
the orientation of Γ, this will be the classical notion of pleated surface. On
the other hand if for some ρ(γi) the orientations of ζ and Γ disagree, then
f̃ is the classical notion of pleated surface for the lamination λ1, where λ1
is obtained from Γ after changing the orientations to have full agreement
with ζ.

If ρ(γi) is elliptic then the situation is a bit more delicate. The continuous
extension of step (4) will send any lift γ̃i entirely to the preferred endpoint
given by ζ. This means that under the pull-back metric on S given by f̃

we have that ℓ(γi) = 0. This means that the pull-back metric of S has a
cusp at each elliptic γi and hence is of finite type, which is consistent with
the fact that the complex length of ρ(γi) is purely imaginary.

2.3. Bending transverse cocycle

In [2, Section 6], Bonahon defines the bending transverse cocycle of a
pleated surface. This means that for each arc α transverse to a lamination λ
we have a number β(α) ∈ R/2πZ called the bending, which represents the
amount of turning made by the pleated surface between the geodesic faces
containing the endpoints of α. The cocycle β is additive under finite sub-
division of a transverse arcs and can be defined as follows. Consider all the
geodesics of the lamination that α crosses, and the geodesic faces (or rather
plaques, as denoted by Bonahon) of the pleated surface going between those
geodesics. The boundary of the plaques define two curves η1,2 in ∂∞H3.
Then the bending of α is defined as the difference of angles between the
end plaques minus the integral of the signed curvature of either η1,2 (see [2,
Lemma 23]).

For our fixed lamination (S̃, λ̃0) we can finitely decompose any transverse
arc into smaller transverse arcs so that each smaller arc intersects Γ̃ at most
once. This simplifies the description of the bending cocycle as follows.

ANNALES DE L’INSTITUT FOURIER
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γ

λ0

α

γ̃

P Q

P

Q

Figure 2.2. Bending of a transverse curve α intersecting a unique com-
ponent γ of Γ.

If an arc α does not intersect Γ̃ then it only intersects finitely many
geodesic lines of λ̃0. Then the bending is just given by the sum of the
finitely many exterior dihedral angles involved.

Now say that α intersects exactly one component γ̃i of Γ̃. Furthermore,
assume that α only intersects leaves of λ0 that accumulate in γi. Then all
plaques involved contain the preferred endpoint of γ̃i. This means that one
of the two curves η1,2 degenerates to a point, so we are only left with the
angle of the two intersecting end plaques.

Now it is easy to see that for our definition of (abstract) pleated surface,
the two above definitions are well-defined and are additive under finite
subdivision. Then for a general transverse arc α we can take any finite
subdivision so every arc is of one of the two cases analyzed above, and

TOME 0 (0), FASCICULE 0
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define the bending of α as the sum of bending. Since the cocycle was al-
ready additive between the two types, this shows that the bending cocycle
is well-defined and additive under finite subdivision. Moreover, this im-
plies that for a smooth 1-parameter family of Γ-adapted representations ρt

where the orientation/endpoint choice ζ varies continuously, the bending
varies smoothly. This is because the family of preferred endpoints will vary
smoothly, and the bending of any arc is decomposed as the finite sum of
finitely many angles of planes defined by preferred endpoints. And while
the bending cocycle is defined only up to an integer multiple of 2π, its
derivative is well-defined over R.

For the end of this subsection, let us define the length of the derivative
of the bending lamination, which we will denote by ℓ(b′). In [2, Section 3]
this quantity is computed by taking rectangles whose vertical sides are
transverse to the lamination and whose horizontal sides are disjoint from
it, integrating first along vertical segments a transverse Hölder distribution
defined in terms of the derivative of the bending cocycle (see also [3]) and
then integrating horizontally with respect the length measure. In our case
for the lamination λ0 we will simplify the definition as follows. Based at
each endpoint chosen by ζ we pick a family of ρ0-equivariant horoballs.
Using such horoballs we calculate the (signed) length of a leave in λ0 \γ as
the signed length of the segment determined by the intersection with the
fixed system of horoballs. Hence we define ℓ(b′) as

ℓ(b′) :=
∑

l∈λ0\γ

ℓ(l).b′(l)

where ℓ(l) is the signed length we have defined for the leave l and b′(l) is
the derivative of the bending angle along l. One can prove that ℓ(b′) does
not depend on the particular choice of equivariant horoballs, fact that we
will see as a consequence of Proposition 2.2.

