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SEMINORMALIZATION AND CONTINUOUS
RATIONAL FUNCTIONS ON COMPLEX ALGEBRAIC
VARIETIES

by Francois BERNARD

ABSTRACT. — The seminormalization of an algebraic variety is the biggest va-
riety which is link to it with a birational, finite and bijective morphism. In this
paper, we bring a new understanding to the seminormalization of complex alge-
braic varieties. We show that it can be obtained by replacing the structural sheaf
of the variety by the sheaf of rational functions which extends continuously for the
Euclidean topology. We further study this type of functions which can be seen as
complex regulous functions, a class of functions recently introduced in real alge-
braic geometry, or as the algebraic counterpart of c-holomorphic functions.

REsSUME. — La seminormalisation d’une variété algébrique complexe est la plus
grande variété qui soit liée a la variété de départ par un morphisme birationnel,
fini et bijectif. Dans cet article, nous apportons une nouvelle compréhension a la
seminormalization des variétés algébriques complexes. Nous montrons que celle-
ci peut-étre obtenue en remplacant le faisceau structural de la variété par celui
des fonctions rationnelles qui s’étendent contintiment sur les points fermés, pour
la topologie Euclidienne. Nous étudions plus en détail ce type de fonctions qui
peuvent étre vues comme la version complexe des fonctions régulues, récemment
introduitent en géométrie algébrique réelle, ou bien comme la version algébrique
des fonctions c-holomorphes

1. Introduction

The present paper is devoted to the study of seminormalization of com-
plex algebraic varieties, to its link with continuous rational functions and
to the study of those functions. The operation of seminormalization was
formally introduced around fifty years ago in the case of analytic spaces by
Andreotti and Norguet [2]. For algebraic varieties, the seminormalization
X7 of X is the biggest intermediate variety between X and its normaliza-
tion, which is bijective with X. Recently, the concept of seminormalization
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2 Francois BERNARD

appears in the study of singularities in the minimal model program (see [14]
and [15]). The seminormalization has the property to have “multicross”
singularities in codimension 1 (see [19]), it means that they are locally ana-
lytically isomorphic to the union of linear subspaces of affine space meeting
transversally along a common linear subspace.

Around 1970 Traverso [23] introduced the notion of the seminormaliza-
tion A;g of a commutative ring A in an integral extension B. The idea is to
glue together the prime ideals of B lying over the same prime ideal of A. The
seminormalization AE has the property that it is the biggest extension C
of A in B which is subintegral i.e. such that the map Spec(C') — Spec(A)
is bijective and equiresidual (it gives isomorphisms between the residue
fields). We refer to Vitulli [25] for a survey on seminormality for commu-
tative rings and algebraic varieties. See also [18, 22, 24] for more detailed
information on seminormalization.

In the paper [18], the authors tried to identify the coordinate ring of
the seminormalization of a variety as the ring of rational functions which
are continuous for the Zariski topology. Unfortunately, the Zariski topology
is not strong enough for this to be true. The first aim of this paper is to
show that the correct functions to consider are rational functions, which are
continuous for the Euclidean topology. The idea of studying the concept
of seminormalization with that kind of functions comes from [10, 20] in
the context of real algebraic geometry. Those functions appeared recently
in real algebraic geometry (see [9, 16]) under the name of “regulous func-
tions”. They allow to recover some classical theorems of complex algebraic
geometry, such as the Nullstellensatz, which normally do not hold anymore
in real algebraic geometry. A complex analog of regulous functions has been
studied in [5, 6] in the point of view of complex analytic geometry. The se-
cond aim of this paper is to bring a study of complex regulous functions in
the point of view of complex algebraic geometry.

The paper is organized as follows. In Section 2 we recall Traverso’s con-
struction of the seminormalization of a ring and its universal property re-
garding subintegral extensions of rings.

In Section 3 we look at the seminormalization of an affine variety over an
algebraically closed field of characteristic zero and to its universal property
as it was made by Leahy—Vitulli in [18]. The seminormalization of an affine
variety X can be seen as the biggest birational variety, such that its closed
points are in bijection with those of X.

In Section 4 we introduce the set of continuous rational functions on
a complex affine variety X. More precisely, we consider the functions f :
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SEMINORMALIZATION AND CONTINUOUS RATIONAL FUNCTIONS 3

X(C) — C which are rational on a Zariski dense open set of X (C) and
which are continuous, for the Euclidean topology, on all X (C). The ring of
those functions is denoted by K°(X(C)). For 7 : Y — X a finite morphism
between complex affine varieties and 7, its restriction to Y (C), we look
at the induced morphism f — f o m, between rings of continuous rational
functions. We show that the image of such a morphism is

{f € K°(Y(C)) with f constant on the fibers of WC}.

It allows us to reinterpret subintegral extensions between coordinate rings
of varieties. For X and Y two varieties, one gets that C[X] — C[Y] is
subintegral if and only if K%(X(C)) ~ K°(Y(C)). The first half of this
paper can be summarized by the following result:

THEOREM 3.1 AND PROPOSITION 4.20. — Let m : Y — X be a finite
morphism between affine complex varieties. Then the following properties
are equivalent:

(1) 7 is subintegral.

2) m, is bijective.

) The rings K°(Y (C)) and K°(X(C)) are isomorphic.
4) . is a homeomorphism for the Euclidean topology.
5) m, is a homeomorphism for the Zariski topology.
(6) m is a homeomorphism.

w

In the beginning of Subsection 4.1, we prove that continuous rational
functions are regular on the smooth points of a variety. It allows us to see
that, for X a normal variety, the thinness of Sing(X) implies K°(X(C)) =
C[X]. This fact combined with the previous theorem leads us to the main
result of this paper:

THEOREM 4.21. — Let X be an affine complex variety and 7+ : X T — X
be the seminormalization morphism. We have the following isomorphism

¢ : K(X(C)) = C[XT]
f—fo 77;.

The results of Subsection 4.1 can be summarized with the following dia-
gram: for every morphism 7 : Y — X such that C[X] — C[Y] is subinte-
gral, we get

K2(X(C)) —— K°(Y(C)) —— K9(XH(C))— KO(X

(C[X]C subint. (C[ ]C subint. (C[X+]C C
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4 Francois BERNARD

In Subsection 4.2 we look at a consequence of Theorem 4.21: the restriction
of a complex continuous rational function on a subvariety is still a rational
function. It is an interesting fact because it says that, unlike the real case,
continuous rational functions are regulous functions.

In the remaining of Section 4, we are interested in finding criteria for
a continuous function to be rational and then for a rational function to
be continuous. In Subsection 4.3, we show that a continuous function on
X (C) which is a root of a polynomial with coefficients in C[X] is necessarily
rational. It implies two results. First, we get that K°(X(C)) is the integral
closure of C[X] in C°(X(C),C). Secondly, we get an algebraic version of
Whitney’s [26, Theorem 4.5Q)], saying that a continuous function on the
closed points of an affine variety is rational if and only if its graph is Zariski
closed. The second point says that c-holomorphic functions with algebraic
graph studied in [5, 6] correspond, for algebraic varieties, to the continuous
rational functions considered in this paper.

Finally, in Subsection 4.4, we give several nontrivial examples of conti-
nuous rational functions thanks to the following criterion.

THEOREM 4.34. — Let X be an affine complex variety. A function f :
X(C) — C is a continuous rational function if and only if it is rational,
integral over C[X] and its graph is Zariski closed.

In Section 5 we reinterpret several classical results about seminormaliza-
tion in terms of rational continuous functions. In the first subsection, we
look at criteria for a variety to be seminormal given by Leahy, Vitulli in [18],
Hamann in [12] and Swan in [22] (see the review [25]). To prove that those
criteria are sufficient, we show that if f is an element of K°(X(C)) \ C[X],
then we can always find a function g € C[X][f]\ C[X] such that ¢" € C[X]
for all n > 2. To see that they are necessary, we construct explicit continu-
ous rational functions from the relations appearing in the different criteria.
The second subsection is dedicated to see what the commutation between
the localization and the seminormalization means for continuous rational
functions.

In Section 6 we define the sheaf K% of complex regulous functions, and
we generalize the main result of this paper by showing that, for a non-
necessarily affine variety X, the ringed space (X, K%) is isomorphic to the
scheme (X+,Ox+). A generalization for algebraic varieties over a field of
characteristic 0 can be found in the forthcoming paper [4].

ANNALES DE L’INSTITUT FOURIER
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2. Universal property of the seminormalization.

We recall in this section the construction of the seminormalization intro-
duced by Traverso [23] for commutative rings. This construction is linked
to the notion of subintegrality in the way that the seminormalization of a
ring is its biggest subintegral extension. Those notions are also presented
in the second section of [22].

Let A be a ring, we note Spec(A4) := {p C A | p is a prime ideal of A}
the spectrum of A and Spm(A) := {m C A | m is a maximal ideal of A}
the maximal spectrum of A. Let p € Spec(A), then A, := (A\p)~'A is the
localization of A at p and k(p) := A,/pA, the residue field of p.

Since the seminormalization is defined for integral extensions, we recall
this notion here.

DEFINITION 2.1. — Let A — B be an extension of rings.

(1) An element b € B is integral over A if there exists a monic polyno-
mial P € A[X] such that P(b) = 0.
(2) We call integral closure of A in B and we write A’y the ring defined
by
's == {b € B|b integral on A}.
(3) The extension A — B is integral if Az = B.

We give the definition of the seminormalization of a ring in an integral
extension.

DEFINITION 2.2. — Let A — B be an integral extension of rings. We
define
AL :={b€ B|Vp € Spec(A),b, € A, + Rad(B,)}
where Rad(By) := ﬂmespm(Bp) m is the Jacobson radical of B,.
We say that AE is the seminormalization of A in B. If A = AJEQ, then A
is said to be seminormal in B.

The idea behind this definition is to glue the prime ideals of B above
those of A. If one thinks of it in terms of algebraic varieties, it consists of
gluing points in the fibers together.

TOME 0 (0), FASCICULE 0



6 Francois BERNARD

Remark 2.3. — Let A < B be an integral extension and p € Spec(A).
Then

Spm(B,) = {qB, | q € Spec(B) and q N A =p}.
So
Rad(By) = (] m= N qB,.

m e Spm(By) q€Spec(B),qNA=p

We introduce now the notion of subintegral extension, which is strongly
related with that of seminormalization.

