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PROPER ACTIONS AND WEAK AMENABILITY OF
CLASSICAL RELATIVELY HYPERBOLIC GROUPS

by Erik GUENTNER,
Eric RECKWERDT & Romain TESSERA (*)

Abstract. — Gromov introduced a notion of hyperbolicity for discrete groups
(and general metric spaces) as an abstraction of the properties of universal covers
of closed, negatively curved manifolds and their fundamental groups. The funda-
mental group of a manifold with pinched negative curvature and a cusp is not
hyperbolic, but it is relatively hyperbolic with respect to the cusp subgroup, which
has polynomial growth. We introduce a thinning technique which allows to reduce
questions about these classical relatively hyperbolic groups to the case of bounded
geometry hyperbolic graphs. As applications, we show that such groups admit
a proper affine action on an Lp-space and are weakly amenable in the sense of
Cowling–Haagerup. These results generalize earlier work of G. Yu and N. Ozawa,
respectively, from the setting of hyperbolic groups to classical relatively hyperbolic
groups.

Résumé. — Gromov a introduit la notion d’hyperbolicité pour les groupes dis-
crets (et les espaces métriques généraux) comme une abstraction des propriétés
métriques des revêtement universels de variétés compactes à courbure sectionnelle
strictement négative, et de leurs groupes fondamentaux. Le groupe fondamental
d’une variété à courbure négative pincée possédant un cusp n’est pas hyperbo-
lique, mais est relativement hyperbolique par rapport au groupe de cusp, lequel
est à croissance polynomiale. Nous introduisons une technique d’affinage permet-
tant de ramener l’étude de ces groupes relativement hyperboliques “classiques” à
celle de graphes hyperboliques de degré borné. Comme applications, nous démon-
trons que de tels groupes admettent une action propre par isométries affines sur
un espace Lp, et sont faiblement moyennables au sens de Cowling–Haagerup. Ces
résultats généralisent respectivement les travaux de G. Yu et N. Ozawa, qui avaient
démontré ces propriétés pour les groupes hyperboliques.
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1. Introduction

Many properties of hyperbolic groups seem natural to extend to relatively
hyperbolic groups. A group is hyperbolic if it acts properly and cocompactly
on a hyperbolic space. Roughly speaking, a group is hyperbolic relative to a
subgroup if, modulo that subgroup, it acts properly on a hyperbolic space.
See Section 2 for a precise definition.

Unfortunately, many properties of hyperbolic graphs (and metric spaces)
rely on a bounded geometry assumption in their proofs. The most relevant
examples for us are the existence of proper affine actions of hyperbolic
groups on ℓp-spaces [26], and weak amenability [24], and each of these
properties will be discussed below. Another example is finite asymptotic
dimension [25]. The hyperbolic spaces usually introduced to study relative
hyperbolicity do not have bounded geometry, and some are not even locally
finite. In generalizing results such as those above to the relatively hyperbolic
setting a key step is to develop an appropriate substitute for bounded
geometry. In the case of finite asymptotic dimension, for example, see [22].

The concept of a relatively hyperbolic group was originally introduced
by Gromov as a general setup which included non-uniform lattices in rank
one simple Lie groups and, more generally, fundamental groups of cusped
manifolds with pinched negative curvature. In these cases the parabolic,
or cusp subgroups are nilpotent. Taking this as motivation, we shall call a
group that is relatively hyperbolic with respect to subgroups of polynomial
growth a classical relatively hyperbolic group. We shall see that this class
is somehow easier to work with due to the following fact: a Cayley graph of
a classical relatively hyperbolic group G can be embedded into a bounded
geometry hyperbolic graph such that each coset of a parabolic subgroup lies
at bounded distance from a horosphere. See Section 3, especially Propo-
sition 3.7, and compare to a related result of Dahmani and Yaman [12].
This hyperbolic graph, and its construction, would therefore seem per-
fectly suited to allow for generalizing properties of hyperbolic groups to
classical relatively hyperbolic groups. However, a significant defect of this
graph is that it is does not (and indeed cannot) admit an action of G.
We do, however, have an action of G on the space of all such graphs, and
our main result in this paper is to show that this space can be equipped
with a G-invariant probability measure. See Proposition 3.6.

While we believe these ideas will be useful for future applications, in
the present work we shall use them to adapt two results from the set-
ting of hyperbolic to classical relatively hyperbolic groups: the first, due to
Yu [26], and building on a key averaging technique due to Mineyev [19],
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CLASSICAL RELATIVELY HYPERBOLIC GROUPS 3

concerns proper affine actions; the second, due to Ozawa [24] concerns weak
amenability. Here then are our results.

Theorem A. — Let G be a finitely generated discrete group which is
hyperbolic relative to a subgroup P of polynomial growth. Then G admits a
(metrically) proper action on a mixed ℓp–ℓ1-space, and also on an Lp-space,
for sufficiently large p.

Theorem B. — A discrete group G as in the previous theorem is weakly
amenable.

After reviewing basic facts about relative hyperbolicity, essentially fol-
lowing the treatment of Groves and Manning [17] we introduce thinnings in
Section 3. This is the technical heart of the paper. The final two sections are
devoted to the applications. In Section 4 we discuss proper affine actions
on Lp-spaces. Some time after our results were announced, Chatterji and
Dahmani proved, using different techniques, a more general permanence re-
sult for proper affine actions on Banach spaces which does not require the
“classical” hypothesis [10]. In Section 5 we discuss weak amenability. Very
little is known about permanence of weak amenabiity and, in particular,
it is not known whether the free product of two weakly amenable groups
is itself weakly amenable. Our application applies to the free product of a
hyperbolic group with, for example, Zd, and to our knowledge is the first
result of this kind.

Acknowledgments

The authors are grateful for the hospitality extended by their home in-
stitutions during visits of the third author to the University of Hawai‘i and
of the first author to the Université Paris Sud.

2. Relative hyperbolicity

We shall work in the setting of locally finite graphs. To establish notation,
let Γ be a (simplicial) graph with vertex set V (Γ) and edge set E(Γ); we
shall denote these simply by V and E when no confusion can arise. A graph
is locally finite if each vertex belongs to only finitely many edges; if there is a
uniform bound on the number of edges to which a vertex belongs the graph
has bounded geometry. We shall equip a graph (or rather, its vertex set)
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with the edge path distance in which the distance between two vertices is
the smallest number of edges on an edge path connecting them. A geodesic
is an edge path which realizes the distance between its endpoints.

Gromov introduced a notion of hyperbolicity for general metric spaces
[16]. There are many equivalent definitions, and in our context a conve-
nient choice is the definition in terms of thin triangles: a geodesic trian-
gle in a graph Γ is δ-thin if each side of the triangle is contained in the
δ-neighborhood of the union of the other two sides; and the graph Γ is
hyperbolic if there exists δ > 0 such that every geodesic triangle in Γ is
δ-thin.

Let now G be a finitely generated discrete group, with fixed (finite, sym-
metric) generating set S. The Cayley graph of G (with respect to the
generators S) is the graph Γ with vertex set G and in which vertices repre-
sented by group elements g and h span an edge precisely when g−1h belongs
to S. The group G is hyperbolic if its Cayley graph is hyperbolic; since hy-
perbolicity (for graphs) is a quasi-isometry invariant this is well-defined
independent of the choice of generating set.

In this paper, our interest is in relative hyperbolicity, also introduced
by Gromov. The basic setting here is that of a finitely generated group G

together with a finitely generated subgroup P of G. The subgroup P is the
peripheral subgroup. (It is possible to consider a finite collection of periph-
eral subgroups, but for simplicity we shall restrict attention to the case of
a single peripheral.) Very roughly speaking, G is relatively hyperbolic with
respect to P if the geometry of G between or transverse to the cosets of P

is hyperbolic.
As with hyperbolicity, the precise definition of relative hyperbolicity

admits a great many variants; the original definition of Gromov [16] has
been reinterpreted by Farb, Bowditch and Osin, for example [5, 13, 23].
We shall work with a characterization given by Groves and Manning [17].
To formulate the definition, we fix finite, symmetric generating sets S1 of
P and S of G such that S1 ⊂ S and such that S \ S1 does not contain any
elements of P . Denote the Cayley graph of G with respect to S by Γ. The
force of the above setup is that the Cayley graph of P with respect to S1
appears as the full subgraph of Γ on the subset P ⊂ V (Γ). Similarly, the
full subgraph on each (left) coset t of P is isomorphic to the Cayley graph
of P ; (left) multiplication by any element of the coset gives an isomorphism.
Then, G is hyperbolic relative to P if the cusped space obtained from Γ by
attaching combinatorial horoballs to these copies of the Cayley graph of P

ANNALES DE L’INSTITUT FOURIER



CLASSICAL RELATIVELY HYPERBOLIC GROUPS 5

is hyperbolic in the usual sense. The balance of the section is dedicated to
the precise definitions.