2.4. Volume variation

Let ρt be a smooth 1-parameter family of Γ-adapted representations.
Let ft be the λ0 abstract pleated surface, mt the metric induced from H3

in S by ft, and let Vt be the volume of a 3-chain bounded by ft. Then we
wish to establish that

V ′
t = 1

2ℓt(b′
t),

where bt is the bending cocycle of ft, and ℓt is the length of the (real-valued)
transverse cocycle b′

t with respect to the induced metric mt. This is known

ANNALES DE L’INSTITUT FOURIER
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for classical pleated surfaces as the Bonahon–Schläfli formula, as proved
by Bonahon in [4, Theorem 1]. We will explain the outline of Bonahon’s
proof while providing a proof for our case under the definition for ℓt(b′

t)
we established at the end of the previous section. The main challenge is to
carry out Bonahon’s strategy in the case when elliptic transformations are
involved.

Cover λ0 by geodesic rectangles R0
1, . . . , R

0
m with disjoint interior, so

that the components of λ0 ∩R0
i are parallel to opposite horizontal sides of

the rectangle. We refer to these rectangles as horizontal rectangles. Each
horizontal rectangle R0

i can be collapsed vertically to an edge in order to
obtain an embedded graph in S, and we can complete that graph to a
triangulation T0 of S, which lifts to a triangulation T̃0 of S̃. Take then
a ρ0-equivariant map g : S̃ → H3 that is polyhedral with respect to T̃0
and homotopic to f0 through ρ0-equivariant maps. For t small, take mt-
geodesic rectangles Rt

i so that the analogous statement holds for λt, Rt
i

is smooth on t, and up to isotopy on S we have that Tt = T0. Consider
then ρt-equivariant maps gt : S̃ → H3 that are polyhedral with respect
to T̃0 and homotopic to ft through ρt-equivariant maps. By the Schläfli
formula for polyhedral maps, we can calculate the variation of volume for
the quotient of a 3-chain bounded by gt. Hence we can reduce the problem
to calculate the variation of volume for the quotient of a ρt-equivariant
homotopy between ft, gt. Since we can take maps ht : S → S homotopic to
the identity so that ht(Rt

i) is an arc of T , the volume of the quotient of the
homotopy between gt and gt ◦ h̃t is equal to 0. Then we can further reduce
to calculate the variation of volume for the quotient of a ρt-equivariant
homotopy Ht between ft, gt ◦ h̃t.

The next step is to divide the homotopy Ht into a family of ρt equivari-
ant polyhedral pieces. Fixing a rectangle Rt

i, and given gt ◦ h̃t = Ht( · , 0)
sends Rt

i to a geodesic segment, we want extend H to Rt
i × [0, 1] by geodesic

segments so that ft = Ht( · , 1). In order to do so, for each component R
of Rt

i \ λt, we define Ht

(
R× [0, 1]

)
so that decomposes into the union of a

pyramid with square basis given by R, and a tetrahedra that shares a side
with the pyramid (see Figure 2.3). Because ft, gt ◦ h̃t are ρt-equivariant,
this family of polyhedra Pt is ρt-equivariant. Since (λt ∩ Rt

i) × [0, 1] has
3-dimensional Lebesgue measure 0, we can focus solely in the family of
polyhedra Pt in order to calculate volumes.

Recall that the variation of volume of a polyhedra is given by the sum
of half-lengths of edges times the variation of the dihedral angle. Then
Bonahon [4] argues that for any interior edge and for any edge shared

TOME 0 (0), FASCICULE 0



12 Ian AGOL & Franco VARGAS PALLETE

Figure 2.3. 3-chain obtained as the union of a pyramid and a prism.

with gt ◦ h̃t, the different contributions cancel out. As for edges appearing
in ft, their sum can be reinterpreted as the half-length of the variation of
the bending cocycle. This is the delicate part of the argument, because as
Bonahon points out, edges are not locally finite, so appropriate summability
and convergence should be proved. Bonahon’s statement covers the case
when all γ ∈ Γ are loxodromic, so we are left to justify when some γ is
elliptic given our choice of λ0. Hence we concentrate on this case.