DEFINITION 2.4. — An integral extension of rings A — B is called
subintegral if the two following conditions hold:
(1) The induced map Spec(B) — Spec(A) is bijective.
(2) For all p € Spec(A) and q € Spec(B) with q N A = p, the induced
map on the residue fields k(p) — k(q) is an isomorphism.

When the second condition holds, we say that A < B is equiresidual.

The following statement gives the link between the two last definitions.
It gives us a universal property of the seminormalization: the seminormal-
ization of a ring in another one as its biggest subintegral subextension.

PROPOSITION 2.5 ([23, Theorem 1.1]). — Let A — C — B be integral
extensions of rings. Then the following statements are equivalent:

(1) The extension A — C' is subintegral.
(2) The image of C < B is a subring of AF.

Now see that a subextension of a subintegral extension is necessarily
subintegral.

PROPOSITION 2.6 ([23, Lemma 1.2]). — Let A < C' < B be integral
extensions of rings. Then the following properties are equivalent

(1) The extension A — B is subintegral.
(2) The extensions A — C and C — B are subintegral.

The following universal property of the seminormalization could also be
taken as its definition

THEOREM 2.7 (Universal property of seminormalization of rings). —
Let A — B be an integral extension of rings. Then A — AE — B is the
unique subintegral subextension such that, for every intermediate subinte-
gral subextension A — C' — B, the image of C by the injection C — B is

ANNALES DE L’INSTITUT FOURIER



SEMINORMALIZATION AND CONTINUOUS RATIONAL FUNCTIONS 7

contained in AE .

AC /AE( inclusion . B.
A
subint.
)
C

3. Universal property of the seminormalization in the
geometric case.

Let k be an algebraically closed field of characteristic zero and X =
Spec(A) be an affine algebraic variety with A a k-algebra of finite type. Let
k[X] := A denote the coordinate ring of X. We have k[X] ~ k[x1,...,z,]/]
for an ideal I of k[z1,...,z,] and we will always assume I to be radical.
We recall that X is irreducible if and only if k[X] is a domain. A morphism
m:Y — X between two varieties induces the morphism 7* : k[X] — k[Y]
which is injective if and only if 7 is dominant. We say that 7 is of finite
type (resp. is finite) if 7* makes k[Y] a k[X]-algebra of finite type (resp. a
finite k[X]-module).

The space X is equipped with the Zariski topology, for which the closed
sets are of the form V(I) := {p € Spec(k[X]) | I C p} where I is an ideal
of k[X]. We define X (k) := {m € Spm(k[X]) | k(m) = k}. Thus, if we
write k[X] = k[z1,. .., x,]/I, the elements of X (k) can be seen as elements
of Spm(k[z1,...,2,]) containing I. The Nullstellensatz gives us a Zariski
homeomorphism between X (k) and the algebraic set Z(I) := {x € k™ |
V fel f(r) =0} C k™ We note 1, : Y(k) — X (k) the restriction of 7
to Y (k). We will add the prefix “Z—" before a property if it holds for the
Zariski topology.

We present in this section the seminormalization for affine varieties over
a field of characteristic 0 as studied by Leahy—Vitulli in [18]. We start with
the following theorem which shows that the notion of subintegrality can be
read on the closed points of the varieties.

THEOREM 3.1 ([18, Theorem 2.2]). — Let m : Y — X be a finite mor-
phism between affine varieties. Then the following properties are equivalent.
(1) The morphism my, : Y (k) — X (k) is bijective.
(2) The extension 7* : k[X] < k[Y] is subintegral.
(3) The morphism 7 : Y — X is a Z-homeomorphism.
(4) The morphism 7y, : Y (k) — X (k) is a Z-homeomorphism.

TOME 0 (0), FASCICULE 0



8 Francois BERNARD

Proof. — The first equivalence is given by the Nullstellensatz and the
second one is given by the going-up property of finite extensions of rings,
see [3, Theorem 5.11]. O

We define the seminormalization of an affine variety using the fact that, if
7m:Y — X is a finite morphism between two affine varieties, then k[X ];'[Y]

is a finite k[X]-module because it is a submodule of k[Y]. Thus k[X ]z[y] is
a k-algebra of finite type because so is k[X].

DEFINITION 3.2. — Let m : Y — X be a finite morphism between two
affine varieties. The affine variety defined by

X = Spec(k:[X]Z[Y])
is called the seminormalization of X inY.

As a consequence of the previous theorem, we get that the seminorma-
lization of a variety in another one can be obtained by gluing together the
closed points in the fibers of 7.

DEFINITION 3.3. — Let A — B be an integral extension of rings.
We define

Afm> ={be B |Vm € Spm(A),bn € An + Rad(Bn)}

COROLLARY 3.4 ([18, Theorem 2.2]). — Let m : Y — X be a finite
morphism between two affine varieties. Then

+max

+
k[X]k[Y] = k[X}k[Y]

and so

k[XH[Y] = {p € k[Y]

v Y1,Y2 € Y(k‘)
m(y1) = 7(y2) = p(y1) = p(y2) |

We now give the geometric version of the universal property of semi-
normalization. For a finite morphism of variety 7 : Y — X, we can write

the universal property of the seminormalization of rings for the coordinate
rings.
k[X] > k[X] ) = k[ X | 2 K[Y].
subint.

k(2]

Then, by Theorem 3.1, we can replace the fact of having subintegral
extensions on the coordinate rings by having a bijection on the closed points
of the varieties.

ANNALES DE L’INSTITUT FOURIER



SEMINORMALIZATION AND CONTINUOUS RATIONAL FUNCTIONS 9

THEOREM 3.5 (Universal property of the seminormalization of varieties).
Let Y — X be a finite morphism of affine varieties. Then X;,' is the unique
variety with the following property. For every Y — Z — X with my :
Z(k) — X (k) bijective, there exists a unique morphism 7, : Xi — Z such
that the following diagram commutes.

Y X3 il X.

4. Continuous rational functions on complex affine
varieties

This section is dedicated to the introduction and study of continuous
rational functions on affine varieties and to show that they are linked with
the concept of seminormalization. Since we use the Euclidean topology, we
restrict ourselves to complex affine varieties. A generalization on any alge-
braic variety over an algebraic closed field of characteristic zero is given in
the forthcoming paper [4]. The first subsection is dedicated to the study of
the ring of continuous rational functions. Concretely, we show that this ring
corresponds to the coordinate ring of the seminormalization of the variety.
In the second subsection, we show that continuous rational functions are al-
ways regulous in the case of complex affine varieties. The theory of regulous
functions comes from real algebraic geometry and was introduced in [9, 16].
In this theory, continuous rational functions and regulous functions are
not the same on real singular algebraic sets. In the third subsection, we
look at continuous functions which are a root of a polynomial in C[X][¢].
This leads to identify continuous rational functions with “c-holomorphic”
functions with algebraic graphs on algebraic varieties. This kind of func-
tions is studied in [5, 6] in the point of view of complex analytic geome-
try. We show, with algebraic arguments, that they coincide on algebraic
varieties. Finally, the fourth subsection presents examples of continuous
rational functions.

We begin by recalling classical results on the normalization of an affine
variety.

DEFINITION 4.1. — Let A be a commutative ring. We note K the lo-
calization S~'A where S is the set of non-zero-divisors A. The ring K is
called the total ring of fractions of A.

TOME 0 (0), FASCICULE 0



10 Francois BERNARD

If A is reduced with a finite number of minimal prime ideals py, ..., Py,
then
pn-np= (] p=I(0).
p € Spec(A)
We get the following injections:

A— Alpy X -+ X A/p,, — K3 x -+ x K,, where K; := Frac(A/p;)

Then the total ring of fractions of A corresponds to the product of the
fields K;.

We define A’ to be the integral closure of A in K and we simply call it
the integral closure of A. In the same spirit, the seminormalization of A
in K is denoted by A" and is simply called the seminormalization of A.
Finally, we say that A is seminormal if AT = A.

For X an affine variety, the total ring of fractions of C[X] is denoted by
K(X). The ring K(X) (which is a field when X is irreducible) is also the
ring of classes of rational fractions on X and is called the ring of rational
functions on X. It means that it represents the set of classes of regular
functions f on a Z-dense Z-open set U of X (C) with the equivalence relation
(fl, Ul) ~ (fg, Ug) iff fl = fg on U1 n UQ.

We say that a morphism ¢ : Y — X is birational if the associated
morphism I(X) < K(Y) is an isomorphism.

The integral closure of C[X] being a finite C[X]-module (see [8, Theo-
rem 4.14]), it is also a C-algebra of finite type. Thus, we can define the
normalization X' of X such that X’ = Spec(C[X]"). We get a finite and
birational morphism 7’ : X’ — X. The normalization of X is the biggest
affine variety finitely birational to X. It means that for every finite, bira-
tional morphism ¢ : Y — X, there exists ¢ : X’ — Y such that 7’ = p o).

The seminormalization X+ of X is the variety X;;, defined in Defini-
tion 3.2. The seminormalization X+ comes with a finite, birational and
bijective morphism 71 : XT — X whose universal property is given by
Proposition 3.5.

Finally, for every affine variety X, we have the following extensions of
rings:

C[X] — C[X 1] — C[X'] — K(X).

DEFINITION 4.2. — Let X be an affine variety. We write K°(X (C)) for
the set of continuous functions f : X(C) — C for the Euclidean topology
which are rational on X (C).

Example 4.3. — The most classical example of such a function is the
following:

ANNALES DE L’INSTITUT FOURIER



SEMINORMALIZATION AND CONTINUOUS RATIONAL FUNCTIONS 11
Let X = Spec(C[z,y]/(y?> — 2?)), consider the function f defined on

X(C) = Z(y* — 2®) by
. 4 ifx#0
0 otherwise.

First of all, we show that we will always be able to assume X to be
irreducible thanks to the following lemmas.

LEMMA 4.4. — Let E be a topological space and {E;}; c 1 be a covering
of E. Let A be a subspace of FE such that AN E; is dense in E; for alli € I.
Then A is dense in E.

