[De la théorie des écheveaux en dimension 3 aux fonctions près de ]
Motivated by the Quantum Modularity Conjecture and its arithmetic aspects related to the Habiro ring of a number field, we define a map from the Kauffman bracket skein module of an integer homology 3-sphere to the Habiro ring, and use Witten’s conjecture (now a theorem) to show that the image is an effectively computable module of finite rank that can be used to phrase the quantum modularity conjecture.
Motivé par la conjecture de modularité quantique et par ses aspects arithmétiques liés à l’anneau d’Habiro d’un corps de nombre, nous définissons une application du module d’écheveau d’une -sphère d’homologie vers l’anneau d’Habiro. Nous utilisons la conjecture de Witten, qui est désormais prouvée, pour montrer que l’image est un module de rang fini explicitement calculable. Cette construction est utilisée pour reformuler la conjecture de modularité quantique.
Révisé le :
Accepté le :
Première publication :
Keywords: knots, links, 3-manifolds, Jones polynomial, Kauffman bracket, skein theory, Witten’s Conjecture, Habiro ring, Quantum Modularity Conjecture, Volume Conjecture, functions “near” $\mathbb{Q}$, character varieties
Mots-clés : nœuds, liens, variétés de dimension 3, polynôme de Jones, polynômes crochet de Kauffman, théorie des écheveaux, conjecture de Witten, anneau d’Habiro, conjecture quantique de modularité, conjecture du volume, fonctions « près » de $\mathbb{Q}$, variétés de caractères
Garoufalidis, Stavros 1 ; Lê, Thang T. Q. 2
@unpublished{AIF_0__0_0_A28_0, author = {Garoufalidis, Stavros and L\^e, Thang T. Q.}, title = {From 3-dimensional skein theory to functions near $\mathbb{Q}$}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3740}, language = {en}, note = {Online first}, }
Garoufalidis, Stavros; Lê, Thang T. Q. From 3-dimensional skein theory to functions near $\mathbb{Q}$. Annales de l'Institut Fourier, Online first, 21 p.
[1] A sheaf-theoretic model for Floer homology, J. Eur. Math. Soc., Volume 22 (2020) no. 11, pp. 3641-3695 | DOI | MR | Zbl
[2] Generators and relations for , -Theory, Volume 31 (2004) no. 3, pp. 195-231 | DOI | MR | Zbl
[3] A unified quantum invariant for rational homology 3-spheres, Invent. Math., Volume 185 (2011) no. 1, pp. 121-174 | DOI | MR | Zbl
[4] On the integrality of the Witten–Reshetikhin–Turaev 3-manifold invariants, Quantum Topol., Volume 5 (2014) no. 1, pp. 99-141 | DOI | MR | Zbl
[5] Integrality of quantum 3-manifold invariants and a rational surgery formula, Compos. Math., Volume 143 (2007) no. 6, pp. 1593-1612 | DOI | MR | Zbl
[6] Topological quantum field theories derived from the Kauffman bracket, Topology, Volume 34 (1995) no. 4, pp. 883-927 | DOI | MR | Zbl
[7] Quantum traces for representations of surface groups in , Geom. Topol., Volume 15 (2011) no. 3, pp. 1569-1615 | DOI | MR | Zbl
[8] Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations, Invent. Math., Volume 204 (2016) no. 1, pp. 195-243 | DOI | MR | Zbl
[9] Unified Quantum and Invariants for Rational Homology 3-Spheres (2010) | arXiv | Zbl
[10] Rings of -characters and the Kauffman bracket skein module, Comment. Math. Helv., Volume 72 (1997) no. 4, pp. 521-542 | DOI | MR | Zbl
[11] Stated skein algebras of surfaces, J. Eur. Math. Soc., Volume 24 (2022) no. 12, pp. 4063-4142 | DOI | MR | Zbl
[12] Lifting representations to covering groups, Adv. Math., Volume 59 (1986) no. 1, pp. 64-70 | DOI | MR | Zbl
[13] Kauffman bracket skein modules of small 3-manifolds (2023) | arXiv
[14] Quantum Teichmüller spaces, Teor. Mat. Fiz., Volume 120 (1999) no. 3, pp. 511-528 | DOI | MR | Zbl
[15] Unicity for representations of the Kauffman bracket skein algebra, Invent. Math., Volume 215 (2019) no. 2, pp. 609-650 | DOI | MR | Zbl
[16] Chern–Simons theory, analytic continuation and arithmetic, Acta Math. Vietnam., Volume 33 (2008) no. 3, pp. 335-362 | MR | Zbl