2.1. Combinatorial horoballs

Let Γ be a (typically infinite) graph with vertex set V and edge set E.
The combinatorial horoball over Γ, denoted B(Γ) or simply B when no
confusion can arise, is the graph with:

(1) vertex set V (B) = V × N, and
(2) edge set E(B) with two kinds of edges:

(a) vertical edges: (v, n) ∼ (v, n + 1) for all v ∈ V and n ∈ N
(b) horizontal edges: (v, n) ∼ (w, n) if dΓ(v, w) ⩽ 2n.

Vertices of the form (v, n), together with the edges as in (2b), comprise
level n; this is the full subgraph of B on the vertices of the form (v, n).
With this terminology, note that the 0th-level is a copy of the original
graph Γ and the remaining levels are copies of Γ with extra edges. For a
drawing of a piece of the combinatorial horoball over (the Cayley graph of)
Z see Figure 2.1 below.

Figure 2.1. The combinatorial horoball over Z.

Clearly, if Γ is locally finite so is the combinatorial horoball B. Further,
if Γ is infinite and has bounded geometry, B is again locally finite but does
not have bounded geometry; the valence of vertices increases with their
level.

Metric balls in a bounded geometry graph have (at most) exponential
growth. While not true for general locally finite graphs, we shall require

TOME 0 (0), FASCICULE 0



6 Erik GUENTNER, Eric RECKWERDT & Romain TESSERA

the following simple result concerning the growth of metric balls in a combi-
natorial horoball. For the statement, denote the (closed) r-ball with center v

by Nr(v); we shall employ this notation consistently throughout and, when
confusion could arise, shall indicate with a superscript which graph is under
consideration. Recall that a graph has polynomial growth if #Nr(v) ⩽ Krk,
for some k ∈ N and K > 0, independent of the center v.

Proposition 2.1. — If Γ has polynomial growth, then the combinato-
rial horoball B has exponential growth for balls centered on level 0: there
exist k ∈ N and C > 0 such that for every vertex (v, 0) on level 0 we have
#NB

r (v, 0) ⩽ Ckr.

Proof. — We have that NB
r (v, 0) ⊂ NΓ

2r (v) × {0, 1, . . . , r}, which has
cardinality at most #NΓ

2r (v) · (r + 1) ⩽ C(r + 1)(2r)k ⩽ C ′(2k + 1)r. □

2.2. The Cusped Space

We return now to our group G and subgroup P , with fixed (finite, sym-
metric) generating sets S and S1 as above. We then have the Cayley graph
Γ = Γ(G) and, as remarked earlier, the full subgraph of Γ on the vertices
in a coset t of P is isomorphic to the Cayley graph of P . The cusped space
is defined by attaching a combinatorial horoball B(t) to Γ over the coset t.
Explicitly, the cusped space is the graph X with

(1) vertex set G × N, and
(2) edge set with two kinds of edges: horizontal edges

(a) (g, 0) ∼ (h, 0) if g−1h ∈ S, and
(b) (g, n) ∼ (h, n) if g−1h is the product of (at most) 2n generators

in S1;
(c) and vertical edges (g, n) ∼ (g, n + 1) for all n ∈ N.

Remark 2.2. — The full subgraph of X on the vertices at level 0 is the
Cayley graph Γ of G. On levels n > 0, if (g, n) ∼ (h, n) then g and h are
in the same coset of P .

Here then is our working definition of relative hyperbolicity [17]. As was
the case with hyperbolicity, this is independent of the choice of generating
sets.

Definition 2.3 (Groves–Manning). — A finitely generated group G is
hyperbolic relative to a finitely generated subgroup P if the associated
cusped space X is hyperbolic.

ANNALES DE L’INSTITUT FOURIER
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3. Thinning the cusped space

While is natural to exploit the hyperbolicity of the cusped space (or
other associated hyperbolic spaces) when studying relatively hyperbolic
groups, the lack of bounded geometry can cause difficulties. In this section
we introduce a thinning technique which enables us, in the classical case in
which the peripherals have polynomial growth, to treat the cusped space
as though it had bounded geometry. While we hope the thinning technique
will be useful elsewhere, we shall apply it in the following sections to the
problem of existence of proper actions and to weak amenability.

The problem that we are facing is that we can discretize the space to
have bounded geometry, but cannot preserve the action of the group at the
same time. The solution will be to organize the space of thinnings into a
compact space.

3.1. Thinning a horoball

Let Γ be a locally finite graph and B = B(Γ) its combinatorial horoball.
We shall be working with subsets and subgraphs of B. Each subgraph has
its own graph distance. We shall conflate the full subgraph on a subset with
the subset itself, and in this way each subset has its own (graph) distance as
well. Recall that we denote the closed r-ball in B with center v by NB

r (v),
and similarly for subgraphs, and subsets.

Definition 3.1. — Fix α ∈ (0, 1] and d, C ∈ N. A subset T of the vertex
set of B is an (α, d, C)-thinning of B if the following conditions hold:

(1) for every x ∈ T we have #(NB
1 (x) ∩ T ) ⩽ d + 1;

(2) for every y ∈ B we have NB
C (y) ∩ T ̸= ∅; and

(3) for every x ∈ T and r ∈ N, we have T ∩ NB
αr(x) ⊂ NT

r (x).
By convention a thinning includes all vertices on level 0. When the con-
stants are clear from context, we say simply that T is a thinning of B. We
denote the (possibly empty) set of thinnings of B by T (B).

Formally, a thinning T is a subset of the vertex set of B. As described
above, to interpret metric notions we regard a thinning also as a full sub-
graph of B so that it has its own distance (which is not the subspace dis-
tance inherited from B). By this device, all three conditions in the defintion
can be interpreted metrically.

TOME 0 (0), FASCICULE 0



8 Erik GUENTNER, Eric RECKWERDT & Romain TESSERA

Remark 3.2. — The above conditions on a thinning imply:
(1) T has bounded geometry, with the valence of each vertex bounded

by d;
(2) T is C-coarsely dense in B; and
(3) the inclusion T ↪→ B is a quasi-isometric embedding, and in fact

αdT (x, y) ⩽ dB(x, y) ⩽ dT (x, y), ∀ x, y ∈ T.

The first issue we need to address is the existence of thinnings. The rough
idea of the proof of Proposition 3.3 is already clear in the following simple
case. In Figure 3.1 below we show a piece of a thinning of (the Cayley graph
of) Z. The blue vertices belong to the thinning; these include every vertex
on level 0, every second on level 1, every fourth on level 2, etc. Together
with the blue edges the thinning is a full subgraph of the combinatorial
horoball. In the general case, the vertices of the thinning T will come from
a decreasing sequence of nets in Γ. For the statement recall that a graph
has strict polynomial growth if there exist constants D ∈ N and K ⩾ 1,
such that

K−1rD ⩽ #NΓ
r (w) ⩽ KrD,

for every r ⩾ 1, independent of the center w. We call D the degree of
growth of Γ.

Figure 3.1. Thinning the combinatorial horoball over Z.

Proposition 3.3. — Let Γ be an (infinite) graph of strict polynomial
growth and let B be the combinatorial horoball over Γ. There exists d0 ∈ N,

ANNALES DE L’INSTITUT FOURIER
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depending on the growth function of Γ, such that the space of (α, d, C)-
thinnings of B is non-empty, for every α ⩽ 1/195, every d ⩾ d0 and every
C ⩾ 1.

