From 3-dimensional skein theory to functions near
[De la théorie des écheveaux en dimension 3 aux fonctions près de ]
Annales de l'Institut Fourier, Online first, 21 p.

Motivated by the Quantum Modularity Conjecture and its arithmetic aspects related to the Habiro ring of a number field, we define a map from the Kauffman bracket skein module of an integer homology 3-sphere to the Habiro ring, and use Witten’s conjecture (now a theorem) to show that the image is an effectively computable module of finite rank that can be used to phrase the quantum modularity conjecture.

Motivé par la conjecture de modularité quantique et par ses aspects arithmétiques liés à l’anneau d’Habiro d’un corps de nombre, nous définissons une application du module d’écheveau d’une 3-sphère d’homologie vers l’anneau d’Habiro. Nous utilisons la conjecture de Witten, qui est désormais prouvée, pour montrer que l’image est un module de rang fini explicitement calculable. Cette construction est utilisée pour reformuler la conjecture de modularité quantique.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3740
Classification : 57K10, 57K31
Keywords: knots, links, 3-manifolds, Jones polynomial, Kauffman bracket, skein theory, Witten’s Conjecture, Habiro ring, Quantum Modularity Conjecture, Volume Conjecture, functions “near” $\mathbb{Q}$, character varieties
Mots-clés : nœuds, liens, variétés de dimension 3, polynôme de Jones, polynômes crochet de Kauffman, théorie des écheveaux, conjecture de Witten, anneau d’Habiro, conjecture quantique de modularité, conjecture du volume, fonctions « près » de $\mathbb{Q}$, variétés de caractères

Garoufalidis, Stavros 1 ; Lê, Thang T. Q. 2

1 International Center for Mathematics, Department of Mathematics Southern University of Science and Technology Shenzhen (China)
2 School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0160, USA
@unpublished{AIF_0__0_0_A28_0,
     author = {Garoufalidis, Stavros and L\^e, Thang T. Q.},
     title = {From 3-dimensional skein theory to functions near $\mathbb{Q}$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3740},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Garoufalidis, Stavros
AU  - Lê, Thang T. Q.
TI  - From 3-dimensional skein theory to functions near $\mathbb{Q}$
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3740
LA  - en
ID  - AIF_0__0_0_A28_0
ER  - 
%0 Unpublished Work
%A Garoufalidis, Stavros
%A Lê, Thang T. Q.
%T From 3-dimensional skein theory to functions near $\mathbb{Q}$
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3740
%G en
%F AIF_0__0_0_A28_0
Garoufalidis, Stavros; Lê, Thang T. Q. From 3-dimensional skein theory to functions near $\mathbb{Q}$. Annales de l'Institut Fourier, Online first, 21 p.

[1] Abouzaid, Mohammed; Manolescu, Ciprian A sheaf-theoretic model for SL (2,) Floer homology, J. Eur. Math. Soc., Volume 22 (2020) no. 11, pp. 3641-3695 | DOI | MR | Zbl

[2] Belabas, Karim; Gangl, Herbert Generators and relations for K 2 𝒪 F , K-Theory, Volume 31 (2004) no. 3, pp. 195-231 | DOI | MR | Zbl

[3] Beliakova, Anna; Bühler, Irmgard; Lê, Thang T. Q. A unified quantum SO (3) invariant for rational homology 3-spheres, Invent. Math., Volume 185 (2011) no. 1, pp. 121-174 | DOI | MR | Zbl

[4] Beliakova, Anna; Chen, Qi; Lê, Thang T. Q. On the integrality of the Witten–Reshetikhin–Turaev 3-manifold invariants, Quantum Topol., Volume 5 (2014) no. 1, pp. 99-141 | DOI | MR | Zbl

[5] Beliakova, Anna; Lê, Thang T. Q. Integrality of quantum 3-manifold invariants and a rational surgery formula, Compos. Math., Volume 143 (2007) no. 6, pp. 1593-1612 | DOI | MR | Zbl