For our choice of λ0 the polyhedral subdivision can be simplified in such
a way that the questions of summability and convergence are easier to con-
clude. In the following proposition we prove the variational formula for vol-
ume while considering S = ∂M and a path ρt of PSL(2,C) representation
of π1(M) that are adapted with respect an oriented pants decomposition.
Under such constraints we define Vt the volume enclosed by a abstract
pleated surface on S by extending equivariantly the pleated maps ft to M̃
(the universal cover of M) and integrating along M the pull-back of the
volume form of H3 by f . As the boundary map is fixed equal to the pleated
map, the volume Vt is well-defined.

Proposition 2.2. — Let S be a closed hyperbolic surface (not neces-
sarily connected), let Γ be an oriented pants decomposition of S and λ0
the maximal lamination extension described in Section 2.2. Let M be a
closed 3-manifold whose boundary we identify with S, and assume that ρt

is a smooth 1-parameter family of representations of π1(M) to PSL(2,C)
so that if they are restricted to S they are Γ-adapted, and let ft be the
ρt-equivariant (abstract) pleated surface along λ0. If Vt, mt and bt are the
volume bounded, induced metric in S, and the bending cocycle of ft; then

V ′
t = 1

2ℓt(b′
t),

where ℓt is the length of the (real-valued) transverse cocycle b′
t with respect

to the induced metric mt.
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γ

R
λ0

Figure 2.4. Rectangle R going around the closed geodesic γ.

Proof. — Observe that it is sufficient to prove the statement for t = 0.
Cover each closed curve γ in Γ by the closure of a single horizontal

rectangle Rt
γ (see Figure 2.4). In the case that γ is elliptic the vertical

sides are not well-defined segments, but we have a well-defined pair of
cusped cylinders which union we still denoted by R0

γ (similar for any other t
where ρt(γ) is elliptic). Observe that in the complement of

⋃
γ∈Γ R

t
γ the

lamination λ0 is the finite union of geodesic segments, which we cover by
finitely many horizontal rectangles following the pattern in Figure 2.5. We
label these rectangles as Rt

1, . . . , R
t
6g−6, so our total collection of horizontal

rectangles is given by {Rt
γ}γ∈Γ ∪ {Rt

i}1⩽i⩽6g−6.
We take then the vertical collapsing of the horizontal rectangles and

complete it to a graph T given as the 1-skeleton of a triangulation, so that
in each pair of pants in the complement of Γ the graph T is given as in
Figure 2.6. In particular, T contains a copy of each γ ∈ Γ. Our next goal is
to define the ρt-equivariant polyhedral maps gt : S̃ → H3 bent along T , in
order to differentiate the volume bounded by gt and the volume bounded
between ft and gt ◦ h̃t, where h̃t is the lift of the map that collapses the
horizontal rectangle to T . In order to do so, we will further specify our
choices.

Take R0
γ such that each horizontal side extends to a geodesic ray with

the same endpoint as γ. In the collection of axis γ̃ ⊂ H3 under ρ0 of γ take
a point Aγ so that any ρ0(γ) translate of Aγ does not belong to neither a
ρ0 lift of λ0 \γ nor to the image of any lift of a vertex of R0

γ , R
0
i by f0. This

is possible because we are in the open set where γ̃ is not included in the ρ0
lift of λ0 \ γ. Define g0 on the 0-skeleton of S̃ as a ρ0-equivariant map that
sends lifts of a vertex v ∈ T in γ to the ρ

(
π1(S)

)
orbit of Aγ . As T is the
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Figure 2.5. Rectangles on the complement of the cuffs.

Figure 2.6. Triangulation on a pair of pants.