Proof. — Let Γ be as in the statement. The general statement follows
immediately once we construct a (1/195, d0, 1)-thinning, for some d0 de-
pending on the growth of Γ. We shall construct our thinning from a de-
creasing sequence of subsets of Γ. Define these as follows: let Γ0 = Γ; and
for every n ⩾ 1, let Γn be a maximal 2n-separated subset of Γn−1. Our
thinning T is now defined as follows:

T =
⊔

Γn−5 × {n}.

In other words, the set Γn−5 comprises the vertex set of T at level n. (By
convention Γn = Γ when n is negative.) As a full subgraph of B, vertices
of T at level n are connected by a (horizontal) edge when their distance in
Γ is at most 2n.

Before verifying that T satisfies the three conditions in Definition 3.1 we
record a coarse density property of the Γn that we require. By maximality,
every Γn−1-ball of radius 2n contains at least one element of Γn. In other
words, Γn is 2n-coarsely dense in Γn−1:

Γn−1 ⊂
⋃

x∈Γn

NΓ(x, 2n),

where, for this proof only, we write NΓ(x, 2n) for the ball in Γ of radius
2n and center x. A simple induction shows then that Γn is 6 · 2n-coarsely
dense in Γ:

(†) Γ ⊂
⋃

x∈Γn

NΓ(x, 6 · 2n).

We can now check that T satisfies the conditions of Definition 3.1. The
second condition (with C = 1) is immediate from (†), which shows that
every z ∈ B at level n is joined by an edge in B to an element x ∈ T (at
the same level); indeed any x ∈ Γn−5 at distance at most 6 · 2n−5 ⩽ 2n

from z works.
The first condition, regarding the valence, follows from a doubling prop-

erty of Γ. Fix a vertex z ∈ T at level n. If another vertex x ∈ T at level n

is connected by an edge to z then the distance in Γ between x and z is at
most 2n and we have

NΓ(x, 2n−6) ⊂ NΓ(z, 2n + 2n−6) ⊂ NΓ(z, 2n+1).
TOME 0 (0), FASCICULE 0
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On the other hand, if x and y ∈ T are distinct vertices at level n then, by
separatedness, their distance in Γ is at least 2n−5 so that

NΓ(x, 2n−6) ∩ NΓ(y, 2n−6) = ∅.

Put together we see that the “horizontal valence” of z is not more than
the maximum number of disjoint Γ-balls of radius 2n−6 a Γ-ball of radius
2n+1 can contain. But this is easy to bound using strict polynomial growth.
Indeed, suppose D is the degree of growth of Γ. Counting points, we see
that a Γ-ball of radius 2n+1 cannot contain more than 128DK2 disjoint
balls of radius 2n−6. Taking into account the vertical edges, the valence of
T is at most d0 = 128DK2 + 2.

Finally, we turn to the third condition. We must show that for vertices
x, y ∈ T we have that

dT (x, y) ⩽ 195 · dB(x, y).

For this, let k = dB(x, y) and consider a geodesic (of length k) in B con-
necting x and y. By the above, every vertex of this geodesic is at distance
at most 1 in B from a vertex of T . Replacing them with these new vertices
we obtain a sequence of vertices in T ,

x = t0, . . . , tk = y,

with the property that the distance in B between any two consecutive
vertices is at most 3. It therefore suffices to show the following: if two
vertices t and t′ ∈ T are such that dB(t, t′) ⩽ 3 then dT (t, t′) ⩽ 195.
Exchanging t and t′ if necessary, we may assume that t is a vertex on
level n, while t′ is on level n′ and n′ − 3 ⩽ n ⩽ n′. Since Γi is a decreasing
sequence, every vertical edge in B from a vertex of T towards a lower level
is contained in T . It follows that t′ is at distance at most 3 in T from
a vertex s ∈ T at level n, and we are therefore reduced to showing the
following: if vertices s and t ∈ T are both on level n and dB(s, t) ⩽ 6 then
dT (s, t) ⩽ 192. Writing s = (g, n) and t = (h, n) for g and h ∈ Γ, it follows
easily that dΓ(g, h) ⩽ 6 · 2n+3 = 192 · 2n−2. Consider a sequence of vertices
in Γ,

g = g0, . . . , gq = h,

such that dΓ(gi, gi+1) ⩽ 2n−2, and q ⩽ 192. By construction, g0 and gq

belong to Γn−5. Using (†) again, choose for each of the remaining gi a
ti ∈ Γn−5 at a distance at most 6 · 2n−5. From the triangle inequality
we see

dΓ(ti, ti+1) ⩽ 6 · 2n−5 + 2n−2 + 6 · 2n−5 = 20 · 2n−5 ⩽ 2n,

ANNALES DE L’INSTITUT FOURIER
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so that every two consecutive ti are joined by an edge in T . The resulting
path t0, . . . , tq shows that dT (s, t) ⩽ 192 and we are done. □

Henceforth, by an appropriate choice of constants we shall mean a choice
of α > 0 and d, C ∈ N for which the space T (B) of (α, d, C)-thinnings is
non-empty. We shall topologize the (non-empty) set T (B) as a subspace of
the collection of all subsets of (the vertex set of) B. A convenient description
of this topology is that a basic open neighborhood of a subset Z ⊂ B is

(∗) UF (Z) = {Y ⊂ B : Y ∩ F = Z ∩ F},

where F is a finite subset of B.

Proposition 3.4. — For each appropriate choice of constants the (non-
empty) set T (B) of (α, d, C)-thinnings of B is compact.

Proof. — The space of all subsets of B is compact in the above topol-
ogy; indeed, upon identification of the power set of B with the product
Π{0, 1} (indexed over B) in the obvious way, the topology above is the
infinite product topology. So, it suffices to see that T (B) is a closed sub-
set of this space. We shall check that the complement of each condition in
Definition 3.1 is open.

For condition (1), let T be a subset of B and suppose there exists an
x ∈ T such that #(NB

1 (x)∩T ) > d+1; then the same holds for every subset
belonging to the open neighborhood of T determined by the finite subset
NB

1 (x) ⊂ B according to (∗). For condition (2) we suppose instead that
there exists a y ∈ B such that NB

C (y)∩T = ∅; then the same is true for every
subset belonging to the open neighborhood of T determined by the finite
subset NB

C (y) ⊂ B. And finally for condition (3) we suppose there exists
an x, y ∈ T and r ∈ N such that y ∈ NB

αr(x) ⊂ NB
r (x), but y /∈ NT

r (x);
then the same is true for every element of the open neighborhood of T

determined by the finite subset NB
r (x) ⊂ B. □

Suppose now that P is a group of polynomial growth, that Γ is the Cay-
ley graph of P with respect to a fixed (finite, symmetric) generating set,
and that B = B(Γ) is the combinatorial horoball. It follows from Gromov’s
polynomial growth theorem [15] and earlier work of Bass [2] that P auto-
matically has strict polynomial growth (there is no elementary proof of this
available). Thus we have access to Proposition 3.3 and the space T (B) of
(α, d, C)-thinnings is non-empty, for appropriate choice of constants. In this
setting P acts on B by graph automorphisms, with p ∈ P sending (q, n) to
(pq, n). We obtain a continuous action on the space of subsets of B which
preserves T (B). Since P has polynomial growth it is amenable, and T (B)

TOME 0 (0), FASCICULE 0



12 Erik GUENTNER, Eric RECKWERDT & Romain TESSERA

admits a P -invariant measure; this is a direct consequence of the fixed point
property (characterization) of amenable groups, see [14, Section 3.3].

Proposition 3.5. — For each appropriate choice of constants, the non-
empty compact space T (B) of (α, d, C)-thinnings of B admits a P -invariant
probability measure. We shall denote one such measure by ν.

3.2. Thinning the cusped space

We return to our original setting: G is a finitely generated group, rela-
tively hyperbolic with respect to a finitely generated subgroup P of poly-
nomial growth; S1 ⊂ S are (finite, symmetric) generating sets of P and G,
respectively, as above. Recall that the associated cusped space X was con-
structed by attaching to the Cayley graph of G a combinatorial horoball
B(t) over each coset t of P . Building on the construction of T (B) in the pre-
vious section, we shall construct a space T (X) of thinnings of the cusped
space X, and equip it with a G-action and G-invariant probability measure.
Essentially, a thinning of X is obtained by replacing the horoballs attached
over the cosets of P by thinned horoballs. Formally then, we define

T (X) =
∏

t∈G/P

T (B(t)).