Proof. — Let U be a non-empty open set of E. Then there exists ¢ € T
such that UNE; # @. Since ANE; is dense in F; and UN E; is a non-empty
open set of E;, we get ANUNE; # @. Then ANU # @. So A is dense
in E. g

LEMMA 4.5. — Let X be an affine variety and f : X(C) — C. We write
X = U!'_, X; where the X; are the irreducible components of X. The
following properties are equivalent

(1) feKkX(T)).
(2) Vie [1;n] fix, o) € K°(Xi(C)).

Proof. — Let f € KY(X(C)), we call U the Z-dense Z-open set on which
[ is regular. For j € [1;n], the set X\, ; X; is a Z-open set contained in
X, which is not empty because X; ¢ U#j X;. Thus, since U is Z-dense
in X(C), we have X;(C)NU # @. So f is regular on X;(C) N U which is
Z-dense because X is irreducible. Then, f|x;) being clearly continuous,
we have f\Xj (c) € /CO(Xj (©)).

Let f: X(C) — C such that fjx,c) € K°(X;(C)) for all i € [1;n]. Then
f is regular on a Z-dense Z-open set of every component and since, by
Lemma 4.4, a union of dense open sets of each irreducible component of X
is a dense open set of X, we get that f is regular on a Z-dense Z-open set
of X(C). Let’s show that f is continuous on X (C). First of all, f is clearly
continuous at every point of the set

X\ | [ Xi(©)nx,(C)
i)
which are the points that do not belong to any intersection of components.

Now let’s take a look at the continuity near the other points. Let =z €
Njes X;(C) where J is a subset of [1;n]. Let € > 0 and j € J. Since f is

TOME 0 (0), FASCICULE 0



12 Francois BERNARD

continuous on X;(C), we can consider a Euclidean open set U; containing
x such that Vy € X,;(C)NU; we have | f(z) — f(y)| < e. By doing the same
for all j € J, we obtain

VyeXOn | U | If@)-f)l<e O
JjeJ
Remark 4.6. — Let X be an affine variety and X = [J;_, X; its decom-
position into irreducible components. Then

(fla"'7fn) GKO(Xl((C))
KO(X((C)) = { Y% /CO(XH((C)) fi|xi(c)mxj(c) - fjxi(c)mxj(c)}'

The next proposition shows that the continuity allows us to be more
precise concerning the Z-open set where an element of K°(X (C)) is regular.
We write X,ep (resp. Xging) the set of regular (resp. singular) points of X
and X,eg(C) (resp. Xging(C)) those of X(C).

PROPOSITION 4.7. — A function belongs to K°(X(C)) if and only if it
is continuous for the Euclidean topology, and it is regular on X,eq(C).

Remark 4.8. — Let x € X, we write Ox , := C[X],, the ring of functions
which are regular at x. If X is irreducible and W is a subvariety of X, we
write Ox (W) := mer Ox z.

Proof. — We assume X irreducible thanks to Lemma 4.5. Let f: X (C) —
C be regular on the Z-dense Z-open set U(C) and continuous on X (C). Then
there exists ¢,p € C[X] such that pf = g on U(C). As a Z-dense Z-open
set is dense for the Euclidean topology and pf — ¢ is continuous, we get
pf—¢q=0on X(C).

Let 2 € X,cg(C), we have to show f € Ox ;. If p is a unit in Ox , then
f =qp ' € Ox,. Else, since z € Xye(C), the Auslander-Buchsbaum
theorem tells us that Ox ; is a UFD. So, even if it means multiplying ¢ by
some unit elements of Ox ,, we can write

n
p=]]r

i=1

with p; some prime elements of Ox . We now consider a Z-open neigh-
borhood W3 (C) of x such that pf = ¢ on W1(C) and p; is a prime element
of Ox (W71(C)). Thus ¢ vanish on Z(p1) and since the Nullstellensatz tells
us that J(Z(p1)) = p1Ox(W1(C)), we have g € pyOx(W1(C)). So there

ANNALES DE L’INSTITUT FOURIER



SEMINORMALIZATION AND CONTINUOUS RATIONAL FUNCTIONS 13
exists qg1 € Ox (W71(C)) such that ¢ = p1¢;. Then we obtain

n

Si 51—1 J—
Hpi P flwe = Qlwy o
i=2

In the case where s; > 1 we’ll have Z(p1) C Z(¢1) so we can iterate the
process and get g5, € Ox (W1(C)) such that

n

Siq I
Hpi Fiwrer = Gorlwy o
iz

If we take W5(C) a Z-open neighborhood of z on which ps is prime, we can
the repeat the previous argument on Wy (C) N W5(C). Thus, by doing this
n times, we can consider a Z-open neighborhood W,,(C) of z in X(C) and
qss, € Ox(Wy(C)) such that f, . = @5y, o - Then we finally conclude
that f € Ox 5. O

Remark 4.9. — Note that the Euclidean continuity is essential in the
proof to apply the argument of density at the end of the first paragraph. In
particular, the Zariski continuity used in [18] wouldn’t be enough because it
doesn’t allow us in general to extend an equality which is true on a Z-dense
set. As an example, we can consider the function f defined on A'(C) by

fz{i ifz#0

0  otherwise.

This function is Z-continuous because it is a bijection and the Z-open sets
of AL(C) are of the form A!(C)\{finite nb of points}. However, even if
zf(z) = 1 on the Z-dense Z-open set A'(C)\{0}, this equality does not
extend on the whole space A'(C).

4.1. Connection between continuous rational functions and
seminormalization.

The goal of this subsection is to study the ring K°(X(C)) for X an affine
variety. The main result being Proposition 4.21 which tells us that this
ring is in fact the coordinate ring of the seminormalization of X, in other
words K%(X (C)) = C[X*]. To do this, we must look at how the continuous
rational functions behave when they are composed with finite morphisms
of affine varieties.

As we have seen previously, the functions in K°(X(C)) are regular on
the regular points of X (C). Thus, if X is normal, the singular locus is too
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thin for a continuous rational function not to be polynomial. This allows
us to identify the ring X°(X(C)) when X is normal.

PRropPOSITION 4.10. — Let X be an affine normal variety. Then
K°(X(C)) = Ox(X(C)) = C[X].

Proof. —First C[X]CK%(X(C)) is obvious. Conversely, let f € K°(X(C)).
By the previous proposition we get f € Ox (X;eg(C)). But since X is nor-
mal, we have codim(Xsing(C))> 2. Thus, by [13, p. 124], there exists a
function f € Ox (X (C)) which coincides with f on Xreg(C). As the func-
tion f — fis continuous for the Euclidean topology and vanish on X, (C)
which is a dense open set of X(C), we get f = f € Ox(X(C)) = C[X]. O

In the following proposition, we improve the result of Proposition 4.7. We
write Norm(X) := {z € X | Ox, is integrally closed} and Norm (X (C)) =
Norm(X) N X(C).

PROPOSITION 4.11. — Let X be an affine variety and f € K°(X(C)).
Then

Ve Norm(X(C)) fe€Oxy.

Proof. — Let ©’ : X’ — X be the normalization morphism of X and
f € K%X(C)). Proposition 4.10 tells us that f on’ € C[X']. Let = €
Norm(X (C)), then there exists a unique 2’ € X’ such that n’'(z') = z and
so Ox,o — Ox 4. Since normalization commutes with localization (one
can see [3] for example), we get O , ~ Ox/ . But € Norm(X(C))
implies Ox . = O , so

Ox,z = Ox/ .

Finally, since fon’ € Ox/ 4, we get f € Ox 4. d

Remark 4.12. — A UFD being integrally closed, we have X,.; CNorm(X).
So Proposition 4.11 implies Proposition 4.7.

Before continuing the study of continuous rational functions, we have to
establish some properties of finite morphisms that we will need later.

LEMMA 4.13. — Let m: Y — X be a finite morphism of affine varieties.
Then

7+ Y (C) — X (C) is surjective and closed for the Euclidean topology.

Proof. — The going-up property tells us that the morphism 7 is surjec-
tive and that the inverse image of X (C) is Y(C). It gives us the surjectivity
of m. : Y(C) = X(C).
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To show that 7 is closed, we are going to prove that it is proper for
the Euclidean topology. Let K be a compact subset of X(C). We first
have that 7_!(K) is closed because 7. is continuous. Suppose C[Y] =
Cly1,-.-,yn]/Iy and Y (C) C C". We write Y; : y — y; the map giving the
ith coordinate of an element of Y (C). We then have Y; € C[Y] and, since
by hypothesis C[Y] is a finite C[X]-module, there exists an identity of the
form

Yik +ap_10 7rC.Ylvk*1 +--+agom, =0 with a; € C[X].

Let y € 7 1 (K). We write 7. (y) = @. If y; # 0, then

YEy) +araom(9) Y )+ +agom(y) =0
=y taa(@)y T+ ao(r) =0
— 14 ap_1(x)/yi+ -+ ao(z)/yF =0.
As K is a compact set, the a;(K) are bounded. So
Y (Yn)n € 7. (KN Yilyn) —+ +o0.

This means that Y;(w*(K)) is bounded for all i and so that 7 '(K) is a
compact set. More generally, we have shown:
7. : Y(C) — X(C) is proper for the Euclidean topology.

Since a proper continuous map is closed, the lemma is proved. O

Remark 4.14. — What we have just shown implies that for every finite
morphism 7 : Y — X of affine varieties with 7. bijective, the morphism 7
is a Euclidean homeomorphism.

Henceforth, for any given morphism 7 : Y — X of affine varieties,
we shall write ¢ : K°(X(C)) — C(Y(C),C) the map f + fon.. The
purpose of this notation is to distinguish this map from the morphism
7 : C[X] — C[Y]. We will see that if 7 is a finite morphism, we can deter-
mine the image of ¢. This will be useful for us since the normalization and
seminormalization morphisms are finite.

LEMMA 4.15. — Let m : Y — X be a surjective morphism of affine
varieties. Then ¢ is injective and

Im(p) C {f € K°(Y(C)) with f constant on the fibers ofwc}.
Remark 4.16. — This reverse inclusion is obtained in Proposition 4.19.

