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ASYMPTOTIC TENSOR POWERS OF BANACH
SPACES

by Guillaume AUBRUN & Alexander MÜLLER-HERMES (*)

Abstract. — We study the asymptotic behaviour of large tensor powers of
normed spaces and of operators between them. We define the tensor radius of a
finite-dimensional normed space X as the limit of the sequence A

1/k
k

, where Ak

is the equivalence constant between the projective and injective norms on X⊗k.
We show that Euclidean spaces are characterized by the property that their tensor
radius equals their dimension. Moreover, we compute the tensor radius for spaces
with enough symmetries, such as the spaces ℓn

p . We also define the tensor radius
of an operator T as the limit of the sequence B

1/k
k

, where Bk is the injective-
to-projective norm of T ⊗k. We show that the tensor radius of an operator whose
domain or range is Euclidean is equal to its nuclear norm, and give some evidence
that this property might characterize Euclidean spaces.

Résumé. — Nous étudions le comportement asymptotique des grandes puis-
sances tensorielles des espaces normés et de leurs opérateurs. Nous définissons
le rayon tensoriel d’un espace normé X de dimension finie comme la limite de la
suite A

1/k
k

, où Ak est la constante d’équivalence entre les normes injective et pro-
jective sur X⊗k. Nous montrons que les espaces euclidiens sont caractérisés par le
fait que leur rayon tensoriel est égal à leur dimension. De plus, nous calculons le
rayon tensoriel des espaces ayant sufisamment de symétries, comme les espaces ℓn

p .
Nous définissons également le rayon tensoriel d’un opérateur T comme la limite de
la suite B

1/k
k

, où Bk est la norme injective-vers-projective de T ⊗k. Nous montrons
que le rayon tensoriel d’un opérateur défini sur un espace euclidien ou à valeurs
dans un espace euclidien est égal à sa norme nucléaire, et suggérons que cette
propriété pourrait caractériser les espaces euclidiens.
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powers.
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1. Introduction

For a real or complex Banach space X we denote its dual space by X∗

and their respective unit balls by BX and BX∗ . Two natural norms can be
defined on the algebraic tensor product X⊗k: The injective tensor norm is
given by

∥z∥εk(X) = sup
{

|(λ1 ⊗ · · · ⊗ λk)(z)| : λ1, . . . , λk ∈ BX∗

}
,

for z ∈ X⊗k, and the projective tensor norm by

∥z∥πk(X)

= inf
{

n∑
i=1

∥∥∥x
(1)
i

∥∥∥
X

· · ·
∥∥∥x

(k)
i

∥∥∥
X

: n ∈ N, z =
n∑

i=1
x

(1)
i ⊗ · · · ⊗ x

(k)
i

}
.

When X is finite-dimensional, the discrepancy between these norms is gov-
erned by the parameter

ρk(X) =
(

sup
z ∈X⊗k

∥z∥πk(X)

∥z∥εk(X)

) 1
k

.

More generally, given a linear operator T : X → Y between finite-dimen-
sional normed spaces, we consider

(1.1) τk(T ) =
∥∥T ⊗k

∥∥1/k

εk(X)→πk(Y ) =
(

sup
z ∈X⊗k

∥∥T ⊗kz
∥∥

πk(Y )

∥z∥εk(X)

) 1
k

,

such that ρk(X) = τk(idX). A standard subadditivity argument, detailed
later as Lemma 3.1, shows the existence of the limits

ρ∞(X) = lim
k →∞

ρk(X), τ∞(T ) = lim
k →∞

τk(T ).

We call these limits the tensor radius of the space X and the tensor radius
of the operator T , respectively, by analogy with the spectral radius formula.
The tensor radii are motivated by questions in quantum information theory
where they have recently been applied by the authors [4]. In this article we
aim to understand the properties of tensor radii and we begin by stating
our main results. A follow-up to the present paper, including answers to
some of the questions asked here, will appear in [5].

ANNALES DE L’INSTITUT FOURIER



ASYMPTOTIC TENSOR POWERS OF BANACH SPACES 3

Main results on tensor radii of normed spaces

We show that the tensor radius is maximal precisely for Euclidean spaces:

Theorem 1.1. — If X is an n-dimensional normed space, then
√

n ⩽
ρ∞(X) ⩽ n. Moreover, ρ∞(X) = n if and only if X is Euclidean.

We will prove Theorem 1.1 in Section 4.2. For a large class of normed
spaces, including the spaces ℓn

p and their noncommutative analogues, we
compute the tensor radius as a function of the Banach–Mazur distance
(see Section 2.4) to the Euclidean space. Our argument applies to normed
spaces with proportional John and Loewner ellipsoids (see Section 2.3),
which includes all normed spaces with enough symmetries (see Section 2.5).

Theorem 1.2. — If X is an n-dimensional normed space with propor-
tional John and Loewner ellipsoids, then

ρ∞(X) = n

d(X, ℓn
2 ) .

The proof of Theorem 1.2 is given in Section 4.3. In particular, we see
that ρ∞(ℓn

∞) =
√

n, showing that the lower bound in Theorem 1.1 is sharp.

Main results on tensor radii of linear operators

Let T : X → Y be a linear operator between finite-dimensional normed
spaces and let ∥T∥N(X→Y ) denote its nuclear norm. It is elementary to
show (see Section 3) that

(1.2) ∥T∥X→Y = τ1(T ) ⩽ τ∞(T ) ⩽ ∥T∥N(X →Y ).

In order to understand when the upper bound in (1.2) is sharp, we introduce
the following property:

Definition 1.3. — A pair of finite-dimensional normed spaces (X, Y )
is said to have the nuclear tensorization property (NTP) if the relation
τ∞(T ) = ∥T∥N(X→Y ) holds for every operator T : X → Y .