We equip T (X) with the infinite product topology, in which it is compact
(and non-empty for each appropriate choice of constants).

As for the probability measure, we should like to use the infinite prod-
uct of the measure ν of the previous section with itself. Denote by B the
combinatorial horoball over the Cayley graph of P , and recall that ν is
a P -invariant probability measure on T (B). For each coset t ∈ G/P we
identify B ∼= B(t) and T (B) ∼= T (B(t)) using multiplication by an ele-
ment g ∈ t and we consider the push-forward measure νt = g · ν. This is
independent of the choice of g ∈ t: if g1 ∈ t is another choice we have

g1 · ν = g
(
g−1g1

)
· ν = g · ν,

where we use that ν is P -invariant and that g−1g1 ∈ P . Now the infinite
product ⊗νt is a probability measure on T (X), which we denote µ.

Here then is the first result we require on the space of thinnings of the
cusped space.

Proposition 3.6. — The Borel measure µ on T (X) is G-invariant.

ANNALES DE L’INSTITUT FOURIER
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To understand the statement, G acts on T (X) through its action on X:
an element T ∈ T (X) is a family of thinnings Tt ∈ T (B(t)) of the cosets t;
in particular the Tt are a family of (disjoint) subsets of X; multiplication
by an element g ∈ G yields another such family.

For the proof, we shall describe the action more concretely. Selecting
coset representatives provides us with “coordinates” on T (X). Precisely,
if gt ∈ t are coset representatives we have

(‡)
∏

t∈G/P

T (B) −→ T (X) =
∏

t∈G/P

T (B(t)), (Tt)t 7−→ (gtTt)t,

where now the thinning Tt ∈ T (B) is translated by gt to a thinning gtTt ∈
T (B(t)). Written in these coordinates the action of an element g ∈ G is
given by the associated permutation of the cosets, followed with rotation
by elements of P within the individual cosets. Precisely, if s and t are cosets
and g · s = t then the composition

P −→ s −→ t −→ P

is simply multiplication by p(g, s) = g−1
t ggs ∈ P ; here the first and third

maps identify the cosets s and t with P by multiplication with the appro-
priate coset representative (or its inverse), and the middle map is multi-
plication by g. In terms of the coordinates (‡) then, g acts on the infinite
product on the left according to

(††) (g · T )t = p(g, s)Ts, s = g−1 · t,

in other words as multiplication by p(g, s) ∈ P from the factor correspond-
ing to s to that corresponding to t.

Proof. — Given the discussion above this is essentially obvious: µ is pre-
cisely the push forward of the infinite product measure ⊗ν under the coordi-
nate map (‡) and we have described the action in terms of these coordinates.
The measure ⊗ν is determined by its values on the cylinder sets:

⊗ν(U) =
∏

t∈G/P

ν(Ut), U =
∏

t∈G/P

Ut ;

here each Ut is an open set in T (B) and for all but finitely many t we
have Ut = T (B), so that all but finitely many terms in the product on the
left are = 1. It suffices to see that the measure of such a U is preserved by
the action of an element g of G. But, according to (††) g · U is obtained
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by permuting the index set and following within each coordinate by an
element of P , so that

⊗ν(g · U) = ⊗ν

 ∏
t∈G/P

p
(
g, g−1 · t

)
Ug−1·t


=

∏
t∈G/P

ν
(
p
(
g, g−1 · t

)
Ug−1·t

)
= ⊗ν(U),

where we use that ν is P -invariant. □

A thinning T ∈ T (X) is a family Tt ∈ T (B(t)) of thinnings of the com-
binatorial horoballs over the individual cosets t ∈ G/P , and in particular
a disjoint family of subsets of (the vertex set of) X. The union of these is
a subset of X. As before, we consider the full subgraph on this subset and
equip it with its graph distance. Abusing notation, we denote the resulting
graph and metric space also by T . We require one further result, which
relates the geometry of a thinning of the cusped space X to the geometry
of X itself.

Proposition 3.7. — Fix an appropriate choice of constants α ∈ (0, 1]
and d, C ∈ N. For every T ∈ T (X) the inclusion T ⊂ X is a quasi-isometry,
with quasi-isometry constants independent of T and depending only on the
constants. Consequently, these T are δ-hyperbolic for a δ > 0 independent
of T .

Proof. — Let T ∈ T (X) be a thinned cusped space. First, T is C-
coarsely dense in X since each thinned horoball Tt is C-coarsely dense in
the corresponding B(t). Next, since T is a subgraph of X, we have for every
x, y ∈ T

dX(x, y) ⩽ dT (x, y),

and it remains only to show that αdT (x, y) ⩽ dX(x, y).
To prove this let x, y ∈ T , and let ω be a geodesic path from x to y in X.

As a path in X, the geodesic ω will pass through a number of horoballs. To
transit between horoballs ω must to return to level 0 of X because at higher
levels the horoballs are disjoint from one another. Hence we may realize ω

as the concatenation of subpaths ωi such that each (except possibly the first
and last) begins and ends in level 0 of X, and may be entirely contained
in level 0. In particular, each ωi is either entirely within a single horoball
or is a path in the Cayley graph of G.
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Suppose that ωi lies entirely within the horoball B(t) sitting over the
coset t. Its endpoints ωi± belong to Tt and we obtain a geodesic path ω̃i

in Tt with the same endpoints. It follows that

| ωi | = dB(t)(ωi−, ωi+) ⩾ αdTt(ωi−, ωi+) = α| ω̃i |,

where we recall that for each thinned horoball Tt and every x, y ∈ Tt we
have

αdTt
(x, y) ⩽ dB(t)(x, y).

See Remark 3.2. In the event that ωi lies entirely within level 0 of X let
ω̃i = ωi, which is a geodesic path in X and also in T . Concatenating the
ω̃i we obtain a path ω̃ in T from x to y. Conclude that

dX(x, y) = | ω | =
∑

| ωi | ⩾
∑

α| ω̃i | = α| ω̃ | ⩾ αdT (x, y),

where we recall that α ⩽ 1.
We have shown that the inclusion T ⊂ X is a quasi-isometry, with quasi-

isometry constants depending only on α and C. By the quasi-isometry
invariance of hyperbolicity for geodesic spaces, the T are all δ-hyperbolic
for a common δ [7, Theorem III.1.9]. □

Remark 3.8. — Viewing a thinning T as a subset of X provides an alter-
nate, and quite convenient description of T (X), its topology and G-action.
The space of thinnings T (X) homeomorphic to a (closed) subspace of the
(compact) space of subsets of X, topologized as in (∗). The natural action
of G on X induces an action of G by homeomorphisms on the set of subsets
of X, which restricts to the (continuous) action of G on T (X).

4. Proper affine actions

This section contains our first application: the existence of a proper affine
action of G on a Banach space. The strategy is to use the thinning technique
introduced above to adapt Yu’s proof, which is based on an averaging
technique of Mineyev, that a hyperbolic group admits a proper affine action
on an ℓp-space for p sufficiently large [19, 26]. Later, in an unpublished
manuscript, Lafforgue gave a self-contained treatment which incorporates
both Mineyev’s averaging technique and Yu’s proof; we shall follow this
unified treatment, which recently appeared in [1]. The core technical results
of this approach are sumarized in the following proposition. We refer to [1]
for the proof, especially [1, Theorem 4.1]. Note however, that our notation
differs from the one in [1]: whereas we write [x, a]2δ for the set of those b
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that satisfy d(x, b) + d(b, a) ⩽ d(x, a) + 2δ, this set is denoted 2δ-géod(x, a)
in [1].