[17] The colored Jones function is -holonomic, Geom. Topol., Volume 9 (2005), pp. 1253-1293 | DOI | MR | Zbl
[18] Is the Jones polynomial of a knot really a polynomial?, J. Knot Theory Ramifications, Volume 15 (2006) no. 8, pp. 983-1000 | DOI | MR | Zbl
[19] A survey of -holonomic functions, Enseign. Math. (2), Volume 62 (2016) no. 3-4, pp. 501-525 | DOI | MR | Zbl
[20] The Habiro ring of a number field (in preparation)
[21] Knots, perturbative series and quantum modularity (2021) | arXiv
[22] Knots and their related -series, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 19 (2023), 082, 39 pages | DOI | MR | Zbl
[23] The finiteness conjecture for skein modules, Invent. Math., Volume 232 (2023) no. 1, pp. 301-363 | DOI | MR | Zbl
[24] Cyclotomic completions of polynomial rings, Publ. Res. Inst. Math. Sci., Volume 40 (2004) no. 4, pp. 1127-1146 | MR | Zbl | DOI
[25] A unified Witten–Reshetikhin–Turaev invariant for integral homology spheres, Invent. Math., Volume 171 (2008) no. 1, pp. 1-81 | DOI | MR | Zbl
[26] Unified quantum invariants for integral homology spheres associated with simple Lie algebras, Geom. Topol., Volume 20 (2016) no. 5, pp. 2687-2835 | DOI | MR | Zbl
[27] The colored Jones polynomial and the Kashaev invariant, Fundam. Prikl. Mat., Volume 11 (2005) no. 5, pp. 57-78 | DOI | MR | Zbl
[28] A link invariant from quantum dilogarithm, Modern Phys. Lett. A, Volume 10 (1995) no. 19, pp. 1409-1418 | DOI | MR | Zbl
[29] Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys., Volume 43 (1998) no. 2, pp. 105-115 | DOI | MR | Zbl
[30] Quantum groups, Graduate Texts in Mathematics, 155, Springer, 1995 | DOI | MR | Zbl
[31] State models and the Jones polynomial, Topology, Volume 26 (1987) no. 3, pp. 395-407 | DOI | MR | Zbl
[32] The -manifold invariants of Witten and Reshetikhin-Turaev for , Invent. Math., Volume 105 (1991) no. 3, pp. 473-545 | DOI | MR | Zbl
[33] Quantum groups and their representations, Texts and Monographs in Physics, Springer, 1997 | DOI | MR | Zbl
[34] Integrality and symmetry of quantum link invariants, Duke Math. J., Volume 102 (2000) no. 2, pp. 273-306 | DOI | MR | Zbl
[35] Strong integrality of quantum invariants of 3-manifolds, Trans. Am. Math. Soc., Volume 360 (2008) no. 6, pp. 2941-2963 | DOI | MR | Zbl
[36] Quantum Teichmüller spaces and quantum trace map, J. Inst. Math. Jussieu, Volume 18 (2019) no. 2, pp. 249-291 | DOI | MR | Zbl
[37] Stated SL(n)-Skein Modules and Algebras (2021) | arXiv
[38] Skein and cluster algebras of marked surfaces, Quantum Topol., Volume 7 (2016) no. 3, pp. 435-503 | DOI | MR | Zbl
[39] Skein modules of -manifolds, Bull. Pol. Acad. Sci., Math., Volume 39 (1991) no. 1-2, pp. 91-100 | MR | Zbl
[40] On skein algebras and -character varieties, Topology, Volume 39 (2000) no. 1, pp. 115-148 | DOI | MR | Zbl
[41] Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., Volume 127 (1990) no. 1, pp. 1-26 | DOI | MR | Zbl
[42] Invariants of -manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991) no. 3, pp. 547-597 | Zbl | DOI | MR
[43] The Conway and Kauffman modules of a solid torus, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, Volume 167 (1988), pp. 79-89 | DOI | MR | Zbl
[44] Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter, 1994 | MR | Zbl | DOI
[45] Modular -difference equations and quantum invariants of hyperbolic three-manifolds, Ph. D. Thesis, University of Bonn, Germany (2023), 433 pages
[46] Quantum modularity for a closed hyperbolic 3-manifold (2023) | arXiv
[47] Analytic continuation of Chern-Simons theory, Chern–Simons gauge theory: 20 years after (AMS/IP Studies in Advanced Mathematics), Volume 50, American Mathematical Society; International Press, 2011, pp. 347-446 | DOI | MR | Zbl
[48] The dilogarithm function, Frontiers in number theory, physics, and geometry. II On conformal field theories, discrete groups and renormalization, Springer, 2007, pp. 3-65 | DOI | MR | Zbl
Cité par Sources :