It is an elementary fact that ∥ idX ∥N(X→X) = n for the identity operator
idX : X → X on any n-dimensional normed space X. Since τ∞(idX) =
ρ∞(X), Theorem 1.1 implies that the pair (X, X) fails to have the NTP
whenever X is not Euclidean. The example of (ℓ2

∞, ℓ2
∞) is elementary and

quite instructive. We will state it here, before developing the general theory
later:

TOME 0 (0), FASCICULE 0



4 Guillaume AUBRUN & Alexander MÜLLER-HERMES

Example 1.4. — In the following example, all spaces are over the reals.
Using the isometric isomorphism between ℓ2

1 and ℓ2
∞, computing ρ∞(ℓ2

∞)
is equivalent to computing τ∞(H) of the Hadamard matrix

H = 1
2

(
1 1
1 −1

)
,

seen as an operator from ℓ2
∞ to ℓ2

1. We have τ1(H) = ∥H∥ℓ2
∞→ℓ2

1
= 1 and it is

elementary to compute ∥H∥N(ℓ2
∞→ℓ2

1) = 2 (e.g., using [18, Proposition 8.7]).
Consider k ∈ N and identify εk(ℓ2

∞) with ℓ2k

∞ , as well as their dual spaces.
We find

(1.3) τk(H)k = sup
α,β ∈{−1,1}2k

〈
α, H⊗kβ

〉
⩽
(√

2
)k

,

by the Cauchy–Schwarz inequality and the fact that 2k/2H⊗k is an orthog-
onal matrix. Consider the vector x = (1, 1, 1, −1), which is an eigenvector
for H⊗2 with eigenvalue 1/2. When k = 2p is even, the choice α = β = x⊗p

shows that τk(H) =
√

2. When k is odd, the inequality in (1.3) is strict (the
left-hand side is a rational number and the right-hand side is irrational)
and therefore τk(H) <

√
2. We have τ∞(H) =

√
2 < 2 = ∥H∥N(ℓ2

∞→ℓ2
1) and

(ℓ2
∞, ℓ2

1) does not have the NTP.

In Section 5.2 we find that many natural examples of pairs of normed
spaces do not have the NTP. However, there are pairs of distinct normed
spaces (X, Y ) which have the NTP. For example, this is the case when
either X or Y is Euclidean:

Theorem 1.5. — If X, Y are finite-dimensional normed spaces and one
of them is Euclidean, then (X, Y ) has the NTP.

We prove Theorem 1.5 in Section 5 and in Section 7 we generalize it to
infinite-dimensional Banach spaces. It is a natural question, whether there
exist pairs of non-Euclidean spaces with the NTP. We leave this question
open.

Structure of the paper

Section 2 gathers background from Banach spaces theory. Section 3 dis-
cusses elementary properties of the tensor radii. A crucial ingredient to all
our arguments is Lemma 3.4, which gives an upper bound on the tensor
radius of an operator in terms of its factorization through Euclidean spaces.

ANNALES DE L’INSTITUT FOURIER
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This lemma is especially powerful when combined with the John and/or
Loewner ellipsoids of normed spaces.

In Section 4, we focus on the tensor radius of a space and prove Theo-
rems 1.1 and 1.2. The first step is Theorem 4.2, which states that the tensor
radius of the space ℓn

2 equals n. We obtain this result by showing that a
uniformly chosen random vector is typically “very entangled”.

In Section 5 we study the tensor radii of linear operators and focus on
when they coincide with the nuclear norm. In Section 5.1 we show that the
tensor radius for a pair (X, Y ) of normed spaces coincides with the nuclear
norm when either X or Y is Euclidean (thereby proving Theorem 1.5).
In Section 5.2 we identify examples of spaces where the tensor radius does
not coincide with the nuclear norm.

In Section 6 we study some natural questions about the tensor radius
including whether it is a continuous or a norm (see Section 6.1), whether it
is multiplicative (see Section 6.2), or for which spaces it attains its minimal
possible value (see Section 6.3). While we answer some of these questions,
we leave open many questions for future research. In Section 7 we discuss
extensions of our work to infinite dimensional Banach spaces.

2. Notation and preliminaries

In most of the paper, we restrict to finite-dimensional normed spaces
over a field K which is either R or C. Extensions to infinite dimensions are
briefly discussed in Section 7. Let X be a finite-dimensional real or complex
normed space. We denote its unit ball by BX and its dual space by X∗.
If Y is another finite-dimensional normed space, we denote by L(X, Y ) the
space of linear operators from X to Y .

2.1. Tensor norms

Let X, Y be finite-dimensional normed spaces. A cross norm is a norm ∥·∥
on X ⊗ Y satisfying the conditions

∥x ⊗ y∥ = ∥x∥X ∥y∥Y and ∥x∗ ⊗ y∗∥∗ = ∥x∗∥X∗ ∥y∗∥Y ∗

for every x ∈ X, y ∈ Y , x∗ ∈ X∗, y∗ ∈ Y ∗, where ∥ · ∥∗ is the dual norm
to ∥ · ∥. Important examples of cross norms are the injective norm given by

∥z∥ε = sup
{

|(x∗ ⊗ y∗)(z)| : x∗ ∈ BX∗ , y∗ ∈ BY ∗

}
,

TOME 0 (0), FASCICULE 0



6 Guillaume AUBRUN & Alexander MÜLLER-HERMES

for z ∈ X ⊗ Y , and the projective norm, defined as

∥z∥π = inf
{

n∑
i=1

∥xi∥X∥yi∥Y : n ∈ N, z =
n∑

i=1
xi ⊗ yi

}
.

These cross norms are extremal since any cross norm ∥·∥ on X ⊗Y satisfies
the inequalities ∥ · ∥ε ⩽ ∥ · ∥ ⩽ ∥ · ∥π.

We denote by X ⊗ε Y (resp., X ⊗π Y ) the space X ⊗Y equipped with the
injective (resp., projective) norm. These norms are in duality: (X ⊗π Y )∗

identifies with X∗ ⊗ε Y ∗ and (X ⊗ε Y )∗ identifies with X∗ ⊗π Y ∗. All these
definitions and properties have natural extensions to the tensor product of
more than two spaces, leading to the definition of ∥ · ∥εk(X) and ∥ · ∥πk(X)
given in the introduction. We will denote by εk(X) and πk(X) the space
X⊗k equipped with the injective and projective norm, respectively.