Proof. — If f € KY(X(C)) then we can consider p,q € C[X] with ¢q a
non-zero-divisor such that ¢.f —p = 0 on X (C). Write Y = |J;_, Y; the
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16 Francois BERNARD

decomposition in irreducible component of Y. Then, for all i € [1;n], we
get qom, o.fom, o —pom, o =0o0nY;(C). Thus fom, . €K(Yi)
and since 7. is continuous, we have fom, . € K°(Y;(C)). By Lemma 4.5,
we get fom. € K°(Y(C)). Moreover

Vyry2 €Y(C) m.(y1) =7(y2) = fom(y1) = fom.(y2)

which shows the lemma’s inclusion. It remains to prove the injectivity of ¢:

Let f € K°(X(C)) be such that ¢(f) = fon. =0 and take z € X(C).
As 7 is surjective, there exists y € Y (C) such that w(y) = z. So we can
write f(z) = fom.(y) = 0. Thus we get f = 0 which shows that ¢ is
injective. O

We deduce from Lemma 4.15 that continuous rational functions on an
affine variety can be seen as polynomial functions on its normalization.

PROPOSITION 4.17. — Let X be an affine variety and f € K°(X(C)).
Then f is integral on C[X].

Proof. — Let f € K°(X(C)) and m : X’ — X be the normalization
morphism of X. Since 7 is a finite morphism, the previous lemma gives us
K°%(X(C)) — K% X'(C)). But, by Proposition 4.10, we get K°(X'(C)) =
C[X'] so K°(X(C)) = C[X'] and so fom,. € C[X']. By definition of C[X'],
we can consider a relation of the form (fom. )" + (a,—1om.)(fom. )"t +

-+ (apom,) = 0on X'(C) with ag, ..., a,—1 € C[X]. Since 7, is surjective,
we get that f™* +a,_1f" 1 +---+ap =0 on X(C). Hence f is integral on
C[X]. O

Remark 4.18. — In general, a function f : X (C) — C is integral on C[X]
if and only if it is rational and locally bounded on X (C).

We obtain the following commutative diagram, which summarize the
situation:

CIX]———C[X

As previously announced, we are going to give a description of the image

KO(X(C)—— K" (X

of ¢ in the case 7 is finite.

PROPOSITION 4.19. — Let w : Y — X be a finite morphism of affine
varieties. Then the image of ¢ : K%(X(C)) — K%(Y(C)) is

Im(p) = {f € K°(Y(C)) with f constant on the fibers Ofﬂ'C}.
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Proof. — Let f € K°(Y/(C)) be such that
Vyny € Y(C) m(y1) = m(y2) = fly1) = f(y2)-

We consider
g:X(C)—C
x— fy;) with y; € ﬂ'C_l({x})
The map is well-defined by hypothesis and because 7 is surjective. More-
over we have f = gom. and f € C°(Y(C),C) so gom,. € C°(Y(C),C).
We now show that g € C°(X(C),C). Let F be a closed subset of C. Then

(gom.) H(F) = n (g7 (F)) is closed because g o m, = f is continuous
—1
C

closed (see Lemma 4.15), the set g~!(F') is closed and so g is continuous.

It remains to prove that g is a rational function. We have

and 7. (71 (g7 (F))) = g 1(F) because _ is surjective. Thus, since . is

gom. € K%Y (C))
= gom, is integral on C[Y] by Proposition 4.17
= g o, is integral on C[X] by [3, Corollary 5.4 p. 60]
— gis integral on C[X] because 7 is surjective
— g€ K%X(C)) by Proposition 4.29
that we prove further away.
This shows f € Im(y). So we have proved that the set of functions in

K°(Y (C)) which are constant on the fibers of 7, is included in Im(¢). The
reverse inclusion being given by Lemma 4.15, we finally get

Im(p) = {f € K°(Y(C)) with f constant on the fibers of 7TC}. O

Now, considering the last proposition, it is natural to wonder what hap-
pens when there is only one element in every fiber of 7.. The answer is
given in the following proposition.

PROPOSITION 4.20. — Let w : Y — X be a finite morphism of affine
varieties. Then the following properties are equivalent:
(1) The extension m* : C[X] — C[Y] is subintegral.
(2) The morphism ¢ : K°(X(C)) — K°(Y(C)) is an isomorphism.
(3) The morphism 7 is a homeomorphism for the Euclidean topology:.

Proof. — Suppose C[X] — CJ[Y] is subintegral, by Theorem 3.1 it means
that 7. : Y(C) — X(C) is bijective. So, in this case, every function of
K°(Y (C)) is clearly constant on the fibers of 7.. So, by Proposition 4.19,
the map ¢ is surjective and Lemma 4.15 gives us the injectivity.
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18 Francois BERNARD

Conversely, if 7. is not bijective, there exists y; # y2 € Y (C) such that
m(y1) = 7m(y2) and we can find f € C[Y] such that f(y1) # f(y2). Thus

f € K%(Y(C)) but £ ¢ Im(p).

Finally

¢ : K%(X(C)) — K°(Y(C)) is an isomorphism
:Y(C) — X(C) is bijective
< 7" :C[X] — C[Y] subintegral.

=

The third statement comes from Lemma 4.13. O

Let X be an affine variety, the coordinate ring of X is the largest
ring subintegral over C[X]. Thus for every finite morphism between two
varieties 7 : Y — X with C[X] < C[Y] subintegral, we obtain the following
commutative diagram:

(C[X]C subint. (C[ ]C subint. C[X+]C (C
We will complete the diagram by showing C[X ] = K°(X+(C)). We prove

it in the next theorem by saying that the polynomial functions on the semi-
normalization are the polynomial functions on the normalization, which are
constant on the fibers of /. : X'(C) — X(C).

K%(X(C)) —— K9(Y(C)) — KX *(C))—— KX

THEOREM 4.21. — Let X be an affine complex variety and m+: X+ — X
be the seminormalization morphism. We have the following isomorphism

o K(X(C) = CIXY]

f—fo 7r;r.

Proof. — We have shown in Corollary 3.4 that

c[x] = cfxt]
= {recix|
Let 7' : X’ — X be the normalization morphism of X. We want to show
/

)

Let 2 € X(C) and f € C[X <], We write 7/~ ({z}) = {},...,2},}. The
goal is to show f(z}) = f(z}) for all 4,5 € [1,n]. First, the ideals of Ox .

(C) fo € Oxa + Rad(oX,,m)}.

clxte~] = {feClx]
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above m, are of the form m, Ox- ,
k3
OX,;E — OX’,a:

mmOX,m < ma:’l OX’,:E

mZL’;lOXl,{L’

By definition, we have f; € Ox , + Rad(Ox’ 4). So we can write f, =
o+ B with o € Ox, C Ox/, and § € mziOX/,z n--- ﬂmz%Olem. Thus,
foralli e {1,...,n}

fo(@}) = al(r'(x})) + B(x)).

But §(z ) = 0 because 3 € my Ox/, and a(7'(27)) = a(x). So a(z) =
f(zy) =--- = f(«},) and we obtain

Conversely, let f € C[X'] be constant on the fibers of 7/.. Let x € X(C),
then Vy € n/~'(2), f(y) = a € C. We then have

fz — o€ m myOng = Rad((’)x/,x)

yen ! (x)
and so f € C[X T=ax]. We have proved
Clxte~] = {f eClX

C[Xx*max] C {f € C[X"

f constant on the fibers of Wé}
But since K°(X’(C)) = C[X'] by Proposition 4.10 and since
¢ : KY(X(C)) = {f € K°(X'(C)) ‘ f constant on the fibers of wé}
by Proposition 4.19, we get
¢: K°(X(C)) = C[XTmx] =C[XT]. O

We have managed to identify the ring of continuous rational functions
of an affine complex variety: it corresponds to the coordinate ring of its
seminormalization. We can now complete the previous diagram.

For every morphism 7 : Y — X of affine varieties such that C[X] — C[Y]
is subintegral, we get

K2(X(C)) —— K°(Y(C)) —— K9(XH(C))— KX

(C[X]C subint. (C[ ]C subint. (C[X+]C C
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4.2. Continuous rational functions and regulous functions.

As said before, continuous rational functions are of particular interest in
real algebraic geometry. They are very related to another kind of functions:
the regulous functions. Let X be a real algebraic set and let f : X — R be
continuous. We say that f is regulous on X if, for every algebraic subset
Z C X, the restriction f|, has a rational representation. This is why they
are sometimes called “hereditarily rational functions”. Those two types of
functions are not the same in the case of real singular algebraic sets. One
can consider the following example (from [16]) of a continuous rational
function which is not regulous.

Example 4.22. — Let X := {2® — (1 + 2%)®} C R3 be a real algebraic
set. Consider f : X — R such that f(z,y,2) = (1+22)%. See that, although
f is continuous on X and f = z/y if y # 0, the function f is not rational

on {y =0}.

For more details, one can see [17, Section 3] for a review on these notions.
We show, in the following proposition, that these two kinds of functions
are the same in complex algebraic geometry.

PROPOSITION 4.23. — Let f € K°(X(C)). Then for every subvariety
V C X, we have

five €KO(V(T)).

Proof. — As usual, Lemma 4.5 allows us to suppose V irreducible. Let us
considerate 7 : X — X the seminormalization morphism of X and V =
V(p) an irreducible subvariety of X. We have the following commutative
diagram:

C[X]CQ C[XH]

Loy

W

C[f]% C[f/]
(V) K(W),

with W = V(q) where q is the unique prime ideal of C[X ] above p. By the
going-up property and the description of prime ideals for quotient rings,
one can see that W — V is a bijection. Thus Theorem 3.1 tells us that
C[V] < C[W] is subintegral. Since C[W] is a finite C[V]-module, we can
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apply Proposition 4.20 and get that K°(V) < K°(W) is an isomorphism.
Thus

fek(X(0)
= forn] € Ox+(XT(C)) = fomjy (e € Ox+(W(C))
= fivmy o W\JIF/V((C) =fo 7T|+W(C) € K'(W(C)) O
= flvc) € KX(V(C)).

