Proper actions and weak amenability of classical relatively hyperbolic groups
[Actions propres et moyennabilité faible des groupes relativement hyperboliques classiques]
Annales de l'Institut Fourier, Online first, 31 p.

Gromov introduced a notion of hyperbolicity for discrete groups (and general metric spaces) as an abstraction of the properties of universal covers of closed, negatively curved manifolds and their fundamental groups. The fundamental group of a manifold with pinched negative curvature and a cusp is not hyperbolic, but it is relatively hyperbolic with respect to the cusp subgroup, which has polynomial growth. We introduce a thinning technique which allows to reduce questions about these classical relatively hyperbolic groups to the case of bounded geometry hyperbolic graphs. As applications, we show that such groups admit a proper affine action on an L p -space and are weakly amenable in the sense of Cowling–Haagerup. These results generalize earlier work of G. Yu and N. Ozawa, respectively, from the setting of hyperbolic groups to classical relatively hyperbolic groups.

Gromov a introduit la notion d’hyperbolicité pour les groupes discrets (et les espaces métriques généraux) comme une abstraction des propriétés métriques des revêtement universels de variétés compactes à courbure sectionnelle strictement négative, et de leurs groupes fondamentaux. Le groupe fondamental d’une variété à courbure négative pincée possédant un cusp n’est pas hyperbolique, mais est relativement hyperbolique par rapport au groupe de cusp, lequel est à croissance polynomiale. Nous introduisons une technique d’affinage permettant de ramener l’étude de ces groupes relativement hyperboliques “classiques” à celle de graphes hyperboliques de degré borné. Comme applications, nous démontrons que de tels groupes admettent une action propre par isométries affines sur un espace L p , et sont faiblement moyennables au sens de Cowling–Haagerup. Ces résultats généralisent respectivement les travaux de G. Yu et N. Ozawa, qui avaient démontré ces propriétés pour les groupes hyperboliques.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3737
Classification : 22D55, 20F65
Keywords: Relatively hyperbolic group, Haagerup property, weak amenability
Mots-clés : Groupes relativement hyperboliques, Propriété de Haagerup, moyennabilité faible

Guentner, Erik 1 ; Reckwerdt, Eric 2, 3 ; Tessera, Romain 4

1 Department of Mathematics University of Hawai‘i at Mānoa Honolulu, HI (USA)
2 Institute of Mathematics Polish Academy of Sciences Warsaw (Poland)
3 Current address: Computer Science Department University of Colorado Boulder, CO (USA)
4 Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université de Paris, Paris (France)
@unpublished{AIF_0__0_0_A25_0,
     author = {Guentner, Erik and Reckwerdt, Eric and Tessera, Romain},
     title = {Proper actions and weak amenability of classical relatively hyperbolic groups},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3737},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Guentner, Erik
AU  - Reckwerdt, Eric
AU  - Tessera, Romain
TI  - Proper actions and weak amenability of classical relatively hyperbolic groups
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3737
LA  - en
ID  - AIF_0__0_0_A25_0
ER  - 
%0 Unpublished Work
%A Guentner, Erik
%A Reckwerdt, Eric
%A Tessera, Romain
%T Proper actions and weak amenability of classical relatively hyperbolic groups
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3737
%G en
%F AIF_0__0_0_A25_0
Guentner, Erik; Reckwerdt, Eric; Tessera, Romain. Proper actions and weak amenability of classical relatively hyperbolic groups. Annales de l'Institut Fourier, Online first, 31 p.

[1] Alvarez, Aurélien; Lafforgue, Vincent Actions affines isométriques propres des groupes hyperboliques sur des espaces p , Expo. Math., Volume 35 (2017) no. 1, pp. 103-118 | DOI | Zbl | MR

[2] Bass, Hyman The degree of polynomial growth of finitely generated nilpotent groups, Proc. Lond. Math. Soc. (3), Volume 25 (1972), pp. 603-614 | DOI | MR | Zbl

[3] Bekka, Bachir; de la Harpe, Pierre; Valette, Alain Kazhdan’s Property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008 | DOI | Zbl