[6] Blanchet, Christian; Habegger, Nathen; Masbaum, Gregor; Vogel, Pierre Topological quantum field theories derived from the Kauffman bracket, Topology, Volume 34 (1995) no. 4, pp. 883-927 | DOI | MR | Zbl

[7] Bonahon, Francis; Wong, Helen Quantum traces for representations of surface groups in SL 2 (), Geom. Topol., Volume 15 (2011) no. 3, pp. 1569-1615 | DOI | MR | Zbl

[8] Bonahon, Francis; Wong, Helen Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations, Invent. Math., Volume 204 (2016) no. 1, pp. 195-243 | DOI | MR | Zbl

[9] Bühler, Irmgard Unified Quantum SO(3) and SU(2) Invariants for Rational Homology 3-Spheres (2010) | arXiv | Zbl

[10] Bullock, Doug Rings of SL 2 (C)-characters and the Kauffman bracket skein module, Comment. Math. Helv., Volume 72 (1997) no. 4, pp. 521-542 | DOI | MR | Zbl

[11] Costantino, Francesco; Lê, Thang T. Q. Stated skein algebras of surfaces, J. Eur. Math. Soc., Volume 24 (2022) no. 12, pp. 4063-4142 | DOI | MR | Zbl

[12] Culler, Marc Lifting representations to covering groups, Adv. Math., Volume 59 (1986) no. 1, pp. 64-70 | DOI | MR | Zbl

[13] Detcherry, Renaud; Kalfagianni, Efstratia; Sikora, Adam Kauffman bracket skein modules of small 3-manifolds (2023) | arXiv

[14] Fock, Vladimir; Chekhov, Leonid Quantum Teichmüller spaces, Teor. Mat. Fiz., Volume 120 (1999) no. 3, pp. 511-528 | DOI | MR | Zbl

[15] Frohman, Charles; Kania-Bartoszynska, Joanna; Lê, Thang T. Q. Unicity for representations of the Kauffman bracket skein algebra, Invent. Math., Volume 215 (2019) no. 2, pp. 609-650 | DOI | MR | Zbl

[16] Garoufalidis, Stavros Chern–Simons theory, analytic continuation and arithmetic, Acta Math. Vietnam., Volume 33 (2008) no. 3, pp. 335-362 | MR | Zbl

[17] Garoufalidis, Stavros; Lê, Thang T. Q. The colored Jones function is q-holonomic, Geom. Topol., Volume 9 (2005), pp. 1253-1293 | DOI | MR | Zbl

[18] Garoufalidis, Stavros; Lê, Thang T. Q. Is the Jones polynomial of a knot really a polynomial?, J. Knot Theory Ramifications, Volume 15 (2006) no. 8, pp. 983-1000 | DOI | MR | Zbl

[19] Garoufalidis, Stavros; Lê, Thang T. Q. A survey of q-holonomic functions, Enseign. Math. (2), Volume 62 (2016) no. 3-4, pp. 501-525 | DOI | MR | Zbl

[20] Garoufalidis, Stavros; Scholze, Peter; Zagier, Don The Habiro ring of a number field (in preparation)

[21] Garoufalidis, Stavros; Zagier, Don Knots, perturbative series and quantum modularity (2021) | arXiv

[22] Garoufalidis, Stavros; Zagier, Don Knots and their related q-series, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 19 (2023), 082, 39 pages | DOI | MR | Zbl

[23] Gunningham, Sam; Jordan, David; Safronov, Pavel The finiteness conjecture for skein modules, Invent. Math., Volume 232 (2023) no. 1, pp. 301-363 | DOI | MR | Zbl

[24] Habiro, Kazuo Cyclotomic completions of polynomial rings, Publ. Res. Inst. Math. Sci., Volume 40 (2004) no. 4, pp. 1127-1146 | MR | Zbl | DOI

[25] Habiro, Kazuo A unified Witten–Reshetikhin–Turaev invariant for integral homology spheres, Invent. Math., Volume 171 (2008) no. 1, pp. 1-81 | DOI | MR | Zbl

[26] Habiro, Kazuo; Lê, Thang T. Q. Unified quantum invariants for integral homology spheres associated with simple Lie algebras, Geom. Topol., Volume 20 (2016) no. 5, pp. 2687-2835 | DOI | MR | Zbl