1-skeleton of a triangulation and the ρ0
(
π1(S)

)
orbits of Aγ are mutually

disjoint, we can extend g0 geodesically as a ρ0-equivariant polyhedral map
g0 : S̃ → H3 bent along T . Moreover we extend this configuration for small
values of t so that gt varies smoothly as a polyhedral map. As stated in the

ANNALES DE L’INSTITUT FOURIER



PERIPHERAL BIRATIONALITY FOR PSL2 C VARIETIES 15

outline, we take maps ht : S → S homotopic to the identity so that ht(Rt
i)

is an arc of T , and so that the volume of the quotient of the homotopy
between gt and gt ◦ h̃t is equal to 0. As the lamination itself generates a 0
volume set (which is easier to see for our case) we can focus on the variation
of the volume of the polyhedra.

As f0, g0 ◦ h̃0 send vertices of S̃ to disjoint sets of orbits, we construct the
ρ0-equivariant polyhedral homotopy H0 by taking 3-chains as in Figure 2.3
for each horizontal rectangle. Observe that some of these 3-chains could
be collapsed or have the opposite orientation in H3, so we consider their
signed volume. In order to apply the Schläfli formula for collapse polyhedra
we need that even in cases when a face or an edge collapses it belongs
to a well-defined plane or line that varies smoothly on t around t = 0.
Since for lifts of {R0

i }1⩽i⩽6g−6 we have that H0 is defined equivariantly on
finitely many polyhedra, by moving slightly our choices of Aγ and vertices
of {R0

i }1⩽i⩽6g−6 we can assume that even if a face or edge collapses it is
contained in a well-defined plane or line that varies smoothly with t. Hence
we allow 0, π in R/2πZ as values for dihedral angles and 0 for lengths.

Figure 2.7. Prisms obtained as the 3-chain in the cases when γ is
loxodromic (left) or elliptic (right).

We look now with more attention to the polyhedra of H0 involving R0
γ ,

as we will use that description in the differentiation of volume. As lifts
of the horizontal sides of R0

γ , γ and λ0 ∩ R0
γ have image all image by f0

geodesic segments with a point at infinity in common, the associated 3-
chains to R0

γ can be in fact considered as prisms. This is the combinatorial
type we will take for these 3-chains. As in the case with the polyhedra in
the previous paragraph, such prisms are not necessarily non-degenerate, as
if γ is elliptic then a side of the prism will collapse to a point. Regardless,
since by choice the translates of Aγ are disjoint from the boundary of the
opposite rectangle, the planes containing a face of the prism are all well-
defined. Similarly, each edge of the prism is contained in a well-defined
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16 Ian AGOL & Franco VARGAS PALLETE

geodesic line (in Figure 2.7 the collapsed segment belongs to γ̃). Hence, even
if the prism degenerates, we have a well-defined notion of angles between
adjacent faces, where again we allow the values of 0, π in R/2πZ for angles
and 0 for lengths. Same follows for the 3-chains bounded by g0 ◦ h̃0, and
we extend this configuration for t small.

Figure 2.8.

For our particular construction we will rearrange the rectangles of Rt
γ \λt

0
from the top to the bottom diagram of Figure 2.8. Doing so will stack all
prisms to form finitely many tetrahedra with an ideal vertex such as in Fig-
ure 2.9. Polyhedra with ideal vertices have as well a Schläfli formula, where
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Figure 2.9. Ideal prisms obtained in the cases when γ is loxodromic
(left) or elliptic (right).

one takes a horoball at each ideal vertex and computes the (signed) length
of an edge by taking the finite segment in the edge that goes between ver-
tices/horoballs. Then the sum of (edge length)(derivative of dihedral angle)
is well-defined, computes the variation of volume and it is independent of
the choice of family of horoballs at ideal vertices. Observe then that for our
purposes we are dealing with the volume of finitely many polyhedra, where
some of them are ideal. Hence V ′

0 can be computed as

V ′
0 = 1

2
∑

e edge
ℓ(e)θ′(e),

where the sum is done along the finitely many edges in the aforementioned
polyhedra, and ℓ(e), θ(e) denote the (signed) length and dihedral angle
of the edge, where ideal edges measure their length with respect to some
prefixed horoball at the ideal vertices. Now we reorganize the summands
ℓ(e)θ′(e), taking advantage that edges are identified by the ρt equivariance
of the polyhedra. As edges are identified we will specify the particular
dihedral angle of a polyhedra P ∋ e by writing θ(e, P ). We divide the
types of identified edges in four cases, depending if they are interior (i.e.
not from the lamination) or not and if they are ideal or not.

