Asymptotic Tensor Powers of Banach Spaces
[Puissances tensorielles asymptotiques d’espaces de Banach]
Annales de l'Institut Fourier, Online first, 28 p.

We study the asymptotic behaviour of large tensor powers of normed spaces and of operators between them. We define the tensor radius of a finite-dimensional normed space X as the limit of the sequence A k 1/k , where A k is the equivalence constant between the projective and injective norms on X k . We show that Euclidean spaces are characterized by the property that their tensor radius equals their dimension. Moreover, we compute the tensor radius for spaces with enough symmetries, such as the spaces p n . We also define the tensor radius of an operator T as the limit of the sequence B k 1/k , where B k is the injective-to-projective norm of T k . We show that the tensor radius of an operator whose domain or range is Euclidean is equal to its nuclear norm, and give some evidence that this property might characterize Euclidean spaces.

Nous étudions le comportement asymptotique des grandes puissances tensorielles des espaces normés et de leurs opérateurs. Nous définissons le rayon tensoriel d’un espace normé X de dimension finie comme la limite de la suite A k 1/k , où A k est la constante d’équivalence entre les normes injective et projective sur X k . Nous montrons que les espaces euclidiens sont caractérisés par le fait que leur rayon tensoriel est égal à leur dimension. De plus, nous calculons le rayon tensoriel des espaces ayant sufisamment de symétries, comme les espaces  p n . Nous définissons également le rayon tensoriel d’un opérateur T comme la limite de la suite B k 1/k , où B k est la norme injective-vers-projective de T k . Nous montrons que le rayon tensoriel d’un opérateur défini sur un espace euclidien ou à valeurs dans un espace euclidien est égal à sa norme nucléaire, et suggérons que cette propriété pourrait caractériser les espaces euclidiens.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3736
Classification : 46B28, 46B20, 47A80, 52A21
Keywords: tensor radius, projective and injective norms, Banach–Mazur distance, tensor powers
Mots-clés : rayon tensoriel, normes injective et projective, distance de Banach–Mazur, puissances tensorielles

Aubrun, Guillaume 1 ; Müller-Hermes, Alexander 1, 2

1 Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex (France)
2 Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo(Norway)
@unpublished{AIF_0__0_0_A24_0,
     author = {Aubrun, Guillaume and M\"uller-Hermes, Alexander},
     title = {Asymptotic {Tensor} {Powers} of {Banach} {Spaces}},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3736},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Aubrun, Guillaume
AU  - Müller-Hermes, Alexander
TI  - Asymptotic Tensor Powers of Banach Spaces
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3736
LA  - en
ID  - AIF_0__0_0_A24_0
ER  - 
%0 Unpublished Work
%A Aubrun, Guillaume
%A Müller-Hermes, Alexander
%T Asymptotic Tensor Powers of Banach Spaces
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3736
%G en
%F AIF_0__0_0_A24_0
Aubrun, Guillaume; Müller-Hermes, Alexander. Asymptotic Tensor Powers of Banach Spaces. Annales de l'Institut Fourier, Online first, 28 p.

[1] Amir, Dan Characterizations of inner product spaces, Operator Theory: Advances and Applications, 20, Birkhäuser, 1986 | DOI | MR | Zbl

[2] Anisca, Razvan; Tcaciuc, Adi; Tomczak-Jaegermann, Nicole Structure of normed spaces with extremal distance to the Euclidean space, Houston J. Math., Volume 31 (2005) no. 1, pp. 267-283 | MR | Zbl

[3] Aubrun, Guillaume; Lami, Ludovico; Palazuelos, Carlos; Szarek, Stanisław J.; Winter, Andreas Universal gaps for XOR games from estimates on tensor norm ratios, Commun. Math. Phys., Volume 375 (2020) no. 1, pp. 679-724 | DOI | MR | Zbl

[4] Aubrun, Guillaume; Müller-Hermes, Alexander Annihilating entanglement between cones, Commun. Math. Phys., Volume 400 (2023) no. 2, pp. 931-976 | DOI | Zbl | MR

[5] Aubrun, Guillaume; Müller-Hermes, Alexander Limit formulas for norms of tensor power operators, J. Funct. Anal., Volume 289 (2025) no. 10, I111113, 17 pages | DOI | MR | Zbl

[6] Aubrun, Guillaume; Szarek, Stanisław J. Alice and Bob meet Banach. The interface of asymptotic geometric analysis and quantum information theory, Mathematical Surveys and Monographs, 223, American Mathematical Society, 2017 | DOI | Zbl | MR

[7] Fekete, Michael Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., Volume 17 (1923) no. 1, pp. 228-249 | Zbl | DOI | MR

[8] Grothendieck, Alexander Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo, Volume 8 (1956), pp. 1-79 | MR | Zbl

[9] Halmos, Paul R. Measure theory, Graduate Texts in Mathematics, 18, Springer, 1974 | Zbl | MR

[10] John, Kamil Tensor products and nuclearity, Banach space theory and its applications (Bucharest, 1981) (Lecture Notes in Mathematics), Volume 991, Springer, 1983, pp. 124-129 | DOI | MR | Zbl

[11] John, Kamil Tensor product of several spaces and nuclearity, Math. Ann., Volume 269 (1984) no. 3, pp. 333-356 | DOI | MR | Zbl

[12] John, Kamil Tensor powers of operators and nuclearity, Math. Nachr., Volume 129 (1986), pp. 115-121 | DOI | MR | Zbl

[13] John, Kamil Operators whose tensor powers are ϵ-π-continuous, Czech. Math. J., Volume 38(113) (1988) no. 4, pp. 602-610 | DOI | MR | Zbl

[14] Junge, Marius; Kubicki, Aleksander M.; Palazuelos, Carlos; Pérez-García, David Geometry of Banach spaces: a new route towards position based cryptography, Commun. Math. Phys., Volume 394 (2022) no. 2, pp. 625-678 | DOI | MR | Zbl

[15] Pisier, Gilles Counterexamples to a conjecture of Grothendieck, Acta Math., Volume 151 (1983) no. 3-4, pp. 181-208 | DOI | MR | Zbl

[16] Ryan, Raymond A. Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer, 2002 | DOI | MR | Zbl

[17] Schoenberg, Isaac J. A remark on M. M. Day’s characterization of inner-product spaces and a conjecture of L. M. Blumenthal, Proc. Am. Math. Soc., Volume 3 (1952), pp. 961-964 | DOI | MR | Zbl

[18] Tomczak-Jaegermann, Nicole Banach–Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Longman Scientific & Technical; John Wiley & Sons, 1989 | Zbl | MR

[19] Vershynin, Roman High-dimensional probability. An introduction with applications in data science, Cambridge Series in Statistical and Probabilistic Mathematics, 47, Cambridge University Press, 2018 | MR | DOI | Zbl

Cité par Sources :