[27] Huynh, Vu; Lê, Thang T. Q. The colored Jones polynomial and the Kashaev invariant, Fundam. Prikl. Mat., Volume 11 (2005) no. 5, pp. 57-78 | DOI | MR | Zbl

[28] Kashaev, Rinat M. A link invariant from quantum dilogarithm, Modern Phys. Lett. A, Volume 10 (1995) no. 19, pp. 1409-1418 | DOI | MR | Zbl

[29] Kashaev, Rinat M. Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys., Volume 43 (1998) no. 2, pp. 105-115 | DOI | MR | Zbl

[30] Kassel, Christian Quantum groups, Graduate Texts in Mathematics, 155, Springer, 1995 | DOI | MR | Zbl

[31] Kauffman, Louis H. State models and the Jones polynomial, Topology, Volume 26 (1987) no. 3, pp. 395-407 | DOI | MR | Zbl

[32] Kirby, Robion; Melvin, Paul The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl (2,C), Invent. Math., Volume 105 (1991) no. 3, pp. 473-545 | DOI | MR | Zbl

[33] Klimyk, Anatoli; Schmüdgen, Konrad Quantum groups and their representations, Texts and Monographs in Physics, Springer, 1997 | DOI | MR | Zbl

[34] Lê, Thang T. Q. Integrality and symmetry of quantum link invariants, Duke Math. J., Volume 102 (2000) no. 2, pp. 273-306 | DOI | MR | Zbl

[35] Lê, Thang T. Q. Strong integrality of quantum invariants of 3-manifolds, Trans. Am. Math. Soc., Volume 360 (2008) no. 6, pp. 2941-2963 | DOI | MR | Zbl

[36] Lê, Thang T. Q. Quantum Teichmüller spaces and quantum trace map, J. Inst. Math. Jussieu, Volume 18 (2019) no. 2, pp. 249-291 | DOI | MR | Zbl

[37] Lê, Thang T. Q.; Sikora, Adam Stated SL(n)-Skein Modules and Algebras (2021) | arXiv

[38] Muller, Greg Skein and cluster algebras of marked surfaces, Quantum Topol., Volume 7 (2016) no. 3, pp. 435-503 | DOI | MR | Zbl

[39] Przytycki, Józef Skein modules of 3-manifolds, Bull. Pol. Acad. Sci., Math., Volume 39 (1991) no. 1-2, pp. 91-100 | MR | Zbl

[40] Przytycki, Józef; Sikora, Adam On skein algebras and Sl 2 (C)-character varieties, Topology, Volume 39 (2000) no. 1, pp. 115-148 | DOI | MR | Zbl

[41] Reshetikhin, Nikolai Yu.; Turaev, Vladimir Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., Volume 127 (1990) no. 1, pp. 1-26 | DOI | MR | Zbl

[42] Reshetikhin, Nikolai Yu.; Turaev, Vladimir Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991) no. 3, pp. 547-597 | Zbl | DOI | MR

[43] Turaev, Vladimir The Conway and Kauffman modules of a solid torus, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, Volume 167 (1988), pp. 79-89 | DOI | MR | Zbl

[44] Turaev, Vladimir Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter, 1994 | MR | Zbl | DOI

[45] Wheeler, Campbell Modular q-difference equations and quantum invariants of hyperbolic three-manifolds, Ph. D. Thesis, University of Bonn, Germany (2023), 433 pages

[46] Wheeler, Campbell Quantum modularity for a closed hyperbolic 3-manifold (2023) | arXiv

[47] Witten, Edward Analytic continuation of Chern-Simons theory, Chern–Simons gauge theory: 20 years after (AMS/IP Studies in Advanced Mathematics), Volume 50, American Mathematical Society; International Press, 2011, pp. 347-446 | DOI | MR | Zbl

[48] Zagier, Don The dilogarithm function, Frontiers in number theory, physics, and geometry. II On conformal field theories, discrete groups and renormalization, Springer, 2007, pp. 3-65 | DOI | MR | Zbl

Cité par Sources :