Proposition 4.1. — Let Z be a δ-hyperbolic graph with bounded geo-
metry. Let ∆ = 4δ. There exists a function τ : Z × Z → Prob(Z) with the
following properties:

(1) if τ(x, a)(b) ̸= 0 then b ∈ [x, a]2δ and dZ(a, b) ⩽ ∆; if, moreover,
dZ(x, a) ⩾ ∆ then dZ(a, b) = ∆;

(2) there exists ε > 0 such that ∀ k, ∃ Ck so that

d(x, x′) ⩽ k =⇒ ∥τ(x, a) − τ(x′, a)∥1 ⩽ Cke−εd(x,a).

Furthermore, if g : Z → Z ′ is an isomorphism of δ-hyperbolic graphs we
have

(3) τ(x, a)(b) = τ ′(gx, ga)(gb).
The constants depend only on the hyperbolicity constant δ and the bounded
geometry of Z (so not on the particular Z).

In what follows we shall refer to (1) as the support condition, to (2) as
the decay condition and to (3) as the equivariance condition. The intuition
behind the proposition is clear: τ(x, a) ∈ ℓ1(Z) is a probability measure
supported near a which indicates the direction from a to x. See [21] for the
very relevant and motivating case of the fundamental group of a closed,
negatively curved manifold for more.

Remark 4.2. — Below, when generalizing to the relatively hyperbolic
setting, we shall require analogs of the three conditions in this proposition.
The support condition is more involved than the other two, and shall require
us to make an observation on the construction in the paper [1] of Alvarez
and Lafforgue that lies behind this proposition. While they took ∆ = 4δ,
inspection of the argument there reveals that we may choose any ∆ ⩾
4δ and the proposition still holds, although the other constants in the
conclusion may depend on the choice.

Proposition 4.1 has the following routine consequence; the proof is stan-
dard, and is included in a form to which we can conveniently refer later.

Theorem 4.3. — Let Z be a δ-hyperbolic graph of bounded geometry,
and suppose G acts properly on Z by graph automorphisms. Then G admits
a proper affine action on ℓp(Z, ℓ1(Z)), for sufficiently large p.

Proof. — For every 1 ⩽ p ⩽ ∞ we have a linear, isometric representation
of G on the Banach space ℓp(Z, ℓ1(Z)); viewing elements ϕ of this space as

ANNALES DE L’INSTITUT FOURIER



CLASSICAL RELATIVELY HYPERBOLIC GROUPS 17

two-variable functions the representation is given by the formula

g · ϕ(a, b) = ϕ
(
g−1a, g−1b

)
.

We shall define a formal cocycle for this representation. Let τ be as in the
previous proposition, fix x0 ∈ Z and define ϕ : Z → ℓ1(Z) by ϕ(a) =
τ(x0, a). Observe that ϕ belongs to ℓ∞(Z, ℓ1(Z)) and so does the formal
cocycle b(g) = g · ϕ − ϕ. (To avoid notational conflict with the element b

of Z, we denote our cocycle by b for the present proof only.) It remains to
check that for sufficiently large p the cocycle belongs to ℓp(Z, ℓ1(Z)), and
is proper. It is for this that we shall use the hypotheses of the proposition.

A simple calculation using the equivariance condition gives

b(g)(a, b) = ϕ
(
g−1a, g−1b

)
− ϕ(a)(b)

= τ
(
x0, g−1a)(g−1b

)
− τ(x0, a)(b)

= τ(gx0, a)(b) − τ(x0, a)(b),

so that also

(∗∗)
∥∥b(g)

∥∥p =
∑
a∈Z

∥∥b(g)(a)
∥∥p

1 =
∑
a∈Z

∥τ(gx0, a) − τ(x0, a)∥p
1.

This equality is the basis of our analysis of the cocycle.
Well-definedness. — Here we shall show that for all sufficiently large p

the cocycle takes is values in ℓp(Z, ℓ1(Z)), in other words, the expression
in (∗∗) is finite. This follows from the decay condition, combined with the
bounded geometry hypothesis which we shall use in the form that metric
balls in Z grow at most exponentially. Formally, let d be a uniform bound on
the valence of the vertices of Z and let p be large enough so that e−εpd < 1,
where ε is as in Proposition 4.1(2). The expression in (∗∗) is then bounded
above by∑

a∈Z

Cke−εpd(x0,a) ⩽ Ck

∞∑
n=0

e−εpndn ⩽ Ck

∞∑
n=0

(e−εpd)n < ∞,

where k = d(gx0, x0) and Ck is as in Proposition 4.1(2).
Properness. — The properness follows from the support condition. To

understand this, recall that b ∈ [x, a]2δ means that d(x, b) + d(b, a) ⩽
d(x, a) + 2δ. The support condition now easily implies that if a belongs
to a geodesic from x0 to gx0 and is sufficiently far (at distance at least
∆ = 4δ) from the endpoints then the functions τ(x0, a) and τ(gx0, a) are
disjointly supported. Choose a’s evenly spaced out along a geodesic from
x0 to gx0 so that their number is proportional to the distance between
x0 and gx0. The norm of each difference τ(gx0, a) − τ(x0, a) appearing
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in (∗∗) is then 2, so that this expression is bounded below by a constant
proportional to d(x0, gx0). Since the action of G on Z is assumed proper,
we are through. □

Remark 4.4. — We record several remarks on the proof which we shall
require later. A careful reading of well-definedness argument above reveals
that, beyond the decay condition, we only used the exponential growth of
balls in Z centered at the fixed base point x0. As for the properness, the
support condition gives that τ(x0, a) is supported near the geodesic from a

to x0 at a prescribed distance from a, which in turn guaranteed disjointness
of the supports of τ(x0, a) and τ(gx0, a). Finally, a free action on a locally
finite graph is metrically proper.

Here then is the main result of this section. Our strategy for the proof
shall be to mimic the proof of Theorem 4.3 using a suitably modified version
of Proposition 4.1.

Theorem 4.5. — Let G be a finitely generated group, relatively hyper-
bolic with respect to a finitely generated subgroup P of polynomial growth.
For sufficiently large p we have:

(1) G admits a proper action on a mixed ℓp–ℓ1-space; and,
(2) G admits a proper action on a Lp-space.

Let G and P be as in the statement. Recall our setup: X is the cor-
responding cusped space for suitable choices of generators; and, for ap-
propriate choice of constants, T (X) is the space of thinnings of X on
which G acts with a G-invariant probability measure µ. We view thinnings
T ∈ T (X) as full subgraphs of X and as such these have bounded geom-
etry, are hyperbolic and quasi-isometric to X, with valence, hyperbolicity
and quasi-isometry constants independent of T .

According to Proposition 4.1, for each T ∈ T (X) we have a function

τT : T × T −→ Prob(T ), τT (x, a)(b) ∈ [0, 1]

of three variables, x, a and b ∈ T . We restrict the first variable to G, which
appears as level 0 of each thinning T ; and we use the extension by 0 to
view Prob(T ) ⊂ Prob(X) and thereby extend the third variable to all of X.
Finally we define

τT : G × X −→ Prob(X), τT (x, a) = average
T ∩NX

C (a)
τT (x, a′)

as the average over those a′ ∈ T for which dX(a, a′) ⩽ C; this is now a
function of three variables x ∈ G and a, b ∈ X. A final average removes
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the dependence on the thinning:

τ : G × X −→ Prob(X), τ(x, a) =
∫

T (X)
τT (x, a) dµ(T ),

also a function of three variables x ∈ G and a, b ∈ X. We interpret the
integral pointwise: fix a, b ∈ X and x ∈ G and then τ(x, a)(b) is the integral
of a [0, 1]-valued function of T ∈ T (X). Given the description of the topol-
ogy on T (X) in (∗) and looking at the construction in [1] it is straightford
to check that the integrand τT (x, a)(b) is a continuous, and indeed locally
constant, function of T .

Remark 4.6. — The support of τ(x, a) is finite, and also contained in an
X-ball of uniform radius. This follows directly from the first of the following
two observations:

(1) if τT (x, a)(b) ̸= 0 then dX(a, b) ⩽ C + ∆;
(2) the support of τT (x, a) has cardinality at most N0, independent of

x, a and T .
The metric bound in (1) is straightforward. If τT (x, a)(b) ̸= 0 then nec-

essarily b ∈ T and there exists an a′ ∈ T such that both dX(a, a′) ⩽ C and
dT (a′, b) ⩽ ∆. It follows that

dX(a, b) ⩽ dX(a, a′) + dX(a′, b) ⩽ dX(a, a′) + dT (a′, b) ⩽ C + ∆.