(1) For an interior non-ideal edge e we have that by ρt equivariance all
instances of θ′(e, P ) add up to 0.

(2) For an interior ideal edge e, as its comes from each cuff associated
to γ ∈ Γ, it appears in two ideal tetrahedra with the same angle
(matching the rotation component of ρt(γ)) and opposite orienta-
tions, while on the ideal tetrahedra we compute the same (signed)
length ℓ(e) by fixing the same horoball at the ideal point. Hence
the summands ℓ(e)θ′(e, P ) cancel out.
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(3) For non-ideal edges appearing on the lamination, the sum∑
e∈P

θ′(e, P )

is equal to the derivative of the bending of the lamination.
(4) For ideal edges appearing on the lamination the sum

∑
e∈P θ

′(e, P )
is equal to the derivative of the bending of the lamination, while ℓ(e)
is the (signed) distance between its finite vertex and the horoball
fixed at its ideal point. Observe that for a curve γ ∈ Γ each of the
cuffs uses the same horoball.

Hence after identifying edges and going through the cases, we are left
with

V ′
0 = 1

2
∑

e lamination edge
ℓ(e)b′(e)

where ℓ denotes the length (or signed length between a finite vertex and a
prefixed horoball) and b′(e) is the derivative of the bending. As this right-
hand side is our definition for ℓ0(b′

0), we have proved the proposition. □

Remark 2.3. — In reality all we will need from Proposition 2.2 is that
the derivative of volume depends only on information carried by the ab-
stract pleated surface ft, rather than the explicit formula. Nevertheless, it
is of independent interest that the formula can be explained by a simple
geometric description in our case.

Remark 2.4. — While Proposition 2.2 uses the 3-manifold M to define
the volume Vt, one can more generally define a relative volume by cropping
by equivariant surfaces S′

t homotopic to the abstract pleated surface that
have 0 variation of volume (for instance, that the integral of the normal
component of the variation is 0). While this relative volume Vt depends on
the choice of S′

t, its derivative V ′
t does not, and the conclusion of Proposi-

tion 2.2 holds.

3. Proof of main theorem

Now that we have all terms defined, let us restate our main result.

Theorem 3.1. — Let M be a hyperbolizable compact 3-manifold with
boundary. Let χ0(M) be the connected irreducible component of the dis-
crete and faithful representations. Then the map i∗ : χ0(M) → χ(∂M) is a
birational isomorphism onto its image.
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Since we want to use the Bonahon–Schläfli formula and volume rigidity,
we first need a lemma saying that generically our pleated surface construc-
tion is well-defined.

Lemma 3.2. — Let M be a hyperbolizable compact 3-manifold with
boundary, and let λ be a maximal geodesic lamination on ∂M that contains
a pants decomposition. Let χ0(M) be the connected component of the
discrete and faithful representations. Then the set

P(M,λ) =
{

[ρ] ∈ χ0(M)

∣∣∣∣∣ (∂M, ρ) has a pleated surface
with pleating locus λ

}
is an open Zariski dense set in χ0(M).

Proof. — (Fixing a particular λ) We follow the description of Thurs-
ton [15]. Let S ⊆ ∂M be a connected component with some fixed hyperbolic
structure. Let P = {γi} ⊂ λ be the pants decomposition contained in the
maximal geodesic lamination λ, so that λ \ P is a collection of geodesic
lines accumulating at P. Then a given [ρ] ∈ χ0(M) has a pleating surface
with pleating locus λ if:

(1) ρ(γi) is non-trivial and non-parabolic for all γi ∈ P;
(2) the endpoints of ρ(γi), ρ(γj) are distinct for any γi ̸= γj ∈ P.

Indeed, if these conditions are satisfied, the lifts of P in λ̃ can be mapped
equivariantly to H3 by choosing the geodesic representatives ρ(γi). And
since any line ℓ ∈ λ\P accumulates to γi ̸= γj ∈ P with different endpoints,
then we can map a lift of ℓ to the unique geodesic joining distinct endpoints
of the lifts of γi, γj . Hence for any ideal triangle in S \ λ we have a map
of its boundary to M , so there exists a corresponding ideal triangle in M .
Such ideal triangles will make the realization of λ in M .