In the special case of Euclidean spaces, another cross norm plays a special
role: if X, Y are Euclidean spaces, equipped with inner products ⟨·, ·⟩X

and ⟨·, ·⟩Y , we may define uniquely an inner product on X ⊗ Y by the
formula

⟨x1 ⊗ y1, x2 ⊗ y2⟩ = ⟨x1, x2⟩X⟨y1, y2⟩Y

for every x1, x2 ∈ X and y1, y2 ∈ Y . The corresponding Euclidean norm,
called the Hilbert–Schmidt norm and denoted ∥ · ∥HS, is a cross norm. This
definition extends immediately to k ⩾ 2 factors and we denote by ∥·∥HSk(X)
the Hilbert–Schmidt norm on X⊗k.

A tensor norm α is the data, for each pair (X, Y ) of finite-dimensional
normed spaces, of a cross norm ∥·∥X⊗αY on X ⊗Y , satisfying the following
axiom called the metric mapping property: if X, X ′, Y , Y ′ are finite-
dimensional normed space and S ∈ L(X, X ′), T ∈ L(Y, Y ′), then

∥S ⊗ T∥X⊗αY →X′⊗αY ′ = ∥S∥ · ∥T∥.

Both the injective norm ε and the projective norm π are tensor norms.

2.2. Operators, nuclear norm and trace duality

Consider finite-dimensional normed spaces X, Y . The operator norm of
an operator T ∈ L(X, Y ) is given by

∥T∥X→Y = sup
x∈BX

∥Tx∥Y ,

and its nuclear norm by

∥T∥N(X→Y ) = inf
∑

i

∥yi∥Y ∥x∗
i ∥X∗ ,

ANNALES DE L’INSTITUT FOURIER
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where the infimum ranges over so-called nuclear decompositions T (·) =∑
i x∗

i (·)yi with y1, . . . , yn ∈ Y and x∗
1, . . . , x∗

n ∈ X∗. If there is no ambigu-
ity,we may write ∥T∥ instead of ∥T∥X→Y and ∥T∥N instead of ∥T∥N(X→Y ).
The operator and nuclear norms satisfy the ideal property: given operators
T ∈ L(X0, X), S ∈ L(X, Y ), R ∈ L(Y, Y0), we have

∥RST∥X0→Y0 ⩽ ∥R∥Y →Y0 ∥S∥X→Y ∥T∥X0→X ,

∥RST∥N(X0→Y0) ⩽ ∥R∥Y →Y0 ∥S∥N(X→Y ) ∥T∥X0→X .

The space L(X, Y ) can be canonically identified with X∗ ⊗ Y ; under this
identification, the operator and nuclear norms on L(X, Y ) correspond
respectively to the injective and projective norms on X∗ ⊗ Y . Then, the
duality between injective and projective norms translates into the trace
duality: for any T ∈ L(X, Y ), we have

(2.1) ∥T∥N(X→Y ) = sup
∥Q∥Y →X ⩽1

|Tr[QT ]|.

2.3. John and Loewner ellipsoids

Here, we review standard facts about John and Loewner ellipsoids and
refer to [18, Section 15] for details. We set K to be either R or C and let
X be an n-dimensional normed space. If X is a complex vector space, we
denote by X its conjugate vector space, i.e., the space X with the scalar
multiplication defined by (λ, x) 7→ λx for all (λ, x) ∈ C × X. If X is a real
vector space, we set X = X. In the complex case, the identity map defines
an isometric anti-isomorphism between X and X. We may also identify ℓn

2
and (ℓn

2 )∗ by the usual canonical anti-isomorphism. If u : ℓn
2 → X is a

linear map, its adjoint u∗ : X∗ → (ℓn
2 )∗ can then be considered as a linear

map from X
∗ to ℓn

2 by composing from both sides with the canonical anti-
isomorphisms from above.

We fix a Haar measure on X which we call the volume. This measure is
unique up to a multiplicative constant (see [9, p. 263, Theorem C]), and the
precise choice is irrelevant for our purpose. More concretely, we may realize
the volume as the pushforward of the Lebesgue measure on Kn under an
arbitrary isomorphism between X and Kn.

An ellipsoid in X is the image of the Euclidean unit ball Bn
2 ⊂ ℓn

2 under a
linear bijective map. Among all ellipsoids containing BX , there is a unique
ellipsoid of minimal volume called the Loewner ellipsoid of X. If we denote
by ∥ ·∥L the norm on X for which the Loewner ellipsoid is the unit ball, we
have ∥·∥L ⩽ ∥·∥X and a vector x ∈ X such that ∥x∥L = ∥x∥X = 1 is called a

TOME 0 (0), FASCICULE 0



8 Guillaume AUBRUN & Alexander MÜLLER-HERMES

Loewner contact point. Dually, among all ellipsoids contained in BX , there
is a unique ellipsoid of maximal volume called the John ellipsoid of X. If we
denote by ∥ ·∥J the norm on X for which the John ellipsoid is the unit ball,
we have ∥ · ∥J ⩾ ∥ · ∥X and a vector x ∈ X such that ∥x∥J = ∥x∥X = 1 is
called a John contact point.

These ellipsoids are usually characterized in terms of resolutions of iden-
tity involving contact points. A resolution of identity in the space ℓn

2 is a
finite family (ai, λi)i ∈ I with ai unit vectors in ℓn

2 and λi > 0 such that

idℓn
2

=
∑
i∈I

λi⟨ai, ·⟩ai.

We necessarily have
∑

λi = n, as is seen by taking the trace on both sides.

Theorem 2.1 (see [18, Theorems 15.3 and 15.4]). — Let X be an n-
dimensional normed space and u : ℓn

2 → X be a linear bijection. Then
(1) The ellipsoid u(Bn

2 ) is the John ellipsoid of X if and only if ∥u∥ ⩽ 1
and there exists a resolution of identity (ai, λi)i ∈ I such that, for
every i ∈ I,

∥u(ai)∥X = 1 =
∥∥(u∗)−1(ai)

∥∥
X

∗ .