Remark 4.24. — In real algebraic geometry, regulous functions can also
be defined in the following equivalent way. Let f : X — R be a continuous
function on a real algebraic set. We say that f is regulous (or sometimes
stratified-regular) if there exists a finite stratification S of X, with Zariski
locally closed strata (i.e. the intersection of a closed and an open set), such
that for all S € S the restriction f, is regular. It also applies in our case,
if f: X(C) — C is a continuous rational function, then we can write

/o ifq #0
p2/q2  if g1 =0 and ¢ #0

f= .
p3/gs ifq1=¢2=0 and g3 #0

and for every n > 1, we have Z(q,) C Sing(Z(qn-1))-

4.3. The ring of continuous rational functions seen as an
integral closure and algebraic Whitney theorem.

In Whitney’s book [26], one can find a chapter dedicated to a certain type
of functions: the “c-holomorphic” functions. The c-holomorphic functions
are defined as continuous functions on an analytic variety which are holo-
morphic on the smooth points of the variety. Note that, by Proposition 4.7,
continuous rational functions are c-holomorphic. A characterization of c-
holomorphic functions, given by Whitney, is that a continuous function is
c-holomorphic if and only if it has an analytic graph. This theorem natu-
rally leads to wonder if we can have the same characterization for conti-
nuous rational functions. In other words, do we have, on an affine algebraic
variety, that a continuous function is rational if and only if its graph is
algebraically closed? The answer is “yes” and a proof with arguments from
analytic geometry can be found in [6]. The goal of this section is to prove
a slightly stronger version with arguments from algebraic geometry.

TOME 0 (0), FASCICULE 0



22 Francois BERNARD

More precisely, we aim to show that, if X is an affine variety, then every
continuous function from X (C) to C, for which there exists P(t) € C[X]t]
such that P(f) = 0, is rational.

It allows us to deduce the algebraic version of Whitney’s theorem dis-
cussed above, but also to identify the ring in which K%(X (C)) is the integral
closure of C[X].

We start by proving the theorem in the case where X is irreducible
and where the polynomial, for which the continuous function is a root, is
irreducible in K(X)[t]. With those hypotheses we can give a proof similar
to the one given in [21, Theorem 8.4 p. 176]. It is very important for the
polynomial to be irreducible in (X)[t] otherwise the new variety created
from it won’t necessarily be irreducible, whereas the key argument uses the
irreducibility of this new variety.

Notation 4.25. — Let P be a polynomial, we note disc(P) its discrimi-
nant.

LEMMA 4.26. — Let X be an irreducible affine variety and f : X (C) —
C be a continuous function. Suppose there exists an irreducible polynomial
P € K(X)]t] such that

3U a Z-openset VxeU(C) Pz, f(x))=0

then
feKN(X(C)).

Proof. — First, we consider the affine Z-open set X; such that P is a
monic polynomial of C[X;][t]. Then we write Y7 = Spec(C[X1][t]/{P)),
which is irreducible because P is irreducible in K(X)[t] = K(X1)[t], and
7w : Y] — X the induced finite morphism. We note X5 the affine Z-open
set where disc(P) does not vanish. Finally we write Y2 = 77 1(X3). Now
X5 and Y5 are two irreducible affine varieties with 7 : Yo — X5 finite, and

VaeXy(C) #n'(z) = [K(Y2) : K(X2)] = deg(P).

We write m := deg(P) and we prove by contradiction that m = 1. Let’s
suppose m > 1.

Let x € X2(C), we can consider U, a Euclidean open set such that
X2(C)N U, is connected and

1 (X(C)NU,) = D |

i=1
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where V! C Y5(C) are two by two disjoint connected open sets. We note
v X5(C) — Y52(C)
zr— (z; f(r))
which is, by hypothesis on f, a continuous section of 7. Thus ¢(X2(C) N
U,) is connected and so it corresponds to one of the V! which we denote

Vio. We then have that ¢(X2(C)) and Y2(C)\¢(X2(C)) are open sets be-

cause
P(5C)= | v
€ X2(C)
and
nOwx©)= U v
2€X5(C) iFio
Moreover, since m > 1, we clearly have ¢(X3(C)) # Y2(C). But since Y5 is

irreducible, the set Y2(C) must be connected, a contradiction. So m must
be equal to 1 and then f is rational. O

In order to prove the desired theorem with Lemma 4.26, we need to find
an irreducible polynomial of I(X)[t] for which the continuous function is
a root. This is what Lemma 4.27 gives us.

LEMMA 4.27. — Let X be an affine irreducible smooth variety and f :
X (C) — C be continuous with respect to the Euclidean topology. Suppose
there exists a monic polynomial P € C[X][t] such that

VzeX(C) Pz, f(x))=0.
Then f is a root of an irreducible polynomial of KC(X)[t].

Proof. — Since X is supposed to be smooth and P to be a monic polyno-
mial, we can apply [26, Lemma 2J, Chapter 4] to get that f is holomorphic
on X (C). In particular, we get f € M(X(C)) which is a field because X is
irreducible (see [21, Theorem 7.1]). Now consider the morphism

evy : K(X)[t] — M(X(C))
Q(t) — Q(f).

We have that K(X)[t] is a principal ideal ring because K(X) is a field.
Since P(f) = 0 in M(X(C)), then ker(evs) # 0. So there exists F' # 0
such that ker(evy) = (F'). Since M(X(C)) is a domain, the polynomial F
is irreducible in K(X)]t]. O

We now have all the arguments we need to demonstrate the main theorem
of this section.
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THEOREM 4.28. — Let X be an affine variety and f : X(C) — C be
a continuous function for the Euclidean topology. Suppose there exists a
polynomial P € C[X][t| which is non-zero on each irreducible component
of X(C) and such that

Vze X(C) Pz, f(x)=0

then
f e K(X(C)).

Proof. — Let X = |J!_, X; be its decomposition into irreducible com-
ponents. Let i € [1,n] then fx,(c) is a root of the polynomial P with its
coefficients restricted to X;(C). Thus, by Lemma 4.5, it is enough to prove
the theorem for an irreducible affine variety.

If Xaing(C) = Z({¢1,...,4qs)) and a,, is the leading coefficient of P, we
can replace X by D(gia,) and then suppose that X is smooth and that
P is a monic polynomial. It allows us to use Lemma 4.27 and to get an
irreducible polynomial F' € K(X)[t] such that there exists a Z-open set U
where for all © € U(C), F(x, f(x)) = 0. The conclusion is now given by
Lemma 4.26. 0

Thanks to Theorem 4.28 we can now see the ring of continuous rational
functions as an integral closure of C[X].

COROLLARY 4.29. — Let X be an affine variety. Then

K%(X(C)) = C[X]eox(cy.0)-

Proof. — The result follows from Proposition 4.17 and Theorem 4.28. I

Remark 4.30. — By using Corollary 4.29, one can give a very short proof
of Proposition 4.23. Indeed, if V is a subvariety of X and if f € K°(X(C)),
then there exists a monic polynomial in C[X][t] for which f is a root.
S0 fly is aroot of the same polynomial with its coefficients restricted to
V(C). Since f},, ., is continuous, we get fi, ., € C[V]eoy(c)c) = Ko (V(C)).

Let’s conclude this section by proving the algebraic version of Whit-
ney’s [26, Theorem 4.5Q)] introduced at the beginning of this section.

COROLLARY 4.31. — Let X be an affine variety and f : X(C) — C be
a continuous function. We note I'y := {(z, f(z)) | z € X(C)} c X(C) x
AY(C) the graph of f. Then the following properties are equivalent:
(1) The graph T'y is Z-closed.
(2) feKX(X(C)).
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Proof. — The implication (1) implies (2) comes from Theorem 4.28. Con-
versely, we suppose f € K°(X(C)) and we note 7 : X+ — X the seminor-
malization morphism. By Proposition 4.21, we have f om € C[XT]. Thus

Lron ={(y, fon(y)) |y € XT(C)}

is Z-closed. Moreover the map 7 x Id is Z-closed because, by Theorem 3.1,
7 is a Z-homeomorphism. So m X Id(T' o) = {(7(y), fom(y));y € XT(C)}
is Z-closed. Finally, since 7 is bijective, we get

{(x(), for(y) |y € XT(C)} ={(=, f(x)) |z € X(C)} =Ty. O

Remark 4.32. — In [5, 6], the authors consider c-holomorphic functions
with an algebraic graph. Corollary 4.31 tells us that those functions are
the same as the ones considered in this paper when we work on algebraic
varieties.

Remark 4.33. — In real algebraic geometry, the zero sets of regulous
functions are the closed sets of a thinner topology than the Zariski topology,
called the regulous topology. In [9], the authors show that we can recover
some classical theorems of complex algebraic geometry if we work with
the regulous topology instead of the Zariski topology. In our case, if f €
K°(X(C)) then Corollary 4.18 tells us that {x € X(C) | f(z) = 0} =
'y N (X(C) x {0}) is a Zariski closed set.

4.4. Examples of continuous rational functions.

In general, it is not easy to determine the seminormalization of a variety.
We present in this subsection several examples of continuous rational func-
tions and also some explicit seminormalizations of affine varieties. In order
to do this, we give a convenient criterion to identify continuous rational
functions.

THEOREM 4.34. — Let X be an affine variety and f : X(C) — C. Then
f € K°(X(Q)) if and only if it verifies the following properties:
(1) feK(X).
(2) There exists a monic polynomial P(t) € C[X][t] such that P(f) =0
on X(C).
(3) The graph I'y is Zariski closed in X (C) x A*(C).