What is left to see is that (1) and (2) define a Zariski dense set. The neg-
ative of (1) corresponds to tr2(

ρ(γi)
)

= 4, which is a polynomial equation
on the coefficients of ρ(γi). Similarly, if ρ(γi), ρ(γj) share an endpoint then
tr2(

ρ(γi)ρ(γj)ρ(γi)−1ρ(γj)−1)
= 4, which is an algebraic equation on the

coefficients of the commutator of ρ(γi), ρ(γj). Finally, since these equations
are not satisfied for convex co-compact representations, we have that the
negatives of (1), (2) define a finite union of proper algebraic sets. Hence the
intersection of the complements of these proper algebraic sets is a connected
Zariski dense set in χ0(M). □

Given that we have that the peripheral map i∗ : χ0(M) → i∗
(
χ0(M)

)
⊂

χ0(∂M) is dominant, we can use the following lemma to show that i∗ is
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essentially a finite-to-1 covering. Then the main theorem will follow from
showing that i∗ is essentially injective.

Lemma 3.3 ([12, Proposition 7.16]). — Let X,Y be (complex) affine
algebraic varieties, and let f : X → Y be a dominant rational map. If X,Y
have the same dimension, then there exist open Zariski dense subsets X0 ⊆
X, Y0 ⊆ Y, f−1(Y0) = X0 and an integer k so that the map f

∣∣
X0

: X0 → Y0
is k-to-1.

The idea to show that k = 1 for i∗ is to use volume rigidity for characters.
In order to do so, we need to show first that volume only depends on the
peripheral data.

Lemma 3.4. — Let M be a hyperbolizable compact 3-manifold with
boundary, and let Γ be an unoriented pants decomposition on ∂M . Let
χ0(M) be the connected component of the discrete and faithful representa-
tions. There exists an open Zariski dense subset Z ⊆ χ0(M) so the following
hold:

(a) volΓ : Z → R given by

volΓ(ρ) =
∑

Γ′ orientation on Γ
volλ0(Γ′)(ρ)

is well-defined;
(b) on W = i∗(Z) there is a well-defined map V : W → R so the dia-

gram commutes:
Z W

R.

i∗

volΓ
V

Proof. — On the set P
(
M,λ0(Γ)

)
we can define volλ0(Γ) as the volume

interior to the pleated surface with pleating locus λ0(Γ). By the arguments
explained in Section 2.4 this is a well-defined continuous function, although
potentially non-differentiable. The reason for this is because we require a
smooth equivariant family of endpoints for the lifts of Γ in order to apply
the Bonahon–Schläfli formula. As explained in Section 2.2, this is equivalent
to choose an orientation Γ′ of Γ. Because we have to consider the case
when ρ(γ) is elliptic for some γ ∈ Γ, we cannot in principle choose a global
smooth equivariant family of endpoints for the lifts of Γ. Instead, we choose
all possible orientations at once and take the sum to obtain the smooth
function volΓ, whose derivative is given by the sum of Bonahon–Schläfli
formulas for each orientation.
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By intersecting with the Zariski dense sets of Lemma 3.3 we can assume
that we have Z ⊆ χ0(M), W = i∗(Z) ⊆ χ0(∂M) so that (a) is satisfied
and i∗ : Z → W is k-to-1. Our goal is to show that for any ρ1, ρ2 ∈ Z with
i∗(ρ1) = i∗(ρ2) we have that volΓ(ρ1) = volΓ(ρ2). Since Z is connected,
we can take a path ρt in Z with endpoints ρ1, ρ2. Observe that since the
Bonahon–Schläfli formula depends exclusively on peripheral information,
the change of volume volΓ on any lift of i∗(ρt) through i∗ : Z → W is always
equal to volΓ(ρ2) − volΓ(ρ1). Concatenate then consecutive lifts. Since we
have a finite fiber, these consecutive lifts must contain a close loop. Then
the change of volume on that close loop is equal to 0, but it is also a multiple
of volΓ(ρ2) − volΓ(ρ1). Then we must have that volΓ(ρ2) = volΓ(ρ1), from
where (b) follows. □

Now we are ready to prove the main theorem through volume rigidity.