[4] Benyamini, Yoav; Lindenstrauss, Joram Geometric nonlinear functional analysis. Vol. 1, Colloquium Publications, 48, American Mathematical Society, 2000 | Zbl | MR

[5] Bowditch, Brian H. Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (2012) no. 3, 1250016, 66 pages | DOI | MR | Zbl

[6] Bożejko, Marek; Picardello, Massimo A. Weakly amenable groups and amalgamated products, Proc. Am. Math. Soc., Volume 117 (1993) no. 4, pp. 1039-1046 | DOI | MR | Zbl

[7] Bridson, Martin R.; Haefliger, André Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999 | Zbl | DOI | MR

[8] Brown, Nathanial P.; Ozawa, Narutaka C * -algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, 2008 | DOI | MR | Zbl

[9] De Cannière, Jean; Haagerup, Uffe Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Am. J. Math., Volume 107 (1985) no. 2, pp. 455-500 | DOI | MR | Zbl

[10] Chatterji, Indira; Dahmani, François Proper actions on p spaces for relatively hyperbolic groups, Ann. H. Lebesgue, Volume 3 (2020), pp. 35-66 | DOI | MR | Zbl

[11] Cowling, Michael; Haagerup, Uffe Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math., Volume 96 (1989) no. 3, pp. 507-549 | MR | Zbl | DOI

[12] Dahmani, François; Yaman, Aslı Bounded geometry in relatively hyperbolic groups, New York J. Math., Volume 11 (2005), pp. 89-95 | MR | Zbl

[13] Farb, Benson Relatively hyperbolic groups, Geom. Funct. Anal., Volume 8 (1998) no. 5, pp. 810-840 | DOI | Zbl | MR

[14] Greenleaf, Frederick P. Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., 1969 | Zbl | MR

[15] Gromov, Mikhael L. Groups of polynomial growth and expanding maps, Publ. Math., Inst. Hautes Étud. Sci., Volume 53 (1981), pp. 53-73 | DOI | MR | Zbl | Numdam

[16] Gromov, Mikhael L. Hyperbolic Groups, Essays in Group Theory (Gersten, Stephen M., ed.) (Mathematical Sciences Research Institute Publications), Volume 8, Springer, 1987, pp. 75-263 | DOI | Zbl

[17] Groves, Daniel; Manning, Jason Fox Dehn filling in relatively hyperbolic groups, Isr. J. Math., Volume 168 (2008) no. 1, pp. 317-429 | MR | DOI | Zbl

[18] Haagerup, Uffe Group C * -algebras without the completely bounded approximation property, J. Lie Theory, Volume 26 (2016) no. 3, pp. 861-887 | MR | Zbl

[19] Mineyev, Igor Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal., Volume 11 (2001) no. 4, pp. 807-839 | DOI | MR | Zbl

[20] Naor, Assaf; Peres, Yuval Embeddings of discrete groups and the speed of random walks, Int. Math. Res. Not., Volume 2008 (2008), rnn076, 34 pages | DOI | MR | Zbl

[21] Nowak, Piotr W.; Yu, Guoliang Large scale geometry, EMS Textbooks in Mathematics, European Mathematical Society, 2012 | DOI | MR | Zbl

[22] Osin, Denis V. Asymptotic dimension of relatively hyperbolic groups, Int. Math. Res. Not., Volume 35 (2005), pp. 2143-2161 | Zbl | DOI | MR

[23] Osin, Denis V. Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Memoirs of the American Mathematical Society, 843, American Mathematical Society, 2006 | DOI | MR | Zbl

[24] Ozawa, Narutaka Weak amenability of hyperbolic groups, Groups Geom. Dyn., Volume 2 (2008) no. 2, pp. 271-280 | DOI | MR | Zbl

[25] Roe, John Hyperbolic groups have finite asymptotic dimension, Proc. Am. Math. Soc., Volume 133 (2005) no. 9, pp. 2489-2490 | DOI | MR | Zbl

[26] Yu, Guoliang Hyperbolic groups admit proper affine isometric actions on l p -spaces, Geom. Funct. Anal., Volume 15 (2005) no. 5, pp. 1144-1151 | DOI | MR | Zbl

Cité par Sources :