(2) The ellipsoid u(Bn
2 ) is the Loewner ellipsoid of X if and only if

∥u−1∥ ⩽ 1 and there exists a resolution of identity (ai, λi)i ∈ I such
that, for every i ∈ I,

∥u(ai)∥X = 1 =
∥∥(u∗)−1(ai)

∥∥
X

∗ .

We will need a corollary to Theorem 2.1. As explained above, if v :X →ℓn
2

is a linear map, its adjoint v∗ : (ℓn
2 )∗ → X∗ can be considered as a linear

map from ℓn
2 to X

∗. With this convention we have the following identity

(2.2) v∗(a)(x) = ⟨a, v(x)⟩,

for all x ∈ X and a ∈ ℓn
2 , where on the left-hand-side the element x is

considered to be in the conjugate space X. With this we can prove the
following corollary to Theorem 2.1:

Corollary 2.2. — Let X be an n-dimensional normed space.
(1) If u : ℓn

2 → X is such that u(Bn
2 ) is the John ellipsoid of X, then∥∥(uu∗)−1∥∥

N(X→X
∗) ⩽ n.

(2) If u : ℓn
2 → X is such that u(Bn

2 ) is the Loewner ellipsoid of X,
then

∥uu∗∥N(X
∗→X) ⩽ n.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Let (ai, λi)i ∈ I a resolution of identity given by Theorem 2.1.
For i ∈ I, set x∗

i = (u∗)−1(ai), which is a unit vector in X
∗. For every

x ∈ X, we have∑
i∈I

λi · x∗
i (x) · x∗

i = (u∗)−1

(∑
i∈I

λi ·
〈
ai, u−1(x)

〉
· ai

)
= (u∗)−1u−1(x),

where we used (2.2) for the linear map u−1 : X → ℓn
2 . Therefore, we have∥∥(uu∗)−1∥∥

N(X
∗→X) ⩽

∑
i∈I

λi∥x∗
i ∥2

X∗ ⩽ n,

proving (1). The proof of (2) is similar. □

2.4. Banach–Mazur distance

Let X, Y be Banach spaces. The Banach–Mazur distance between X

and Y is given by

d(X, Y ) = inf
{

∥U∥X→Y

∥∥U−1∥∥
Y →X

: U : X −→ Y linear bijection
}

.

For 1 ⩽ p ⩽ ∞ and an integer n ⩾ 1, denote by ℓn
p the space (Kn, ∥ · ∥p)

where ∥ · ∥p is the usual p-norm. For an n-dimensional normed space X,
we set

dX := d(X, ℓn
2 ).

A standard estimate, which can be deduced from Theorem 2.1, is that

dX ⩽
√

n

for every n-dimensional normed space X.

2.5. Spaces with enough symmetries

Let X be a finite-dimensional normed space. We say that an invertible
linear map U : X → X is a symmetry of X if it satisfies ∥Ux∥X = ∥x∥X

for every x ∈ X. The symmetries of X form a compact group which we
denote by G(X).

Following [18, Section 16], we say that X has enough symmetries if every
linear map T : X → X satisfying TU = UT for each symmetry U ∈ G(X) is
a multiple of idX . The class of spaces with enough symmetries includes the
spaces ℓn

p , and normed spaces obtained by equipping the space of matrices
with a unitarily invariant norm such as the Schatten p-norms.

TOME 0 (0), FASCICULE 0



10 Guillaume AUBRUN & Alexander MÜLLER-HERMES

In a space with enough symmetries, there is (up to a positive scalar
multiple) a unique inner product ⟨·, ·⟩ which is invariant, i.e., such that
⟨U(x), U(y)⟩ = ⟨x, y⟩ for every x, y ∈ X and U ∈ G(X). Since the inner
product associated to either the John or the Loewner ellipsoid are invariant,
it follows that for a space with enough symmetries, the John and Loewner
ellipsoids are proportional.

Let X be a space with enough symmetries, and dU the Haar measure
on G(X). For any linear operator T : X → X, we have

(2.3)
∫

G(X)
U−1TUdU = Tr[T ] idX

dim(X) ,

where Tr denotes the trace on L(X, X).

3. Basic properties of τk and τ∞

3.1. Existence of τ∞ and behaviour under transformations

We now investigate more systematically the properties of the quanti-
ties τk and τ∞ (see (1.1) for the definition). We first show that

(3.1) ∥T∥X→Y ⩽ τk(T ) ⩽ ∥T∥N(X→Y ).

The left inequality follows by restricting the supremum in (1.1) to tensors
of the form z = x⊗k for x ∈ X. To prove the right-hand side, consider a
nuclear decomposition of the form T (·) =

∑
i x∗

i (·)yi with x∗
1, . . . , x∗

n ∈ X∗

and y1, . . . , yn ∈ Y . We have∥∥T ⊗k(z)
∥∥

πk(Y ) ⩽
∑

i1,...,ik

∣∣(x∗
i1

⊗ · · · ⊗ x∗
ik

)
(z)
∣∣ · ∥yi1 ⊗ · · · ⊗ yik

∥πk(Y )

⩽
∑

i1,...,ik

∥x∗
i1

∥X∗ . . . ∥x∗
ik

∥X∗∥z∥εk(X)∥yi1∥Y . . . ∥yik
∥Y

=
(∑

i

∥x∗
i ∥X∗∥yi∥Y

)k

∥z∥εk(X),

for every z ∈ X⊗k, and the result follows by optimizing over decompositions
of T .

Lemma 3.1. — Let X, Y be finite-dimensional normed spaces and T :
X → Y a linear map. The limit of the sequence (τk(T ))k ∈ N exists, and

τ∞(T ) := lim
k →∞

τk(T ) = sup
k⩾1

τk(T ).