Proof of main theorem. — By Lemmas 3.2, 3.3, 3.4 we have Zariski open
subsets Z ⊆ χ0(M), W ⊆ χ0(∂M) so that i∗ : Z → W is a k-to-1 map and
volΓ is constant over the fibers of i∗. By a result of Brooks [6, Theorem 1],
there is a dense set E ⊂ Z of convex co-compact characters that admit
a co-compact extension by reflections. This extension, known also as the
Thurston orbifold trick, is a co-finite extension made by considering system
of orthogonal planes on each geometrically finite end and extend by their
reflections.

Take then χρ ∈ E and χρ′ ∈ Z so that i∗(χρ) = i∗(χρ′). Then there exists
G > π1(M) with

[
G : π1(M)

]
finite and ρ̃ ∈ R(G) so that ρ̃

∣∣
π1(M) = ρ

and H3/ρ̃(G) is a compact hyperbolic 3-manifold. Since i∗(ρ′) = i∗(ρ), we
can find extension ρ̃′ ∈ R(G) of ρ′. This is because ρ′ coincides (up to
conjugation) as a representation with ρ in each end, and the extension was
made by reflecting on the system of orthogonal planes. And since volΓ(ρ) =
volΓ(ρ′), then the volume of the complements of the reflecting planes in ρ, ρ′

are the same. This is because the defects between any two summands of
volΓ or between the system of orthogonal planes and a summand of volΓ
are determined by the representation of π1(∂M), where ρ and ρ′ coincide.
But then this implies that the representations ρ̃, ρ̃′ have the same volume.
As ρ̃ corresponds to a compact hyperbolic 3-manifold, volume rigidity for
compact hyperbolic groups (Gromov–Thurston–Goldman volume rigidity,
see [9, Theorem 6.1]) implies that ρ̃, ρ̃′ are conjugated. Then it follows that
χρ = χρ′ .

Hence the map i∗ : Z → W is 1-to-1 in E ⊂ Z, so it has to be that k = 1.
This implies that i∗ is 1-to-1, and since we knew that i∗ was dominant,
then i∗ is a birrational isomorphism (see the remark after the definition of
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birational map on p. 77 and Exercise 7.8 of [12]; this fact uses that we are
working over characteristic 0). □

Remarks 3.5.
(1) In the case when M is small we can say more about the map

i∗ : χ0(M) → χ(∂M). A 3-manifold M is small if there does not
exist incompressible, non-boundary parallel surface Σ ⊂ M . In this
case we have that the map i∗ : χ0(M) → χ(∂M) is a surjective,
finite-to-one map. For if there is a character ρ ∈ χ(∂M) with non-
zero dimensional preimage or in the accumulation of the image of i∗,
then there is an ideal point p on χ0(M) so that i∗(p) = ρ. By Culler–
Shalen theory (done by Boyer–Zhang [5] for the PSL2 C case) a
meromorphic valuation at the ideal point p produces a π1(M) ac-
tion on a tree, from where an incompressible surface Σ is produced.
Since the vertices of the tree are taken by classes of valuation lattices
on the field of meromorphic functions times itself, the fact i∗(p) = ρ

is well-defined implies that the boundary of M acts trivially on such
tree, so Σ can’t be boundary parallel.

(2) We can combine our approach and the work of [9, 14] to obtain a
similar statement for M geometrically finite. Let (M, C) be a ge-
ometrically finite hyperbolic 3-manifold, where C is the collection
of conjugacy classes in ∂M corresponding to the rank-1 cusps. De-
note by ∂CM the boundary of M after pinching the generators
of C. Then we can define the representation and character varieties
R(M, C), χ(M, C) as the subvarieties of R(M), χ(M) restricted to
the condition that C are always mapped to parabolic elements in
PSL2 C. Taking χ0(M, C) as the irreducible component containing
geometrically finite characters pinched at C, then the map

i∗ : χ0(M, C) −→ χ(∂CM)

is a birational isomorphism with is image. Rank-2 cusps are dealt
as in [9, 14], while for our pleated surface construction we extend
generators of C to a pants decomposition of ∂M . Then the choice
of endpoint of ideal triangles at a lift of an element of C is given by
the unique parabolic fixed point.
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