[Actions propres et moyennabilité faible des groupes relativement hyperboliques classiques]
Gromov introduced a notion of hyperbolicity for discrete groups (and general metric spaces) as an abstraction of the properties of universal covers of closed, negatively curved manifolds and their fundamental groups. The fundamental group of a manifold with pinched negative curvature and a cusp is not hyperbolic, but it is relatively hyperbolic with respect to the cusp subgroup, which has polynomial growth. We introduce a thinning technique which allows to reduce questions about these classical relatively hyperbolic groups to the case of bounded geometry hyperbolic graphs. As applications, we show that such groups admit a proper affine action on an -space and are weakly amenable in the sense of Cowling–Haagerup. These results generalize earlier work of G. Yu and N. Ozawa, respectively, from the setting of hyperbolic groups to classical relatively hyperbolic groups.
Gromov a introduit la notion d’hyperbolicité pour les groupes discrets (et les espaces métriques généraux) comme une abstraction des propriétés métriques des revêtement universels de variétés compactes à courbure sectionnelle strictement négative, et de leurs groupes fondamentaux. Le groupe fondamental d’une variété à courbure négative pincée possédant un cusp n’est pas hyperbolique, mais est relativement hyperbolique par rapport au groupe de cusp, lequel est à croissance polynomiale. Nous introduisons une technique d’affinage permettant de ramener l’étude de ces groupes relativement hyperboliques “classiques” à celle de graphes hyperboliques de degré borné. Comme applications, nous démontrons que de tels groupes admettent une action propre par isométries affines sur un espace , et sont faiblement moyennables au sens de Cowling–Haagerup. Ces résultats généralisent respectivement les travaux de G. Yu et N. Ozawa, qui avaient démontré ces propriétés pour les groupes hyperboliques.
Révisé le :
Accepté le :
Première publication :
Keywords: Relatively hyperbolic group, Haagerup property, weak amenability
Mots-clés : Groupes relativement hyperboliques, Propriété de Haagerup, moyennabilité faible
Guentner, Erik 1 ; Reckwerdt, Eric 2, 3 ; Tessera, Romain 4
@unpublished{AIF_0__0_0_A25_0, author = {Guentner, Erik and Reckwerdt, Eric and Tessera, Romain}, title = {Proper actions and weak amenability of classical relatively hyperbolic groups}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3737}, language = {en}, note = {Online first}, }
TY - UNPB AU - Guentner, Erik AU - Reckwerdt, Eric AU - Tessera, Romain TI - Proper actions and weak amenability of classical relatively hyperbolic groups JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3737 LA - en ID - AIF_0__0_0_A25_0 ER -
%0 Unpublished Work %A Guentner, Erik %A Reckwerdt, Eric %A Tessera, Romain %T Proper actions and weak amenability of classical relatively hyperbolic groups %J Annales de l'Institut Fourier %D 2025 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3737 %G en %F AIF_0__0_0_A25_0
Guentner, Erik; Reckwerdt, Eric; Tessera, Romain. Proper actions and weak amenability of classical relatively hyperbolic groups. Annales de l'Institut Fourier, Online first, 31 p.
[1] Actions affines isométriques propres des groupes hyperboliques sur des espaces , Expo. Math., Volume 35 (2017) no. 1, pp. 103-118 | DOI | Zbl | MR
[2] The degree of polynomial growth of finitely generated nilpotent groups, Proc. Lond. Math. Soc. (3), Volume 25 (1972), pp. 603-614 | DOI | MR | Zbl
[3] Kazhdan’s Property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008 | DOI | Zbl
[4] Geometric nonlinear functional analysis. Vol. 1, Colloquium Publications, 48, American Mathematical Society, 2000 | Zbl | MR
[5] Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (2012) no. 3, 1250016, 66 pages | DOI | MR | Zbl
[6] Weakly amenable groups and amalgamated products, Proc. Am. Math. Soc., Volume 117 (1993) no. 4, pp. 1039-1046 | DOI | MR | Zbl
[7] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999 | Zbl | DOI | MR
[8] -algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, 2008 | DOI | MR | Zbl
[9] Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Am. J. Math., Volume 107 (1985) no. 2, pp. 455-500 | DOI | MR | Zbl
[10] Proper actions on spaces for relatively hyperbolic groups, Ann. H. Lebesgue, Volume 3 (2020), pp. 35-66 | DOI | MR | Zbl
[11] Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math., Volume 96 (1989) no. 3, pp. 507-549 | MR | Zbl | DOI
[12] Bounded geometry in relatively hyperbolic groups, New York J. Math., Volume 11 (2005), pp. 89-95 | MR | Zbl
[13] Relatively hyperbolic groups, Geom. Funct. Anal., Volume 8 (1998) no. 5, pp. 810-840 | DOI | Zbl | MR
[14] Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., 1969 | Zbl | MR
[15] Groups of polynomial growth and expanding maps, Publ. Math., Inst. Hautes Étud. Sci., Volume 53 (1981), pp. 53-73 | DOI | MR | Zbl | Numdam
[16] Hyperbolic Groups, Essays in Group Theory (Gersten, Stephen M., ed.) (Mathematical Sciences Research Institute Publications), Volume 8, Springer, 1987, pp. 75-263 | DOI | Zbl
[17] Dehn filling in relatively hyperbolic groups, Isr. J. Math., Volume 168 (2008) no. 1, pp. 317-429 | MR | DOI | Zbl
[18] Group -algebras without the completely bounded approximation property, J. Lie Theory, Volume 26 (2016) no. 3, pp. 861-887 | MR | Zbl
[19] Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal., Volume 11 (2001) no. 4, pp. 807-839 | DOI | MR | Zbl
[20] Embeddings of discrete groups and the speed of random walks, Int. Math. Res. Not., Volume 2008 (2008), rnn076, 34 pages | DOI | MR | Zbl
[21] Large scale geometry, EMS Textbooks in Mathematics, European Mathematical Society, 2012 | DOI | MR | Zbl
[22] Asymptotic dimension of relatively hyperbolic groups, Int. Math. Res. Not., Volume 35 (2005), pp. 2143-2161 | Zbl | DOI | MR
[23] Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Memoirs of the American Mathematical Society, 843, American Mathematical Society, 2006 | DOI | MR | Zbl
[24] Weak amenability of hyperbolic groups, Groups Geom. Dyn., Volume 2 (2008) no. 2, pp. 271-280 | DOI | MR | Zbl
[25] Hyperbolic groups have finite asymptotic dimension, Proc. Am. Math. Soc., Volume 133 (2005) no. 9, pp. 2489-2490 | DOI | MR | Zbl
[26] Hyperbolic groups admit proper affine isometric actions on -spaces, Geom. Funct. Anal., Volume 15 (2005) no. 5, pp. 1144-1151 | DOI | MR | Zbl
Cité par Sources :