ANNALES DE L’INSTITUT FOURIER
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Proof. — For any integers k1, k2 ⩾ 1, we have

(3.2) (τk1+k2(T ))k1+k2 ⩾ (τk1(T ))k1(τk2(T ))k2 ,

as can be seen by restricting the supremum defining τk1+k2(T ) to ele-
ments of the form z1 ⊗ z2, for z1 ∈ X⊗k1 , z2 ∈ X⊗k2 . The conclusion
follows by applying Fekete’s lemma [7] to the sequence (tk)k given by
tk = k log(τk(T )). □

By (3.2) the inequality τk(T ) ⩽ τl(T ) holds whenever k divides l, but we
have seen in Example 1.4 that the sequence (τk(T ))k is in general not mono-
tonically increasing. An immediate consequence of (3.1) is the inequality

(3.3) τ∞(T ) ⩽ ∥T∥N(X→Y ).

The next lemma shows that the tensor radius behaves nicely under ad-
joints.

Lemma 3.2. — Let X, Y be finite-dimensional normed spaces, and T ∈
L(X, Y ). Then τk(T ) = τk(T ∗) for any k ∈ N ∪ {∞}.

Proof. — For any k ⩾ 1, we have∥∥T ⊗k
∥∥

εk(X)→πk(Y ) =
∥∥(T ∗)⊗k

∥∥
εk(Y ∗)→πk(X∗)

by the duality between the injective and projective norms. The result fol-
lows. □

By Lemma 3.2, a pair (X, Y ) of finite-dimensional normed spaces has
the NTP (see Definition 1.3) if and only if (Y ∗, X∗) has the NTP. Tensor
radii also satisfy the ideal property, in the following sense.

Lemma 3.3. — Let X, X ′, Y , Y ′ be finite-dimensional normed spaces
and T ∈ L(X, Y ). For A ∈ L(X ′, X), B ∈ L(Y, Y ′) and every k ∈ N∪ {∞}
we have

τk(BTA) ⩽ ∥B∥τk(T )∥A∥.

Proof. — It suffices to prove the result for finite k. We combine the ideal
property of the operator norm and the metric mapping property of the
injective and projective norms to obtain

τk(BTA) ⩽
∥∥A⊗k

∥∥1/k

εk(X′)→εk(X)τk(T )
∥∥B⊗k

∥∥1/k

πk(Y )→πk(Y ′)

= ∥A∥τk(T )∥B∥. □
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12 Guillaume AUBRUN & Alexander MÜLLER-HERMES

3.2. Upper bound by factorization through ℓ2

The following lemma is a useful tool to find upper bounds on τ∞(T ) by
considering factorizations of the operator T through Euclidean spaces.

Lemma 3.4. — Let X and Y denote finite-dimensional normed spaces.
For any d ∈ N and any pair of linear operators

Q1 : ℓd
2 −→ Y and Q2 : X −→ ℓd

2,

we have
τ∞(Q1Q2) ⩽ ∥Q1Q∗

1∥
1
2
N(Y

∗→Y )∥Q∗
2Q2∥

1
2
N(X→X

∗).

The operator Q∗
1 appearing in Lemma 3.4 is seen as a linear operator

from Y
∗ to ℓd

2 as explained in Section 2.3. Similarly, the operator Q∗
2 is

seen as a linear operator from ℓd
2 to X

∗.
Proof. — For any k ∈ N, we have∥∥(Q1Q2)⊗k

∥∥
εk(X)→πk(Y ) ⩽

∥∥Q⊗k
2
∥∥

εk(X)→HSk(ℓd
2)
∥∥Q⊗k

1
∥∥

HSk(ℓd
2)→πk(Y ).

Fix an element z ∈ X⊗k with ∥z∥εk(X) ⩽ 1, together with a nuclear de-
composition Q∗

2Q2(·) =
∑

i x′
i(·)xi with xi, x′

i ∈ X∗. Using (2.2), we find
that∥∥Q⊗k

2 (z)
∥∥2

HSk(ℓd
2) =

[
(Q∗

2Q2)⊗k(z)
]
(z)

⩽
∑

i1,...,ik

|(xi1 ⊗ · · · ⊗ xik
)(z)| ·

∣∣∣(x′
i1

⊗ · · · ⊗ x′
ik

)(z)
∣∣∣

⩽

(∑
i

∥x′
i∥X∗∥xi∥X∗

)k

.

Optimizing over z and over nuclear decompositions of Q∗
2Q2, we conclude

that ∥∥Q⊗k
2
∥∥

εk(X)→HSk(ℓd
2) ⩽ ∥Q∗

2Q2∥k/2
N(X→X

∗).

By taking adjoints and using the previous inequality, we obtain∥∥Q⊗k
1
∥∥

HSk(ℓd
2)→πk(Y ) =

∥∥(Q∗
1)⊗k

∥∥
εk(Y ∗)→HSk(ℓd

2) ⩽ ∥Q1Q∗
1∥k/2

N(Y
∗→Y ).

Combining the previous bounds and taking the limit k → ∞ we have

τ∞(Q1Q2) ⩽ ∥Q1Q∗
1∥

1
2
N(Y

∗→Y )∥Q∗
2Q2∥

1
2
N(X→X

∗),

and the proof is finished. □
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Remark 3.5. — Here is a reformulation of Lemma 3.4: given a map
T : X → Y , we have

τ∞(T ) ⩽ inf
{∥∥∥∑x∗

i (·)x∗
i

∥∥∥1/2

N(X→X
∗)

∥∥∥∑ yi(·)yi

∥∥∥1/2

N(Y
∗→Y )

}
⩽ ∥T∥N(X→Y ),

where the infimum is taken over decompositions T (·) =
∑

x∗
i (·)yi, with

(x∗
i ) ⊂ X∗ and (yi) ∈ Y .

We will often apply Lemma 3.4 together with Corollary 2.2 to obtain
upper bounds that are often tight. We will use this approach in the following
sections.

4. Tensor radii of normed spaces

In this section, we study the tensor radius ρ∞(X) = τ∞(idX) of a normed
space X. We first gather some elementary properties.

Proposition 4.1. — For n-dimensional normed spaces X, Y we have:
(1) ρk(X) = ρk(X∗) for every k ∈ N ∪ {∞}.
(2) ρk(X) ⩽ d(X, Y )ρk(Y ) for every k ∈ N ∪ {∞}.
(3) ρk(X) ⩽ n1−1/k for every k ∈ N, and ρ∞(X) ⩽ n.