The cardinality bound in (2) is only slightly more involved. First, observe
that the average defining τT (x, a) is over a uniformly finite set. If a′ ∈
T ∩ NX

C (a) then for any other a′′ ∈ T ∩ NX
C (a) we have that αdT (a′, a′′) ⩽

dX(a′, a′′) ⩽ 2C so that the average is over a subset of NT
2Cα−1(a′). By the

uniform bounded geometry condition on thinnings, the cardinality of this
set is bounded independent of T .

Next, for every a′ ∈ T the support of τT (x, a′) is contained in the T -
ball of radius ∆ and center a′. Again by the uniform bounded geometry
condition on thinnings, the cardinality of this set is bounded independent
of T . It now follows that the support of τT (x, a) is contained in the finite
union of finite sets, with all cardinalities bounded independent of T (and
x and a as well).

As indicated, the proof of Theorem 4.5 shall, using the τ defined above
as input, follow the proof of Theorem 4.3. We shall need analogs of the
support, decay and equivariance conditions for the τT , and for τ itself. We
begin with the equivariance condition, the proof of which is immediate from
the corresponding statement in Proposition 4.1.
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Lemma 4.7 (Equivariance). — Let g ∈ G. We have τgT (gx, ga)(gb) =
τT (x, a)(b), for every x ∈ G, every a and b ∈ X and every thinning T ∈
T (X).

Lemma 4.8 (Decay). — There exists ε > 0 with the following property:
for every k there exists Ck such that for every x, x′ ∈ G and every T ∈
T (X) we have

dX(x, x′) ⩽ k =⇒
∥∥τT (x, a) − τT (x′, a)

∥∥
1 ⩽ Cke−εdX (x,a),

for every a ∈ X.

Proof. — This follows readily from Proposition 4.1. Take ε as in that
proposition. Given k the proposition provides a constant Cα−1k. If now
dX(x, x′) ⩽ k then dT (x, x′) ⩽ α−1k for every thinning T so that∥∥τT (x, a′) − τT (x′, a′)

∥∥
1 ⩽ Cα−1ke−εdT (x,a′)

for every a′ ∈ T . The definition of τT (x, a), and of τT (x′, a) involves an
average over those a′ ∈ T for which dX(a, a′) ⩽ C; for such a′ we have

dT (x, a′) ⩾ dX(x, a′) ⩾ dX(x, a) − C.

Putting things together we get∥∥τT (x, a) − τT (x′, a)
∥∥

1 ⩽ Cα−1k eεC e−εdX (x,a)

as required. □

Lemma 4.9 (Support). — There exists K = K(C, R, δ) such that the
following holds. Let x, y ∈ G, and let a belong to a geodesic in X connecting
x and y such that d(a, {x, y}) ⩾ K. Then for every pair of thinnings T1, T2 ∈
T (X) the supports of τT1(x, a) and τT2(y, a) are disjoint.

Proof. — It is here that we shall use the added flexibility of choosing
a large ∆; see Remark 4.2. Let x ∈ G and a ∈ X be given; let ω be an
X-geodesic connecting a and x. Roughly, we shall show that the support
of τT (x, a) is clustered near the X-geodesic ω and at a sufficient distance
from a. Precisely, we shall show that if τT (x, a)(b) ̸= 0 then there exists a
b′ on ω such that

dX(b, b′) ⩽ 4δ + R and dX(a, b′) ⩾ α∆ − (C + R + 4δ)

for all sufficiently large ∆ ⩾ α−1(8δ + 2R + C), and a such that dX(a, x) ⩾
K := ∆ + C; here R = R(α, δ) is a constant depending only on α and δ.
Importantly, the inequalities above are independent of the particular thin-
ning T .
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From this, the lemma follows easily (and in direct analogy with the sup-
port argument given in the proof of Theorem 4.3). Indeed, in the nota-
tion of the statement if both τT1(x, a)(b) and τT2(y, a)(b) are non-zero we
have b′

x and b′
y on the geodesic connecting x and y at distance at least

2(α∆ − (C + R + 4δ)); on the other hand

dX(b′
x, b′

y) ⩽ dX(b, b′
x) + dX(b, b′

y) ⩽ 8δ + 2R.

This is a contradiction for our choice of ∆.
So, choose such a ∆. Return to x ∈ G, a ∈ X such that dX(a, x) ⩾ ∆+C,

and an X-geodesic ω connecting them. If τT (x, a)(b) ̸= 0 then there exists
an a′ ∈ T such that dX(a, a′) ⩽ C and τT (x, a′)(b) ̸= 0. We have

dT (a′, x) ⩾ dX(a′, x) ⩾ dX(a, x) − dX(a, a′) ⩾ ∆ + C − C = ∆,

so that from Proposition 4.1 we have dT (a′, b) = ∆ and b ∈ [a′, x]2δ, where
the set [a′, x]2δ is computed using the metric dT (and not dX). Choose
b1 ∈ T on a T -geodesic σT connecting a′ to x such that dT (a′, b1) = ∆. An
elementary argument then gives that dT (b, b1) ⩽ 3δ; see [1, Lemma 3.3].

Let now σ be an X-geodesic connecting the same points a′ and x. Being
a T -geodesic, σT is an X-quasi-geodesic by Proposition 3.7 (in fact, it
is α−1-bi-Lipschitz in X). So the X-Hausdorff distance between σT and
σ is at most R, for some constant R depending only on δ and α−1 [7,
Theorem III.1.7]. It follows that there exists b2 ∈ σ such that dX(b1, b2) ⩽ R

which gives

dX(b, b2) ⩽ dX(b, b1) + dX(b1, b2) ⩽ dT (b, b1) + dX(b1, b2) ⩽ 3δ + R.

Finally, consider a geodesic triangle in X with corners a, a′, x, and with
the X-geodesic ω forming the side from a to x, and σ forming the side
from a′ to x. This triangle is δ-slim so that for the point b2 on σ there is
a point b′ belonging either to ω or to the side between a and a′, satisfying
dX(b2, b′) ⩽ δ. For such a point it follows immediately that

dX(b, b′) ⩽ dX(b, b2) + dX(b2, b′) ⩽ 3δ + R + δ = 4δ + R,

as required. It remains to show that b′ lies on ω and to bound its X-distance
to a below.

We begin by observing that

dX(a′, b2) ⩽ dX(a′, a) + dX(a, b′) + dX(b′, b2) ⩽ C + dX(a, b′) + δ,
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so that also

dX(a, b′) ⩾ dX(a′, b2) − (C + δ)
⩾ dX(a′, b) − dX(b, b2) − (C + δ)
⩾ dX(a′, b) − (C + R + 4δ)
⩾ αdT (a′, b) − (C + R + 4δ)
= α∆ − (C + R + 4δ),

as required. The check that b′ belongs to ω is similar: since dX(a, a′) ⩽ C a
point on σ that is within δ of a point on the side a to a′ has X-distance at
most δ +C from a′, but we know that dX(a′, b2) is at least α∆−(3δ +R) ⩾
5δ + R + C, which would be a contradiction. □

Proof of Theorem 4.5. — The proof of the first statement is completely
analogous to the proof of Theorem 4.3. Above we have defined a function
τ : G × X → Prob(X) and, following the proof of Theorem 4.3, we define

b(g) = g · ϕ − ϕ, ϕ ∈ ℓ∞(X, ℓ1(X)
)
, ϕ(a) = τ(x0, a)

for some fixed x0 ∈ G (for example, x0 = the identity of G). We shall
show that b(g) belongs to ℓp(X, ℓ1(X)) and that b defines a proper cocycle,
for sufficiently large p. For this we must only verify appropriate analogs
of the conclusions of Proposition 4.1, the equivariance, decay and support
conditions, for our function τ and make a few additional remarks.