Proof. — The direct implication is given by Propositions 4.17 and 4.31.
Conversely, suppose that f verifies the three properties above. We consider
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the map
¥ CIX|[t] — K(X)
Q(t) — Q(f)
and write C[Y] ~ C[X][t]/ ker¢ ~ C[X][f] with 7 : Y — X the morphism
induced by C[X] < C[Y]. We then have
C[X] — C[Y] ~ C[X][f] Cc K(X).
So K(X) ~ K(Y) and 7 is birational. Moreover C[Y] is a finite C[X]-module
because so is C[X][t]/(P(t)) and
ClY] = C[X][t)/ ker ¢ =~ (CIX][t]/(P(1)))/(ker ¢/ {P(t)))-
Hence 7 : Y — X is a finite birational morphism. We want to show that
is bijective. By hypothesis, there exists an ideal Iy C C[X|[t] such that T'y =
Z(Iy). We have Iy C kere) because VQ € Iy, Vz € X(C), Q(z, f(z)) =0.
So
Y(C) = Z(keryp) C Z(Iy) =T5 = {(=, f(x)) | x € X(C)}.
Then
VeeX(C) n_ '(z) =2 or {f(x)}.
Since 7 is finite, 7. is surjective. So, for all z € X(C), n_'(x) is not
empty, which means that 7~ '(x) = {f(z)}. We have shown Y(C) = I,
thus 7. is bijective with the inverse map = — (x; f(x)). Thus 7. is a

finite birational and bijective morphism. From the universal property of
the seminormalization, we get

C[X] — C[Y] — C[X ]
that induces
Xt j—) Yy 5 X.
So, if we note ¢t € C[Y] such that ¢ : (z, f(x)) — f(z), Theorem 4.21 gives

us the existence of g € K%(X(C)) such that t o (m")c = g o 7. o (75 )c so
t = g o m.. Therefore, since 7, is surjective, we get for all z € X (C)

9(x) = g om.(x; f(x)) = t(x; f(2)) = f(x)
Thus f = g € K°(X(C)) which concludes the proof of Theorem 4.34. [

Example 4.35. — Let V = Spec(C[z,y]/ < y* + (2® — 1)z* =0 >) and
F:V(C) —C

(219) {y/m ifx#£0

0 otherwise.
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The function f is a root of the polynomial P, (t) = t? + 2?(z% — 1).
Since Po,0)(t) = t2, all the values of f are given by the roots of xt —
y = 0 on { # 0} and else by the root of P, (t). Thus we have I'y =
Z({y* + (2% — Da*; 2t — y;t2 + 22(2® — 1)) which is a Zariski closed set.
So Theorem 4.34 tells us that f € K°(V(C)).

Remark 4.36. — The key thing in the criterion we gave is that f is defined
on all V(C). When one add rational functions to the coordinate ring of a
variety to get its normalization, the functions are only defined on a Z-open
set. Consider again the previous example but with the fraction 2 € (V).
It is a root of Py, (t) = t* + (z* — 1) on {x # 0}. But P(,0) = t* — 1 has
two distinct roots, so Z({y? + (2% — 1)z; 2%t — y; 1% + (22 — 1))) cannot be
the graph of a map on V(C).

Example 4.37. — Now we give an example which illustrates the fact that
a continuous rational function is a stratified-regular function (see remark
after Proposition 4.23). Let V' be a variety such that the set of its closed
points, seen in A%(C), is defined by the following equations

2 +zyr+ty? =0 (1)
V€ : ¢ 22+ 2%+ +yt=0 (2
222 + 2%y — 9?22 =0 (3)

Let f: V(C) — C such that

zfy ify#0
f=19z/t fy=0andt#0
0 otherwise.

To show that f is indeed a continuous rational function on V(C), we
show that f satisfies the three properties of Theorem 4.34. In particular,
we look at its graph I'y and show that it is the following Z-closed set in
A®(C) defined by

2?2 +2yr+ty =0 (1)
2422+ +yt=0 (2)

r, - 222 + 2%y —y?22 =0 (3)
yX —z=0 (4
X2+2X+t=0 (5)

?2X24+a2X —-22=0 (6)

TOME 0 (0), FASCICULE 0



28 Francois BERNARD

First of all, let’s verify that f is indeed a root of the polynomials (4), (5)
and (6) on V(C). We start by looking on D(y) C V(C) where f = z/y:

(4);y(;”> —2=0

2 2 2

t

5) (w> +Z<~T>Hx+zzg+y()by (1)
Yy Yy Yy

2 2,.2 2 2,2

t —

(6):t2<$) —|—x<x)—z2= i +x2y yz =0 by (3).
) ) Y

Now we check that it is still true on Z(y) N D(t):

) (2) +2(2) 4= TV g4y g

Z\2 z 1222 + xat — 222
(6):t2(¥) +$(¥>—z2= 2 =0

since y =0 implies =0 by (1).

We get that f is a root of the polynomials (4), (5) and (6). It remains
to see if the values of f are completely determined by those polynomials.

If y # 0, then the equation (4) forces the value of f to be x/y on D(y).
If y = 0 and ¢ # 0, then the system (4), (5), (6) becomes

X2 42X +t=0
X2 =22/t
which forces the value of f to be z/t on Z(y) N D(t). Finally if y = ¢ = 0,
then the system becomes X2 = 0.
We have shown that I'; is completely described by the system given

above. Thus I'y is Z-closed. By (5) then f is integral on C[X]. By (4) then
f is rational on V(C). So Theorem 4.34 tells us that f € K°(V(C)).

Remark 4.38. — The Jacobian matrix of the equations defining V' is

2x 4+ yz zx + 2ty Ty y?

Jac(V) = 0 t 22+ 22t 224y
20%2x + 2yx  x? —2yz?2  —2y%z 2t

and, if y = 0, it becomes:

0 0 0 0
Jac(V)|,_o, = |0 t 2z+22t 22
0 0 0 0
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So we have {y = 0} C Vsing(C) which is coherent with Proposition 4.7.

Remark 4.39. — In the equations defining I'y, we could replace (6) by
(x — 2t2) X — (3 + 22).

Example 4.40. — Tt is shown in [7] that, for plane curves, the seminor-
mality can be read on the geometry of the singularities. A curve in A?(C) is
seminormal if and only if its singularities are double points whose tangents
are linearly independent. We illustrate this by looking at the example of
three lines crossing at the origin in A?(C).

Let V = Spec(C[X;Y]/(XY (Y — X))). It is clear that V is not seminor-
mal because the lines are not linearly independent. Let f : V(C) — C be
such that

Fo {fﬁ’, if (z;y) # (0;0)
0 otherwise.

We can see that f is a root of the polynomial P,,,(t) = t2 — xy and that
I's is equal to Z(zy(y — x); (z + y)t — 2zy;t? — xy) because 0 is the only
root of Pg,p). So, by Theorem 4.34, we have f € K°(V(C)). Furthermore,
we have I'y = V*(C) because the graph corresponds to three linearly
independent lines in A3(C). Indeed, it is the union of three lines crossing
at the origin with direction vectors (1,0,0), (0,1,0) and (1,1,1).

Another way to see that f is continuous is that fj,—o = 0, fljy—0 = 0
and fj,—, = x. So f is a continuous rational function on each irreducible

component of V(C). Thus f € K°(V(C)) by Lemma 4.5.

Remark 4.41. — Let X be an affine variety. Since C[X] < C[X ] is finite
and C[X] is a Noetherian ring, one can show that the process of adding
elements f; € K°(X(C)) with fir1 ¢ C[X][f1,...,fi] ends after a finite
number of steps.

4.5. Nullstellensatz for complex regulous functions.

A very important property of the regulous functions in real algebraic
geometry is the regulous version of the Nullstellensatz ([9, Theorem 5.24]).
We give here a regulous version of the Nullstellensatz for complex affine
varieties. One can also find a proof of this result for c-holomorphic functions
with algebraic graph in [5].

We consider the same notations as in Theorem 4.21. So, if X is an affine
variety and 7 : X+t — X is its seminormalization morphism, we consider
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the isomorphism
¢ K°(X(C)) = C[XT]
fr—fom.
Let I € K°(X(C)). We write
Z00)={z e X(C) |V f e, f(z) =0}
Let E C X(C). We write
JUE) = {feK"(X(C)|VzeE, f(z)=0}.

Let I be an ideal of K°(X (C)), then see that [ is of the form I = (g1, ..., gn)
by Noetherianity of C[XT]. So

m (200) =7 (N 2%0) = (7 (2°90)
=(Z(gior.) =Z(p(I)).

THEOREM 4.42 (Nullstellensatz). — Let X be an affine complex variety
and I be an ideal of K°(X(C)). Then

JO(2(D) = V1.

Proof. — One of the inclusion is clear. For the other inclusion, we con-
sider f € J%Z°(I)). It is equivalent to say that Z°(I) C Z°(f). Then
Z(p(I)) =7 1(2°)) c 7 Y(2°(f)) = Z(f o w.). Then, by the classical
Nullstellensatz on C[X ], we can consider n € N such that (fom.)" € o(I).
So we get f" = o (o(f)") € ¢ (@(I)) = I and finally f € /1. O

We also get a version of the Nullstellensatz where we want to study
only one element of K°(X(C)). We will need this result in Section 5.1.
One can do the exact same proof as Theorem 4.42 by adapting it with
the following notations. For f € K%(X(C)), I ¢ C[X][f] and E C X(C),
consider Z/(I) := {x € X(C) |V g € I,g(z) = 0} and J(E) := {g €
CIX][f] |V x € E, g(z) = 0}. Also, consider C[Y] ~ C[X|[t]/If, m:Y — X
and ¢ : C[X][f] = C[Y].

THEOREM 4.43. — Let X be an affine complex variety. Let f € K°(X(C))
and I be an ideal of C[X][f] then

TN 1) =VI.
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5. Classical results on seminormality with regulous
functions.

We revisit several results on seminormality using regulous functions. In
this section X will be an affine variety. If f € K°(X(C)), then we have
shown in the previous section that I'¢, the graph of f, is a Z-closed set of
X (C) x AY(C). So there exists an ideal I; C C[X][t] such that ['y = Z(I).
Moreover, we have C[X][t]/I; ~ C[X][f] and, since f is integral over C[X],
the ring C[X][f] is a C[X]-module of finite type. We note Cond(f) :=
(CIX] : CIX][f]) = {p € C[X] | p.C[X][f] C C[X]} the conductor of C[X]
in CIX][f]

5.1. Definitions and criteria of seminormality in commutative
algebra.

In this paper we have used Traverso’s definition of the seminormaliza-
tion [23] where, for an integral extension of rings A — B, the seminormal-
ization of A in B is given by

AL, ={be B|VpeSpec(A), by € A, + Rad(B,)}

But, as explain in [25], there are several definitions of the seminormalization
for commutative rings. For Hamann, in [12], a ring A is seminormal in B if|
for n € N*, A contains all the elements b € B such that b™,b" ! € A. The
equivalent definition used by Leahy and Vitulli in [18] consist in replacing
n and n 4+ 1 by any positive relatively prime integers. Finally Swan gave
another definition of the seminormalization which is not equivalent to the
previous ones for general commutative rings. Our goal in this section is to
reinterpret those definitions in terms of regulous functions and to see that
they are all equivalent for affine rings.