Proof. — (1) is Lemma 3.2 applied to T = idX . The inequality (2) can
be deduced from the ideal property (Lemma 3.3) by optimizing over linear
bijections U : Y → X. To obtain (3), consider an Auerbach basis (xi)
for X, i.e., such that ∥xi∥X = ∥x∗

i ∥X∗ = 1, where (x∗
i ) denotes the basis

of X∗ dual to (xi). Any z ∈ X⊗k can be expanded as

z =
∑

i1,...,ik−1

xi1 ⊗ · · · ⊗ xik−1 ⊗ yi1...ik−1

for some yi1,...,ik−1 ∈ X. We have

∥z∥πk(X) ⩽
∑

i1,...,ik−1

∥yi1...ik−1∥X∗

⩽ nk−1 max
i1,...,ik−1

∥yi1...ik−1∥X∗

⩽ nk−1∥z∥εk(X)

and the result follows. □
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The quantity ρ2(X) (or rather, its square ρ2(X)2) was studied extensively
in [3], where it has been shown that

n
1
4 −o(1) ⩽ ρ2(X) ⩽

√
n,

as n = dim(X) tends to infinity. Both of these estimates are sharp since
we have, for example, ρ2(ℓn

2 ) =
√

n and ρ2(ℓn
1 ) ⩽ (2n) 1

4 .

4.1. Tensor radii of Euclidean spaces

Our first result determines the tensor radius of a Euclidean space.

Theorem 4.2. — For every n ⩾ 1, we have ρ∞(ℓn
2 ) = n.

Our proof of Theorem 4.2 uses the following lemma, which is an imme-
diate extension of the n = 2 case which appears in [6, Proposition 8.28].
It is based on a standard random construction, whose proof we include for
the reader’s convenience.

Lemma 4.3. — Given integers n, k ⩾ 2, there exists a tensor z ∈ (ℓn
2 )⊗k

such that ∥z∥HSk(ℓn
2 ) = 1 and

∥z∥εk(ℓn
2 ) ⩽

Cn

√
k log k

nk/2 ,

where Cn is a constant which does not depend on k.

Observe that Lemma 4.3 is not sharp for k = 2, since the minimal value
of ∥z∥ε2(ℓn

2 ) under the constraint that ∥z∥HS2(ℓn
2 ) = 1 is equal to 1/

√
n. We

are going to apply the lemma for k tending to +∞.

Proof. — The proof is a standard random construction. Consider a sub-
set N ⊂ Bn

2 which is a 1
2k -net, i.e., such that for every x ∈ Bn

2 there is
x′ ∈ N such that ∥x − x′∥ ⩽ 1

2k . There exists such an N with the property
that card N ⩽ (4k + 1)2n (see [19, Corollary 4.2.13]). Denote by N ⊗k the
set of vectors of the form y1 ⊗ · · · ⊗ yk for y1, . . . , yk ∈ N .

Given x1, . . . , xk ∈ Bn
2 , let x′

1, . . . , x′
k ∈ N such that ∥xi − x′

i∥ ⩽ 1
2k for

every i. Let ξ = x1 ⊗ · · · ⊗ xk and ξ′ = x′
1 ⊗ · · · ⊗ x′

k. For a tensor z ∈ X⊗k,
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we have by the triangle inequality

|⟨z, ξ⟩| ⩽ |⟨z, ξ′⟩| +
k∑

i=1

∣∣〈z, x1 ⊗ · · · ⊗ xi−1 ⊗ (xi − x′
i) ⊗ x′

i+1 ⊗ · · · ⊗ x′
k

〉∣∣
⩽ |⟨z, ξ′⟩| +

k∑
i=1

∥z∥εk(ℓn
2 )∥xi − x′

i∥

⩽ sup
η ∈N ⊗k

|⟨z, η⟩| + 1
2∥z∥εk(ℓn

2 ).

By taking the supremum over ξ, we obtain ∥z∥εk(ℓn
2 ) ⩽ 2 sup{|⟨z, η⟩| :

η ∈ N ⊗k}. Assume now that z is chosen at random uniformly on the
Hilbert–Schmidt unit sphere in (ℓn

2 )⊗k. We use the following lemma (see
for example [6, Lemma 6.1 and eq. 4.32]).

Lemma 4.4. — Let N be an integer. Choose z at random according
to the uniform measure on the unit sphere in ℓN

2 . For every finite subset
P ⊂ BN

2 , we have

E sup
x∈P

|⟨z, x⟩| ⩽
C
√

log card(P )√
N

,

where C is a constant.

Applying Lemma 4.4 with N = nk and P = N ⊗k shows that

E∥z∥εk(ℓn
2 ) ⩽

2C
√

log card(N ⊗k)√
N

⩽
2C
√

2nk log(4k + 1)
nk/2 .

This implies the existence of a tensor z satisfying the desired condition
with Cn = O(

√
n). □

An improved version of Lemma 4.3 can be proved in the real case:
there is a tensor z in the real space (ℓn

2 )⊗k such that ∥z∥HSk(ℓn
2 ) = 1 and

∥z∥εk(ℓn
2 ) ⩽ Cn/nk/2 (see [4, Lemma 4.4]). It seems to be unknown whether

such an improvement is possible in the complex case, even for n = 2 (see [6,
Problem 8.27]).

Proof of Theorem 4.2. — By Proposition 4.1, we have ρ∞(ℓn
2 ) ⩽ n and

we only need to prove that ρ∞(ℓn
2 ) ⩾ n. Fix k ⩾ 1. The Hilbert–Schmidt

norm on (ℓn
2 )⊗k satisfies the inequality ∥z∥2

HSk(ℓn
2 ) ⩽ ∥z∥πk(ℓn

2 )∥z∥εk(ℓn
2 ) for

every z ∈ (ℓn
2 )⊗k. Therefore, we have

ρk(ℓn
2 ) ⩾ sup

z ∈(ℓn
2 )⊗k

(
∥z∥HSk(ℓn

2 )

∥z∥εk(ℓn
2 )

)2/k

.