The equivariance follows directly from Lemma 4.7 and the G-invariance
of the measure µ on T (X). The decay condition, used in the proof that
b(g) belongs to ℓp(X, ℓ1(X)), follows from Lemma 4.8 upon averaging over
T ∈ T (X). Also, as described in Remark 4.4 we need here the exponen-
tial growth of metric X-balls with center in G, which follows from Propo-
sition 2.1; while that proposition was stated only for a single combinatorial
horoball the generalization to the cusped space is immediate using finite
generation of G. Finally, we turn to the support condition used in the proof
of properness. As described in Remark 4.4 we would like to see that the
supports of τ(x, a) and τ(y, a) are disjoint for a on a geodesic in X con-
necting x and y that is sufficiently far from both x and y. But this follows
directly from Lemma 4.9 upon averaging over T ∈ T (X).

We turn to the second statement. We shall replace the space ℓp(X, ℓ1(X))
on which G is currently acting by an Lp-space in two steps. For the first
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step, we modify the function τ so that it takes values in ℓ2(X) instead of
Prob(X) ⊂ ℓ1(X). We do this using the Banach–Mazur map, defined for a
unit vector u = (ux) ∈ ℓ1(X) by

β(u)x = |ux|1/2 sign(ux);
β is a homeomorphism from the unit sphere in ℓ1(X) onto the unit sphere
of ℓ2(X) and it satisfies the inequalities

1
2∥u − v∥1 ⩽ ∥β(u) − β(v)∥2 ⩽

√
2∥u − v∥1/2

1 ,

for u, v ∈ ℓ1(X) of norm 1. See [4, Chapter 9.1]. Further, β preserves
supports and is G-equivariant when each sphere is equipped with the norm-
preserving action of G coming from its action on the set X. With these
observations, the proof above carries through immediately to give a proper
cocycle for the action of G on ℓp(X, ℓ2(X)), for all sufficiently large p.

In the second step, we shall replace ℓ2(X) by the space Lp(Ω, µ) for some
probability space (Ω, µ) equipped with a measure preserving action of G;
the unitary action of G on ℓp(X, Lp(Ω, µ)) will be the natural one and we
must show this representation admits a proper cocycle. The key to this
is a standard construction that converts an orthogonal representation of a
(locally compact) group G into a subrepresentation of a representation com-
ing from a measure preserving action on some standard Borel probability
space, the details of which are presented in [3, Appendix A7]. (See also [20]
for a related argument.) We shall apply this construction to the represen-
tation of G on ℓ2(X). We conclude, combining [3, Theorem A.7.13] with
[3, Example A.7.6], that there exists a standard Borel probability space
(Ω, µ) on which G acts by measure preserving transformations such that
ℓ2(X) is isomorphic as a representation of G to a subrepresentation of
L2(Ω, µ) corresponding to a Gaussian Hilbert subspace K. Recall that a
Gaussian Hilbert subspace is a Hilbert subspace K ⊂ L2(Ω, µ) with the
property that every X ∈ K is a centered Gaussian random variable. Putting
everything together, we have a proper cocycle b for the natural represen-
tation of G on ℓp(X, L2(Ω, µ)), and the values of b belong to the subspace
ℓp(X, K).

Now we claim that the cocycle b is a proper cocycle for the natural
representation of G on ℓp(X, Lp(Ω, µ)) as well. For this observe that the
Gaussian Hilbert space K is in fact contained in each Lp(Ω, µ) for finite p,
and moreover that the Lp-norm on K is simply the L2-norm multiplied by
the Lp-norm of the standard Gaussian random variable (which is finite). It
follows easily that the values of b belong to ℓp(X, Lp(Ω, µ)) and that viewed
in this way b remains proper; it is a cocycle on formal grounds alone. □
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Remark 4.10. — In the previous proof it is tempting to omit the second
step of the argument and move directly from ℓ1(X) to ℓp(X) using the
appropriate Banach–Mazur map. This is problematic because the Hölder
constant of the Banach–Mazur map depends on p (it is only 1/p-Hölder).

5. Weak amenability

This section contains our second application: weak amenability of G.
Weak amenability and ideas surrounding it were introduced and developed
by Haagerup and various coauthors in a series of papers [9, 11]. Most of
the initial papers focus primarily on locally compact groups and their lat-
tices, and more specifically on rank 1 semi-simple Lie groups. In the setting
of discrete groups weak amenability was quickly seen to be equivalent to
the (reduced) group C∗-algebra having the completely bounded approxima-
tion property, according to which the identity map on C∗

r (G) is the point-
norm limit of a uniformly completely bounded sequence of finite rank linear
maps [18]. For context, a discrete group is amenable iff the identity map
on C∗

r (G) is similarly approximated by completely positive finite rank lin-
ear maps, and these may be taken to be multiplication by positive definite
functions on the group. From this point of view, the completely bounded
functions we work with below are analogous to the positive definite func-
tions in the case of an amenable group. A general reference for this is [8].

We recall the definitions. Let S be a set. A kernel ϕ : S × S → C is
completely bounded if there exists a Hilbert space H and bounded functions
α, β : S → H such that

ϕ(x, y) = ⟨α(x), β(y)⟩;
in this case the completely bounded norm (cb-norm) of ϕ is at most the
product of the ℓ∞-norms of α and β. Precisely,

∥ϕ∥cb = inf
α,β

∥ α ∥∞∥ β ∥∞,

where the infimum is taken over all possible maps α and β as above. Let
now G be a (countable discrete) group. A function f : G → C completely
bounded if the corresponding kernel ϕ : G × G → C defined by ϕ(g, h) =
f(h−1g) is completely bounded, and in this case ∥ f ∥cb = ∥ ϕ ∥cb. Finally,
the group G is weakly amenable (with Cowling–Haagerup constant at most
C) if there exists a sequence of finitely supported functions {fn} : G → C
such that fn converges pointwise to 1 and each fn is completely bounded
with cb-norm at most C.
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The above discussion raises the possibility of using geometric properties
of G, or of a space on which G acts, to construct kernels or functions
which are completely bounded; the α and β required to show complete
boundedness are constructed geometrically. The first construction of this
type was put forward by Bozejko and Picardello who showed that free
products of amenable groups are weakly amenable [6]. Their construction
works directly on the Cayley graph of a free group and gives a very easy
proof that finitely generated free groups are weakly amenable. Ozawa later
generalized the construction and used it to show that hyperbolic groups
are weakly amenable [24], and this is our starting point. Our strategy is,
as above, to use the thinning technique to adapt the construction to prove
that classical relatively hyperbolic groups are weakly amenable. Here then
is the main result of this section, and an immediate corollary which is
apparently not known by other means.

Theorem 5.1. — A finitely generated group G which is relatively hy-
perbolic with respect to a finitely generated subgroup P of polynomial
growth is weakly amenable.

Corollary 5.2. — Let H be a hyperbolic group and P be a group
of polynomial growth. The free product H ⋆ P is weakly amenable. In
particular, the free product H ⋆ Zn is weakly amenable.

We shall be terse, having given a quite detailed treatment in the case of
proper actions in the previous section. The results we need from Ozawa’s
work on hyperbolic groups are summarized in the following proposition.
(See [24, Theorem 1] and its proof.)

Proposition 5.3. — Let Z be a bounded geometry hyperbolic graph.
There exists a constant C depending only on the bounded geometry and
hyperbolicity constants of Z with the following properties: for every r ∈
(0, 1) and every n ∈ N

(1) the kernel (x, y) 7→ rdZ (x,y) is completely bounded with cb-norm at
most C;

(2) the characteristic function of the set EZ(n)= {(x, y) : dZ(x, y) ⩽ n}
is completely bounded with cb-norm at most C(n + 1).

Remark 5.4. — As a formal consequence of the above we have: for every
sequence rn ↗ 1 with rn ∈ (0, 1) there exists a sequence Rn ↗ ∞ with
Rn ∈ N such that the kernel

ϕZ
n (x, y) =

{
r

dZ(x,y)
n , if dZ(x, y) ⩽ Rn

0, otherwise
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is completely bounded, with cb-norm at most 2C. It is these kernels that
we shall use below. Observe that if Z is the Cayley graph of a hyperbolic
group G then the kernels ϕn are left invariant and come from functions
on G which witness its weak amenability.