DEFINITION 5.1. — Let A — B be an extension of rings and b € B be
such that b2, b> € C[X]. In this case, we say that A < A[b] is an elementary
subintegral extension.

It is shown in [22] that, if a ring A is not seminormal in another ring
B, then we can always find a proper elementary subintegral subextension
of A < B. The following proposition gives a similar result with regulous
functions.

PROPOSITION 5.2. — Let X be a complex affine variety and f € K°
(X(C)) \ C[X]. Then there exists an element g € C[X]|[f] \ C[X] such that
g™ € Cond(f) C C[X], for all integer n > 2.
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Proof. — We know by Proposition 4.23 that f can be written in the
following way:

p1/q ifq1 #0
Dp2/q2 if g =0and g2 #0
Fo )
Pn—1/qn—2 ifq=-=¢g,2=0and g, 1 #0
Pn ifg=qg=-=¢n-1=0.

We consider the minimal integer s such that gs1f ¢ C[X]. If s exists, we
continue the proof with gs41f — ps+1 ¢ C[X]. If s doesn’t exist, we take
f — pn- So we can suppose that

pi/qg if g #0
p2/q2 if ¢t =0 and g2 #0

ps/qs fq=---=¢qg-1=0and g #0
0 ifq:qlz...:qszo

with ¢;f € C[X] and so ¢; € /Cond(f) for all ¢ < s. Let’s consider
I={q",...,q%) with n; € N such that ¢/ € Cond(f). See that Z/(I) C
ZT(f). So, by Theorem 4.43, we have f € v/I. Since I C Cond(f), we get
f € v/Cond(f). So we can consider the minimal integer m > 1 such that
/™ ¢ Cond(f) and f™*! € Cond(f). The fact that f™ ¢ Cond(f) means
that there exists h = ag+ay.f+- - -+aqf? € C[X][f], where d := deg(f)—1,
such that f™.h = ag.f™ + a1.f™ ' + - + apmraf™ " ¢ C[X]. But since
fmt € Cond(f), we get ay.f™ 4+ -+ apmiqaf™ T € C[X]. It implies
that agf™ ¢ C[X] and so f™ ¢ C[X]. Finally, we write g := f™ and we
have found an element g € C[X][f]\ C[X] such that ¢g" € Cond(f) C C[X],
for all integer n > 2. O

We recover now, with regulous functions, that Traverso, Hamann and
Leahy—Vitulli’s definitions of the seminormalization are equivalent. In order
to do this, we show the following Lemma.

LEMMA 5.3. — Let f € K(X) such that there exists n,m € N* with
ged(n,m) =1 and f*, f™ € C[X]. Consider u,v € Z such that un+vm = 1
and assume that v > 0 and v < 0. Then

9= {f T2 ¢ oo,

0 otherwise
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Proof. — Let X; be an irreducible component of X. If flr}’;‘_(c) = 0, then

flx.(@ = (0 so we define 9ix, i =0 So, by Lemma 4.5, we can suppose that
X is irreducible and that f™ # 0. We have

. {f if fm A0 {(f”)“/(fm)” if f #0

0 otherwise 0 otherwise.

So the graph of g is I'y = Z((f™)~"t — (f")*;¢"™ — f™) and, by Theo-
rem 4.34, we get g € K°(X(C)). O

The lemma tells us that a fraction with one of the property appearing in
the following criteria extend into a regulous function. So if X is seminormal
it has to contain the elements mentioned in criteria (3), (4) and (5). More-
over Proposition 5.2 shows that the seminormalization is the reunion of all
of this kind of element. So it is sufficient for X to contain those elements in
order to be seminormal. This is how we obtain the following proposition.

PROPOSITION 5.4 ([12] Hamann and [18] Leahy—Vitulli’s criteria). —
Let X be an affine complex variety. Then the following statements are
equivalent:

(1) X is seminormal.

(2) V f € C[X'] the conductor of C[X] in C[X][f] is a radical ideal of
clx)If)

(3) V feK(X)f2 fPeClX] = feClX]

4V fekKX)f,fm™eClX] = f e C[X], for some m,n € N
relatively prime.

(5) VfekK(X)fr frt eC[X] = f € C[X], for somen € N.

Proof.

(2) = (1). — If X is not seminormal, then there exists f € K°(X(C))\
C[X]. So Proposition 5.2 gives an element g € C[X][f] such that g belongs
to the radical of (C[X] : C[X][f]) but not to the conductor itself. The fact
that g ¢ C[X] and ¢" € C[X] for all n > 2, shows that 3),4) or 5) = 1).

(1) = (2). — Suppose there exists f € K(X) and g € y/Cond(f) \
Cond(f). We can consider n € N* such that ¢g"~! ¢ Cond(f) and g" €
Cond(f). So there exists h € C[X][f] such that g"~'h ¢ C[X] and (¢" 'h)?,
(¢"~1h)? € C[X]. Then, by Proposition 5.3, we get

n—lh if n—1h2 0
w:{g "R F#0 o

0 otherwise

(X(C)).

So ¢ € KY(X(C)) \ C[X] which means that X is not seminormal.
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(1) = (4). — Take n,m € N such that ged(n;m) = 1 and assume
X is seminormal. Consider f € K(X) such that f™, f™ € C[X]. Then,
by Proposition 5.3, we can extend f to a regulous function. So we get
f € K°%(X(C)) = C[X]. Since, for all n € N, we have ged(n;n +1) = 1, we
also get (1) = (3) and (5). O

We recover now that Traverso and Swan’s definitions of the seminormal-
ization are equivalent for affine rings by using regulous functions. First we
get the following Proposition, which gives us a way to construct regulous
functions from polynomials that respect a certain type of relation.

PROPOSITION 5.5. — Let p,q € C[X] be such that there exists n € N*

with p" € (¢"T'). Then
= {p/ ¢ 7Y ko).
0 otherwise

Proof. — Consider n € N* such that p"® € (¢"*!). Then there exists
h € C[X] such that p™ = hq"*!. So, if X; is an irreducible component of X
such that ¢ = 0, we get that p = 0 and so we define flx“@ = 0. Then, by
Lemma 4.5, we can suppose X irreducible and ¢ # 0. In this case, the graph
of fis given by I'y = Z(Ix; ¢t —p;t" —gh) and we can apply Theorem 4.34
to conclude. O

LEMMA 5.6. — Let X be an affine variety and p,q € C[X]. We write
p/a ifq#0
r-{

0 otherwise.
Then
p?=¢* ifandonlyif f>=¢q and f3>=p.
In this case f € K°(X(C)) and

Ty =Z(Ix;qt —pit? —q) = Z(Ix;t? — ¢;t° = p).

Proof. — Let X; be an irreducible component of X such that ¢ = 0.
Then f|xi(c) = 0 and the lemma becomes trivial. So, by Lemma 4.5, we
can suppose X irreducible with ¢ # 0. In this case, if p> = ¢° then f2 =
P’/ = ¢*/¢® = qand f* = p*/¢® = p?/p*> = p if p,q # 0. Moreover,
if g=0,then f2=qg=f3=p=0.S% f2=g¢qand f2 =pon X(C).
Conversely, if f2 = q and f3 = p then p? = (f3)? = (f2)3 = ¢*. We get
that f € K°(X(C)) by Proposition 5.5. O

The Lemma shows that the relations of the form p? = ¢ produce reg-
ulous functions, and Proposition 5.2 tells us that the seminormalization is
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the reunion of all of this kind of functions. Hence we obtain Swan’s crite-
rion.

PROPOSITION 5.7 (Swan’s criterion). — Let X be an affine complex
variety. Then the following statements are equivalent:
(1) X is seminormal.
(2) For all p,q € C[X] such that p* = ¢3 there exists f € C[X] with
f?=qand f°=p.

Proof.

(1) = (2). — Suppose X is seminormal and let p,q € C[X] with
p? = ¢®. Then by Lemma 5.6 we get an element f € K°(X(C)) such that
f? =qand f? = p. Since X is seminormal, we have f € C[X].

(2) = (1). — Suppose that X is not seminormal, then Proposition 5.2
gives us an element g € K°(X(C))\C[X] with ¢2, g3 € C[X]. So if we write
q:=g? and p := ¢, Lemma 5.6 tells us that p? = ¢>. Thus, if there exists
f € C[X] with f2 = g and f3 = p, we get f = g on D(q). By continuity,
we get f = g on X(C) which is impossible because g ¢ C[X]. O

5.2. Localization and seminormalization

It is shown, for general rings, that the operation of localization and semi-
normalization commute. In Traverso [23], it is proved by considering special
subextensions between the seminormalization and the normalization of the
ring. In Swan [22], it is proved by considering elementary subintegral exten-
sions of the ring (see Definition 5.1). We propose here a proof with regulous
functions in the case of the localization by a single element.