Using Lemma 4.3 and taking the limit k → ∞ shows that ρ∞(ℓn
2 ) ⩾ n. □
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4.2. Proof of Theorem 1.1

Let X be an n-dimensional normed space. Since ρ∞(ℓn
2 ) = n, we obtain

the lower bound

(4.1) ρ∞(X) ⩾ ρ∞(ℓn
2 )

dX
⩾

√
n

using Proposition 4.1 and Theorem 4.2.
It remains to show that ρ∞(X) < n if we assume that X is not Euclidean.

Let Q1 : ℓn
2 → X such that Q1(Bn

2 ) is the John ellipsoid of X and set
Q2 = Q−1

1 . By Corollary 2.2, we have ∥Q∗
2Q2∥N(X→X

∗) ⩽ n. Since X is not
Euclidean, we have Q1(Bn

2 ) ⊊ BX and therefore there is a unit vector a1 ∈
ℓn

2 such that ∥Q1(a1)∥X < 1. Next, we complete {a1} to an orthonormal
basis (a1, . . . , an) of ℓn

2 and note that ∥Q1(ai)∥X ⩽ 1 for every i. For every
φ ∈ X∗, we have

(Q1Q∗
1)(φ) =

n∑
i=1

(Q1(ai))(φ)Q1(ai)

and therefore ∥Q1Q∗
1∥N(X

∗→X) ⩽
∑n

i=1 ∥Q1(ai)∥2
X < n. Using Lemma 3.4,

we find that ρ∞(X) = τ∞(idX) < n.

4.3. Proof of Theorem 1.2

We start with an easy lemma: if the John and Loewner ellipsoids are
proportional, they realize the infimum in the Banach–Mazur distance to
the Euclidean space.

Lemma 4.5. — Let X be an n-dimensional normed space with John
ellipsoid E and with Loewner ellipsoid αE for some α ⩾ 1. Then α = dX .

Proof. — The inequality dX ⩽ α is immediate. Conversely, if an ellipsoid
F ⊂ X and a number β ⩾ 1 satisfy F ⊂ BX ⊂ βF , then by the definition
of the John and Loewner ellipsoids,

vol(F) ⩽ vol(E), vol(βF) ⩾ vol(αE)

from which we infer that β ⩾ α. □

Proof of Theorem 1.2. — We already noticed in (4.1) that the lower
bound ρ∞(X) ⩾ n/dX holds for every n-dimensional space X. Set α =
dX , let Q1 : ℓn

2 → X such that Q1(Bn
2 ) is the John ellipsoid of X and
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set Q2 = Q−1
1 . By Lemma 4.5, αQ1(Bn

2 ) is the Loewner ellipsoid of X.
Applying both inequalities from Theorem 2.1 gives

∥Q∗
2Q2∥N(X→X

∗) ⩽ n

∥(αQ1)(αQ∗
1)∥N(X

∗→X) ⩽ n.

Using Lemma 3.4, this implies

ρ∞(X) ⩽ ∥Q∗
2Q2∥1/2

N(X→X
∗)∥Q1Q∗

1∥1/2
N(X

∗→X) ⩽
n

α
,

as needed. □

As a corollary to Theorem 1.2, we compute the tensor radius of many
natural examples of finite-dimensional normed spaces:

Corollary 4.6. — For n ⩾ 1 and 1 ⩽ p ⩽ ∞,
• the tensor radius of the space ℓn

p equals

ρ∞
(
ℓn

p

)
= n1−| 1

2 − 1
p |

• the tensor radius of the space Sn
p , defined as the space of n × n

matrices equipped with Schatten p-norm ∥X∥Sp
= (Tr[|X|p])1/p,

equals
ρ∞
(
Sn

p

)
= n2−| 1

2 − 1
p |.

5. Tensor radii of operators

5.1. Proof of Theorem 1.5

We start by restating Theorem 1.5:

Theorem 5.1 (Theorem 1.5, restated). — Consider n ∈ N and a finite-
dimensional normed space Y . For every operator T ∈ L(ℓn

2 , Y ) or T ∈
L(Y, ℓn

2 ), we have

(5.1) τ∞(T ) = ∥T∥N .

Proof. — The inequality τ∞(T ) ⩽ ∥T∥N holds by (3.3). Consider T ∈
L(ℓn

2 , Y ), and let Q ∈ L(Y, ℓn
2 ) such that ∥Q∥ ⩽ 1. Let dU be the Haar

measure on the orthogonal group O(n) (in the complex case, the same
proof works by considering the unitary group U(n)). Define R : ℓn

2 → ℓn
2

by

(5.2) R :=
∫

O(n)
U−1QTUdU.
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18 Guillaume AUBRUN & Alexander MÜLLER-HERMES

By (2.3), we have R = α idℓn
2

with α = Tr[QT ]/n. On the other hand, for
every k ∈ N, we have

R⊗k =
∫

O(n)
· · ·
∫

O(n)

(
U−1

1 ⊗ · · · ⊗ U−1
k

)
(QT )⊗k(U1 ⊗· · ·⊗Uk)dU1 . . . dUk.

Using the triangle inequality, the ideal property of the operator norm,
and taking the kth root shows that τk(R) ⩽ τk(QT ). Taking the limit
k → ∞ gives

τ∞(R) ⩽ τ∞(QT ) ⩽ τ∞(T ).
We have τ∞(R) = ατ∞(idℓn

2
) = Tr[QT ], using Theorem 4.2. We proved

that

(5.3) sup
∥Q∥⩽1

Tr[QT ] ⩽ τ∞(T )

By trace duality (cf (2.1)), the left-hand side of (5.3) is exactly the nuclear
norm ∥T∥N , completing the proof.

If T ∈ L(Y, ℓn
2 ), the proof is completely similar by considering the supre-

mum of Tr[QT ] over Q : ℓn
2 → Y such that ∥Q∥ ⩽ 1. □

The following corollary establishes a general lower bound on τ∞ in terms
of the nuclear norm. This also generalizes the bound from (4.1) on ρ∞.

