[Seminormalisation et fonctions rationnelles continues sur des variétés algébriques complexe]
The seminormalization of an algebraic variety is the biggest variety which is link to it with a birational, finite and bijective morphism. In this paper, we bring a new understanding to the seminormalization of complex algebraic varieties. We show that it can be obtained by replacing the structural sheaf of the variety by the sheaf of rational functions which extends continuously for the Euclidean topology. We further study this type of functions which can be seen as complex regulous functions, a class of functions recently introduced in real algebraic geometry, or as the algebraic counterpart of c-holomorphic functions.
La seminormalisation d’une variété algébrique complexe est la plus grande variété qui soit liée à la variété de départ par un morphisme birationnel, fini et bijectif. Dans cet article, nous apportons une nouvelle compréhension à la seminormalization des variétés algébriques complexes. Nous montrons que celle-ci peut-être obtenue en remplaçant le faisceau structural de la variété par celui des fonctions rationnelles qui s’étendent continûment sur les points fermés, pour la topologie Euclidienne. Nous étudions plus en détail ce type de fonctions qui peuvent être vues comme la version complexe des fonctions régulues, récemment introduitent en géométrie algébrique réelle, ou bien comme la version algébrique des fonctions c-holomorphes
Révisé le :
Accepté le :
Première publication :
Keywords: seminormalization, rational continuous functions, regulous functions
Mots-clés : seminormalisation, fonctions rationnelles continues, fonctions régulues
Bernard, François 1
@unpublished{AIF_0__0_0_A27_0, author = {Bernard, Fran\c{c}ois}, title = {Seminormalization and continuous rational functions on complex algebraic varieties}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3739}, language = {en}, note = {Online first}, }
Bernard, François. Seminormalization and continuous rational functions on complex algebraic varieties. Annales de l'Institut Fourier, Online first, 42 p.
[1] Sugli omeomorfismi delle varieta algebriche, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 23 (1969) no. 3, pp. 431-450 | Zbl | MR | Numdam
[2] La convexité holomorphe dans l’espace analytique des cycles d’une variété algébrique, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3), Volume 21 (1967), pp. 31-82 | MR | Zbl | Numdam
[3] Introduction to commutative algebra, Addison-Wesley Publishing Group; Don Mills, 1969 | MR | Zbl
[4] Algebraic characterizations of homeomorphisms between algebraic varieties (2022) | arXiv
[5] On the Nullstellensatz for c-holomorphic functions with algebraic graphs, Ann. Pol. Math., Volume 125 (2020) no. 1, pp. 1-11 | DOI | MR | Zbl
[6] On the growth exponent of c-holomorphic functions with algebraic graphs (2020) | arXiv | Zbl
[7] On the geometric interpretation of seminormality, Proc. Am. Math. Soc., Volume 68 (1978) no. 1, pp. 1-5 | DOI | MR | Zbl
[8] Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer, 2013 | Zbl | MR
[9] Fonctions régulues, J. Reine Angew. Math., Volume 718 (2016), pp. 103-151 | DOI | MR | Zbl
[10] Weak- and semi-normalization in real algebraic geometry, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 22 (2021) no. 3, pp. 1511-1558 | DOI | MR | Zbl
[11] Éléments de géométrie algébrique: II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math., Inst. Hautes Étud. Sci., Volume 8 (1961), pp. 5-222 | MR | Numdam
[12] On the R-invariance of , J. Algebra, Volume 35 (1975) no. 1, pp. 1-16 | DOI | Zbl
[13] An introduction to birational geometry of algebraic varieties, Graduate Texts in Mathematics, 76, Springer, 1982 | MR | Zbl
[14] Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, 2013 (with a collaboration of Sándor Kovács) | DOI | MR | Zbl
[15] Variants of normality for Noetherian schemes, Pure Appl. Math. Q., Volume 12 (2016) no. 1, pp. 1-31 | MR | Zbl | DOI
[16] Continuous rational functions on real and -adic varieties, Math. Z., Volume 279 (2015) no. 1-2, pp. 85-97 | DOI | MR | Zbl
[17] From continuous rational to regulous functions, Proceedings of the International Congress of Mathematicians – Rio de Janeiro 2018. Vol. II. Invited lectures, World Scientific; Sociedade Brasileira de Matemática (2018), pp. 719-747 | DOI | MR | Zbl
[18] Seminormal rings and weakly normal varieties, Nagoya Math. J., Volume 82 (1981), pp. 27-56 | DOI | MR | Zbl
[19] Weakly normal varieties: the multicross singularity and some vanishing theorems on local cohomology, Nagoya Math. J., Volume 83 (1981), pp. 137-152 | DOI | MR | Zbl
[20] Central algebraic geometry and seminormality (2021) | arXiv
[21] Basic algebraic geometry 2. Schemes and Complex Manifolds, Springer, 1994 | DOI | MR | Zbl
[22] On seminormality, J. Algebra, Volume 67 (1980) no. 1, pp. 210-229 | DOI | MR | Zbl
[23] Seminormality and Picard group, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3), Volume 24 (1970), pp. 585-595 | MR | Zbl | Numdam
[24] Corrections to ‘Seminormal rings and weakly normal varieties’, Nagoya Math. J., Volume 107 (1987), pp. 147-157 | DOI | Zbl | MR
[25] Weak normality and seminormality, Commutative algebra – Noetherian and non-Noetherian perspectives, Springer, 2011, pp. 441-480 | DOI | MR | Zbl
[26] Complex analytic varieties, Addison-Wesley Series in Mathematics, Addison-Wesley Publishing Company, 1972 | MR | Zbl
Cité par Sources :