We return to the relatively hyperbolic case, and shall use the notation
of the previous sections. For each thinning T ∈ T (X) we have a sequence
of kernels ϕT

n : T × T → [0, 1] and, since the T are uniformly δ-hyperbolic
and have uniformly bounded geometry, the cb-norms of these kernels are
bounded independently of T (and of course also of n): there exists C < ∞
such that ∥ ϕT

n ∥cb ⩽ 2C for all T . We restrict both variables to G, which
appears as level 0 of every thinning and note that this does not increase
the cb-norm. And as in the previous section, we eliminate the dependence
on T by integration:

(‡‡) ϕn(x, y) =
∫

T (X)
ϕT

n (x, y) dµ(T ),

for x and y ∈ G. We interpret the integral pointwise, in light of the following
lemma.

Lemma 5.5. — Let x, y ∈ X. For every r ∈ (0, 1) and every n ∈ N the
function

T 7−→

{
rdT (x,y), if dT (x, y) ⩽ n

0, otherwise

is continuous on T (X).

Proof. — This follows easily from the following assertion: the set of all
T ∈ T (X) for which dT (x, y) ⩽ n (so also x, y ∈ T ) is a clopen set. To see
that it is open, suppose T is such that dT (x, y) ⩽ n. If F ⊂ X is the (finite)
set of vertices along a T -geodesic from x to y then every T1 belonging to
the basic open neighborhood of T defined by F contains F and so satisfies
dT1(x, y) ⩽ n. To see that its complement is open, suppose T is such that
dT (x, y) > n. If F ⊂ X is the (finite) set of vertices belonging to a path in
X of length ⩽ n connecting x and y then every T2 belonging to the basic
open neighborhood of T defined by F satisfies dT2(x, y) > n; otherwise the
vertices on a path of length ⩽ n connecting x and y in such a T2 would
belong to T2 ∩ F , and hence also to T which is a contradiction. □

Proof of Theorem 5.1. — We first show that each ϕn is G-invariant. The
action of g ∈ G on X induces a graph isomorphism T → gT , and so also
an isometry of these graphs. It follows easily that ϕgT

n (gx, gy) = ϕT
n (x, y)
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for every x, y ∈ T and, in particular for every x, y ∈ G. Applying the
G-invariance of the measure µ the result follows:

ϕn(gx, gy) =
∫

T (X)
ϕT

n (gx, gy) dµ(T )

=
∫

T (X)
ϕg−1T

n (x, y) dµ(T ) = ϕn(x, y).

The left invariant kernel ϕn arises in the usual way from the real-valued
function x 7→ ϕn(e, x) on G, where e denotes the identity element of G.
We must show that this function is finitely supported and converges to 1
pointwise. These assertions follow from properties of the ϕT

n and the fact
that the X and T -distances are bi-Lipschitz when restricted to G, with
constants independent of T .

More precisely, if dX(e, x) > Rn then also dT (e, x) > Rn for every T and
the integrand in (‡‡) is identically 0. Since the X-distance is proper and
left invariant on G finiteness of the support follows. As for the convergence,
for sufficiently large n we have that Rn ⩾ α−1dX(e, x) ⩾ dT (e, x) so that
the integrand in (‡‡) satisfies

rα−1dX (e,x)
n ⩽ ϕT

n (e, x) ⩽ 1,

independent of T . So, ϕn(e, x) satisfies similar inequalities and the result
follows.

It remains only to estimate the cb-norm of the ϕn. This is more involved,
and we shall treat it in the following lemma. □

Lemma 5.6. — The ϕn are completely bounded, with cb-norm at
most 2C.

For the proof we record a few details regarding the kernels ϕZ
n introduced

in Remark 5.4, in particular why they have cb-norm at most 2C. As re-
marked, this is a formal consequence of Proposition 5.3. We introduce the
kernels

ϕZ
r,R(x, y) = EZ(R)(x, y) rdZ (x,y),

and observe that

ϕZ
r,R(x, y) =

R∑
k =0

(
EZ(k) − EZ(k − 1)

)
rk

= rdZ (x,y) −
∞∑

k =R+1

(
EZ(k) − EZ(k − 1)

)
rk,

where we abuse notation by writing EZ(k) for the characteristic function
of this set, and understand EZ(−1) = 0. Now, given rn ↗ 1 we select
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Rn ↗ ∞ such that for each n the tail in the above expression has cb-norm
⩽ C:

∞∑
k =Rn +1

∥ EZ(k) − EZ(k − 1) ∥cb rk
n ⩽

∞∑
k =Rn +1

2C(k + 1) rk
n ⩽ C,

where we have applied Proposition 5.3. Applying the proposition again
gives that the cb-norm of ϕZ

n = ϕZ
rn,Rn

is at most 2C. The value in this
analysis is that it shows quite concretely how the kernels ϕZ

n are constructed
from the more primitive kernels provided by Proposition 5.3. Each of the
algebraic operations involved (essentially addition and subtraction) has an
analog at the level of the Hilbert space valued α, β and it is this that we
shall exploit below.

Proof. — It is clear from the previous discussion that the kernels ϕT
n

appearing in the integrand (‡‡) are constructed from the primitive kernels

(x, y) 7−→ rdT (x,y) and (x, y) 7−→ ET (k)(x, y)

in identical fashion, independent of T ; this is because the estimates in
Proposition 5.3 are independent of T . Suppose αT

i , βT
i : G → H are Hilbert

space valued functions realizing the conclusions of Proposition 5.3 in the
sense that for every x, y ∈ G we have

rdT (x,y) =
〈
αT

1,r(x), βT
1,r(y)

〉
and ET (k)(x, y) =

〈
αT

2,k(x), βT
2,k(y)

〉
;

and suppose further these are normalized so that, for example, ∥ αT
1,r(x) ∥ ⩽√

C and ∥ αT
2,k(x) ∥ ⩽

√
C(k + 1) for every x ∈ G, etc. It is then clear that

the kernel ϕT
n is realized by

αT
n (x) = αT

1,rn
(x) ⊕

∞⊕
k =Rn +1

rk/2
n

(
αT

2,k(x) ⊕ αT
2,k−1(x)

)
βT

n (y) = βT
1,rn

(y) ⊕
∞⊕

k =Rn +1
rk/2

n

(
−βT

2,k(y) ⊕ βT
2,k−1(y)

)
;

these are functions G → H where H is an appropriate large direct sum
of copies of H. Further, the constituent α’s and β’s give, for each x and
y ∈ G respectively, measurable (in the weak sense) functions T (X) → H,
where H is a Hilbert space constructed from the ℓ2-space on the (countable)
collection of finite subsets of X. This follows from the detailed construction
of these in Ozawa’s paper. In particular, αT

n (x) and βT
n (y) are themselves

measurable functions of T , for every x and y ∈ G, respectively.
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To estimate the cb-norm of the kernels ϕn we assemble the above
data into functions from G into the direct integral Hilbert space as fol-
lows:

αn, βn : G →
∫ ⊕

T (X)
H, αn(x) =

(
T 7→ αT

n (x)
)
, βn(y) =

(
T 7→ βT

n (y)
)
.

From here, everything is a direct calculation. First, these αn and βn rep-
resent the kernel ϕn:

⟨αn(x), βn(y)⟩ =
∫

T (X)

〈
αT

n (x), βT
n (y)

〉
dµ(T )

∫
T (X)

ϕT
n (x, y) dµ(T )

= ϕn(x, y);

and second the norm of αn(x) is easily seen to be

∥αn(x)∥2 =

=
∫

T (X)

∥∥αT
n (x)

∥∥2 dµ(T )

=
∫

T (X)

(∥∥αT
1,rn

(x)
∥∥2 +

∞∑
k =Rn +1

(∥∥αT
2,k(x)

∥∥2 +
∥∥αT

2,k−1(x)
∥∥2)

rk
n

)
dµ(T )

⩽
∫

T (X)

(
C +

∞∑
k =Rn +1

2C(k + 1)rk
n

)
dµ(T ) ⩽ 2C,

and similarly for βn(y). It follows that the cb-norm of ϕn is ⩽ 2C,
as required. □
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