[Puissances tensorielles asymptotiques d’espaces de Banach]
We study the asymptotic behaviour of large tensor powers of normed spaces and of operators between them. We define the tensor radius of a finite-dimensional normed space as the limit of the sequence , where is the equivalence constant between the projective and injective norms on . We show that Euclidean spaces are characterized by the property that their tensor radius equals their dimension. Moreover, we compute the tensor radius for spaces with enough symmetries, such as the spaces . We also define the tensor radius of an operator as the limit of the sequence , where is the injective-to-projective norm of . We show that the tensor radius of an operator whose domain or range is Euclidean is equal to its nuclear norm, and give some evidence that this property might characterize Euclidean spaces.
Nous étudions le comportement asymptotique des grandes puissances tensorielles des espaces normés et de leurs opérateurs. Nous définissons le rayon tensoriel d’un espace normé de dimension finie comme la limite de la suite , où est la constante d’équivalence entre les normes injective et projective sur . Nous montrons que les espaces euclidiens sont caractérisés par le fait que leur rayon tensoriel est égal à leur dimension. De plus, nous calculons le rayon tensoriel des espaces ayant sufisamment de symétries, comme les espaces . Nous définissons également le rayon tensoriel d’un opérateur comme la limite de la suite , où est la norme injective-vers-projective de . Nous montrons que le rayon tensoriel d’un opérateur défini sur un espace euclidien ou à valeurs dans un espace euclidien est égal à sa norme nucléaire, et suggérons que cette propriété pourrait caractériser les espaces euclidiens.
Révisé le :
Accepté le :
Première publication :
Keywords: tensor radius, projective and injective norms, Banach–Mazur distance, tensor powers
Mots-clés : rayon tensoriel, normes injective et projective, distance de Banach–Mazur, puissances tensorielles
Aubrun, Guillaume 1 ; Müller-Hermes, Alexander 1, 2
@unpublished{AIF_0__0_0_A24_0, author = {Aubrun, Guillaume and M\"uller-Hermes, Alexander}, title = {Asymptotic {Tensor} {Powers} of {Banach} {Spaces}}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3736}, language = {en}, note = {Online first}, }
Aubrun, Guillaume; Müller-Hermes, Alexander. Asymptotic Tensor Powers of Banach Spaces. Annales de l'Institut Fourier, Online first, 28 p.
[1] Characterizations of inner product spaces, Operator Theory: Advances and Applications, 20, Birkhäuser, 1986 | DOI | MR | Zbl
[2] Structure of normed spaces with extremal distance to the Euclidean space, Houston J. Math., Volume 31 (2005) no. 1, pp. 267-283 | MR | Zbl
[3] Universal gaps for XOR games from estimates on tensor norm ratios, Commun. Math. Phys., Volume 375 (2020) no. 1, pp. 679-724 | DOI | MR | Zbl
[4] Annihilating entanglement between cones, Commun. Math. Phys., Volume 400 (2023) no. 2, pp. 931-976 | DOI | Zbl | MR
[5] Limit formulas for norms of tensor power operators, J. Funct. Anal., Volume 289 (2025) no. 10, I111113, 17 pages | DOI | MR | Zbl
[6] Alice and Bob meet Banach. The interface of asymptotic geometric analysis and quantum information theory, Mathematical Surveys and Monographs, 223, American Mathematical Society, 2017 | DOI | Zbl | MR
[7] Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., Volume 17 (1923) no. 1, pp. 228-249 | Zbl | DOI | MR
[8] Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo, Volume 8 (1956), pp. 1-79 | MR | Zbl
[9] Measure theory, Graduate Texts in Mathematics, 18, Springer, 1974 | Zbl | MR
[10] Tensor products and nuclearity, Banach space theory and its applications (Bucharest, 1981) (Lecture Notes in Mathematics), Volume 991, Springer, 1983, pp. 124-129 | DOI | MR | Zbl
[11] Tensor product of several spaces and nuclearity, Math. Ann., Volume 269 (1984) no. 3, pp. 333-356 | DOI | MR | Zbl
[12] Tensor powers of operators and nuclearity, Math. Nachr., Volume 129 (1986), pp. 115-121 | DOI | MR | Zbl
[13] Operators whose tensor powers are --continuous, Czech. Math. J., Volume 38(113) (1988) no. 4, pp. 602-610 | DOI | MR | Zbl
[14] Geometry of Banach spaces: a new route towards position based cryptography, Commun. Math. Phys., Volume 394 (2022) no. 2, pp. 625-678 | DOI | MR | Zbl
[15] Counterexamples to a conjecture of Grothendieck, Acta Math., Volume 151 (1983) no. 3-4, pp. 181-208 | DOI | MR | Zbl
[16] Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer, 2002 | DOI | MR | Zbl
[17] A remark on M. M. Day’s characterization of inner-product spaces and a conjecture of L. M. Blumenthal, Proc. Am. Math. Soc., Volume 3 (1952), pp. 961-964 | DOI | MR | Zbl
[18] Banach–Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Longman Scientific & Technical; John Wiley & Sons, 1989 | Zbl | MR
[19] High-dimensional probability. An introduction with applications in data science, Cambridge Series in Statistical and Probabilistic Mathematics, 47, Cambridge University Press, 2018 | MR | DOI | Zbl
Cité par Sources :