PROPOSITION 5.8 (Localization by a single element). — Let X be a
complex affine variety and S be a multiplicative set of C[X] such that

S ={1,q,¢%,...} with ¢ € C[X]. Then
sTicxH) = (s~'cx)) "
Proof. — First, see that it is equivalent to show
STIKY(X(C)) = K°(D(g))-
The inclusion S~1L°(X(C)) € K°(D(q)) is clear because if f € K°(X(C)),

then for all s € S the function f/s is still rational and continuous on D(q).
To get the other inclusion, we must show

s(z)g(z) if z € D(q)

e KY(X(C)).
0 otherwise (X(©)

VgeKkD(q) 3Ises sg:{
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So let g € K°(D(q)). Then, by Theorem 4.34, it verifies the three follow-
ing properties:
(1) g € K(D(q))-
(2) g is the root of a monic polynomial whose coefficients are in
S—IC[X].
(3) The graph I'y € D(q) x AY(C) of g is Z-closed.
In other words, g € K(D(q)) and there exists a system of polynomials

P(x,t) =t + ¢t 07 4 G0 =0
_ 91dy  4d @1,d1 -1 ydy—1 41,0 —
(+) Pile) =S snm ety =0

F(z,t) = Sotn . gdn 4 Sndn=t gda=1 4y 00—

Sn,dp Sn,dp—1 S$n,0

such that, for all z € D(g), the element g(z) is its only solution. We have
to see if there exists an s € S such that sg verifies a system of the similar
form on C[X]. Let us consider

d—1 2
() m o
k=0

i,5 € [1;n] x [0;d4]

We show that sg is the only solution of the following system whose coeffi-
cients are in C[X]:

P(x,t):td—FSdilad_l.td—1+...+£a0_3d—l -0
P = th = Lg.pdi—1
Fi(z,t) = 55ara, " + 52— arg-1 st
4ot ZEaig-st =0
(k) 5101
F, dy dy—1
Fn(x’t) = ﬁa"’d" 't o dnflanadn—l RN
R anO'Sd” =0.
Sn,0 5

Indeed, for all x € D(q), we have

Pl sg(2) = ()Pl gla)) =0

Fy(w, s9(x)) = s (2) Fi(w, g(w)) = 0.
So sg(z) is the only solution of the system (xx) for all x € D(q). Now see
that, in the definition of s, we carefully took squared elements so that if
x € Z(s) = Z(q) then all the coefficients in (**) vanish except ¢ in P(x,1).
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Thus, for all x ¢ D(q), we get t = 0 and so sg(x) is the only solution of the
system (xx) for all € X (C). O
The fact that localization and seminormalization commute leads to look

at seminormality directly at the points of a variety.

DEFINITION 5.9. — Let X be an affine variety. The set of seminormal
points in X is defined by

SN(X) :={z € X | Ox, is seminormal}
and the seminormal points of X (C) by SN(X(C)) = SN(X) N X(C).

Now we can improve Proposition 4.11 and be more precise about the
points where regulous functions are regular.

PROPOSITION 5.10. — Let X be an affine variety and f € K°(X(C)).
Then f € Ox , for all x € SN(X(C)).

Proof. — We prove 1) = 2). Let f € K°(X(C)) and x € SN(X(C)),
we consider 77 : X+ — X the seminormalization morphism of X and
zt € X*(C) such that 7+ (z%) = 2. By Theorem 4.21, we have fonl €
C[X*]. Since seminormalization and localization commute, we have f owg' €
Ox+ gt = O}@ and since z € SN(X(C)), we have that Ox , — (’)}’x is
an isomorphism. So f € Ox 5. g

Remark 5.11. — An element in ﬂzeSN(X(C)) Ox , does not always ex-
tend by continuity. One can take the example X = Spec(C[z,y]/(y? +

(2 — 1)z*)) given after Theorem 4.34. We have SN(X(C)) = {(0;0)} =
{z = 0} but the fraction % cannot be continuously extended on X (C).

We can deduce from Proposition 5.10 a classical result (see [18, Propo-
sition 1.7] for example) about seminormalization.

COROLLARY 5.12. — Let X be an affine variety. Then X is seminormal
if and only if SN(X(C)) = X(C).

Proof. — Suppose that X is seminormal, then C[XT] = C[X]. So it is
clear that Ox ; = Ox+ ,+ for all z € X(C). Conversely, suppose that
SN(X(C)) = X(C) and let f € K°(X(C)). Then, by Proposition 5.10, we
have f € (¢ x(c) Ox,« = C[X]. So K°(X(C)) = C[X] and X is seminor-
mal. O

6. Generalization to non-affine varieties.

The goal of this section is to generalize the main results of this paper for
non-necessarily affine varieties.
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A ring extension i : A — B induces a map Spec(i) : Spec(B) — Spec(A),
given by p — (pN A) = i~!(p). For a morphism 7 : ¥ — X between
algebraic varieties over k, we have an associated morphism of sheaves of
rings Ox — m.Oy such that for any open subset U C X it gives a ring
morphism Ox (U) — Oy (n~!(U)) which is injective if and only if 7 is
dominant.

A dominant morphism 7 : Y — X between algebraic varieties over k
is said of finite type (resp. finite, birational, integral) if for any U C X
the ring extension Ox(U) — Oy (r~1(U)) is of finite type (resp. finite,
birational, integral).

Let X be an algebraic variety over k. The normalization X’ of X is an
algebraic variety that comes with a finite birational morphism 7’ : X/ — X
called the normalization morphism such that, for any open subset U C X,
we have Ox/(7~1(U)) = Ox(U)’. We say that X is normal if 7’ is an
isomorphism. A point z € X is said normal if Ox , is integrally closed.

We start by giving the definition of the seminormalization of an algebraic
variety in another. Let 7 : ¥ — X be a dominant morphism between
algebraic varieties over k, then we can define the Ox-module (Ox )7 such
that (Ox)y(U) = (OX(U)):*Oy(U) for each open set U C X. It is shown by
Andreotti and Bombieri in [1] that (Ox )y is quasi-coherent and so, by [11,
Proposition 1.3.1], it corresponds to the structural sheaf of a variety. This
leads to the following definition.

DEFINITION 6.1. — Let m : Y — X be a dominant morphism between
algebraic varieties over k. The seminormalization of X in Y is an alge-
braic variety X;,' over k with a finite birational morphism 71; : X;,' - X
factorizing w such that (77;)*(9)@ = (0x)F.

We call X+ the seminormalization of X in its normalization Y = X'.
We say that X is seminormal in Y (resp. seminormal) if X = X (resp.
X =X+).

DEFINITION 6.2. — Let w : Y — X be an integral morphism between
algebraic varieties over k. We say that 7 is subintegral if 7 is bijective and
if, for all y € Y the field extension k(w(y)) — k(y) is an isomorphism.

Remark 6.3. — The morphism 7 is subintegral if and only if, for all open
set U C X, the ring extension Ox (U) < Oy (7~ 1(U)) is subintegral.

PROPOSITION 6.4. — Let Y =% Z 2% X be a sequence of dominant
morphisms between algebraic varieties over k. Then Z — X is subintegral
if and only if X;r — X factorizes through Z.
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Proof. — For every open set U C X, we have an extension Ox (U) —
Oz(n7H(U)) and, by Theorem 2.7, it is subintegral if and only if we have

-1
Oz (x (V) € Ox (V) (1) = (7). (0x; ) (©).
This inclusion inducing a dominant morphism X;,r — Z, we get the propo-

sition. O

Let X be an algebraic variety over C. Consider a Zariski open set U C X,
a finite number of regular functions f1,..., f,, on U and a number € € R.
Then the sets of the form

V(U; f1,-., fm,6) ={z € U(C) | |filx)| <cfori=1,...,m}

form a basis for the open sets of a topology on X(C) called the strong
topology. If X is affine, then X (C) C C™ for some n € N, and the strong
topology is induced by the Euclidean topology of C".

DEFINITION 6.5. — Let X be an algebraic variety over C and U(C) be
a Z-open set of X(C). Then we write ICg((C)(U((C)) the set of continuous
functions f : U(C) — C for the strong topology, which are regular on a
Z-open Z-dense subset of U(C).

Now that we have a local definition for regulous functions, we define the
sheaf ng( ©)-

PROPOSITION 6.6. — Let X be an algebraic variety over C. The presheaf
defined by

K())((C) : { Zariski-open sets of X(C)}°? — Ring
U(C) — K (o) (U(C))
is a sheaf

Proof. — It is a presheaf because if V(C) C U(C) are Z-open sets of
X (C), we have a restriction morphism

K% c)(U(C)) — K& (o) (V(C))
f— fivo

In order to prove that it is a sheaf, we consider a Z-open set U(C) and an
open cover {U;(C)}; ¢y of U(C). Let {f;}; e 1 be such that f; EICX(C (U;(C))
for all ¢ € I and such that for all 4,5 € I

(f)wic)nu,©) = (f)v©) nu;©)-
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Then we can define the continuous function

f:UC —=cC
x+— fi(z) if x € U;(C).

Moreover, for all ¢ € I, there is a Z-open set V;(C) N U;(C) which is Z-
dense for the induced topology on U;(C), such that f; € Oxc)(Vi(C)). By
Lemma 4.4, we have that | J V;(C) is Z-dense in X (C) and since Ox (¢ is a
sheaf, we get f € Ox(c)(lUVi(C)). Hence f € ICg((C)(X((C)). O

A dominant morphism 7 : Y — X between varieties over C induces
an extension ng((C) — (WC)*K%(C), hence a morphism (Y((C),ICQ,(C)) —
(X((C),ICg(((C)). We now give a generalization of the main results of this
paper, starting with those on subintegrality.

THEOREM 6.7. — Let m : Y — X be a finite morphism between alge-
braic varieties over C. The following properties are equivalent:

1) 7 is subintegral.
2) m, is bijective.
The ringed spaces (Y (C), IC?,(C)) and (X (C), ICg((C)) are isomorphic.

(

(2)

(3)

(4) m. is an homeomorphism for the strong topology.
(5)

(6)

w

5) m. is an homeomorphism for the Zariski topology.
6) 7 is an homeomorphism for the Zariski topology.

Proof. — The equivalences (1) <= (2) <= (5) <= (6) are true for ev-
ery affine open subset of X (C) by Theorem 3.1 and the equivalences (1) <=
(3) <= (4) comes from Proposition 4.10. O

We now get the generalization of Theorem 4.21.

THEOREM 6.8. — Let X be an algebraic variety and n* : X+ — X be
its seminormalization morphism. Then (7, (7m)*) is an isomorphism of

ringed spaces between (X*(C), Ox+(c)) and (X(C), ICS)((C)).

Proof. — By Theorem 6.7, the morphism 7r:f is an homeomorphism for
the Zariski topology. Moreover, we have shown in Theorem 4.21 that, for
all affine open set U(C), we have an isomorphism (7})* : ICg((C)(U((C)) —
(75)«Ox+c)(U(C)). So (xF,(7F)*) is an isomorphism of ringed spaces.

O

One can find a generalization of those results for algebraic varieties over
any algebraically closed field of characteristic zero in [4].
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