Corollary 5.2. — Let X, Y be finite dimensional normed spaces. We
have

(5.4) τ∞(T ) ⩾ ∥T∥N

min(dX , dY ) ,

for every operator T ∈ L(X, Y ).

Proof. — Assume that dim X = n and that dX ⩽ dY (if dY > dX , then
the proof works in the same way). Consider a bijection U ∈ L(ℓn

2 , X). We
have

∥T∥N ⩽ ∥TU∥N

∥∥U−1∥∥ = τ∞(TU)
∥∥U−1∥∥ ⩽ τ∞(T )∥U∥ ·

∥∥U−1∥∥
where the equality follows from Theorem 5.1, and the inequalities from the
ideal property of τ∞ and ∥ · ∥N . The result follows by taking the infimum
over U . □

5.2. Normed spaces without the nuclear tensorization property

Theorem 1.1 shows that for every non-Euclidean space X the pair (X, X)
does not have the nuclear tensorization property (NTP, see Definition 1.3).
Moreover, Theorem 1.5 shows that (X, Y ) has the NTP when X or Y
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is Euclidean, and one may ask whether the converse holds. In the case of
spaces of the same dimension, the following criterion shows that a large
class of examples fails the NTP.

Proposition 5.3. — Let X, Y be finite-dimensional normed spaces of
the same dimension n. Let E be the John ellipsoid of X and F be the
Loewner ellipsoid of Y . Assume that T : X → Y is a linear map such
that T (E) = F and such that, whenever x is a John contact point of X,
T (x) is not a Loewner contact point of Y . Then τ∞(T ) < ∥T∥N(X→Y ) and
therefore (X, Y ) fails the NTP.

Proof. — Let u : ℓn
2 → X such that u(Bn

2 ) is the John ellipsoid of X.
By Corollary 2.2, we have the inequalities ∥(uu∗)−1∥N(X→X

∗) ⩽ n and
∥(Tu)(Tu)∗∥N(Y

∗→Y ) ⩽ n. Applying Lemma 3.4 for Q1 = Tu and Q2 =
u−1 gives

τ∞(T ) ⩽ ∥(Tu)(Tu)∗∥1/2
N(Y

∗→Y )
∥∥∥u−1(u−1)∗

∥∥∥1/2

N(X→X
∗)

⩽ n.

Let a ∈ ℓn
2 such that ∥a∥2 = 1. We have ∥u(a)∥X ⩽ 1 ⩽ ∥Tu(a)∥Y . The

first inequality is an equality when u(a) is a John contact point of X and
the second inequality is an equality when Tu(a) is a Loewner contact point
of Y . By hypothesis, both cannot be equalities and therefore ∥u(a)∥X <

∥Tu(a)∥Y and ∥T −1∥Y →X < 1 by compactness. By trace duality, we have

n = tr(idX) ⩽ ∥T∥N(X→Y )
∥∥T −1∥∥

Y →X
< ∥T∥N(X→Y )

and therefore τ∞(T ) < ∥T∥N(X→Y ). □

Proposition 5.3 can be applied when X (resp., Y ) has few John (resp.,
Loewner) contact points. For example, real spaces with polyhedral unit
balls have finitely many John and Loewner contact points; in this case
the hypothesis of Proposition 5.3 is satisfied for a generic map T . We now
consider the case of a pair (ℓ2

∞, Y ).

Proposition 5.4. — Let Y be a finite-dimensional normed space. The
pair (ℓ2

∞, Y ) has the NTP if and only if Y is Euclidean.

Proof. — It suffices to show that (ℓ2
∞, Y ) fails the NTP is we assume

that Y is not Euclidean. We use a classical characterization of Euclidean
spaces [17]: a norm ∥ · ∥ is Euclidean if and only if the inequality ∥x +
y∥2 + ∥x − y∥2 ⩾ 4 holds for every unit vectors x, y. (Note that while [17]
considers only real spaces, the characterization extends easily to complex
spaces, see [1, p. 3]). Since Y is not Euclidean, it contains unit vectors x,
y such that ∥x + y∥2 + ∥x − y∥2 < 4.
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Consider the operator T : ℓ2
∞ → Y given by T (a, b) = ax + by. By [18,

Proposition 8.7], we have ∥T∥N(ℓ2
∞→Y ) = ∥x∥ + ∥y∥ = 2. We now prove

that

(5.5) τ∞(T ) ⩽
(
∥x + y∥2 + ∥x − y∥2)1/2

< 2.

To prove (5.5), write T = Q1Q2, where Q1 : ℓ2
2 → Y is given by Q1(a, b) =

a(x + y) + b(x − y) and Q2 : ℓ2
∞ → ℓ2

2 is given by Q2(a, b) = 1
2 (a + b, a − b).

By Lemma 3.4, we have

τ∞(T ) ⩽ ∥Q1Q∗
1∥1/2

N(Y
∗→Y )∥Q∗

2Q2∥1/2
N
(

ℓ2
∞→ℓ2

1

)
Since Q∗

2Q2 is the map (a, b) 7→ 1
2 (a, b), we have

∥Q∗
2Q2∥

N
(

ℓ2
∞→ℓ2

1

) = 1
2∥ idK2 ∥N(ℓ2

∞→ℓ2
1) = 1.

The map Q1Q∗
1 can be decomposed as (x + y)(·)(x + y) + (x − y)(·)(x − y);

this decomposition gives the bound ∥Q1Q∗
1∥N(Y ∗→Y )⩽∥x + y∥2+∥x − y∥2.

We obtained the inequality τ∞(T ) < 2 = ∥T∥N(ℓ2
∞→Y ), showing that

(ℓ2
∞, Y ) fails the NTP. □

Let Y be a normed space. We say that a subspace Y ′ ⊂ Y is 1-comple-
mented if there is a projection P : Y → Y ′ with ∥P∥ = 1. The next lemma
shows that the NTP is inherited by complemented subspaces.

Lemma 5.5. — Let X, Y be finite-dimensional normed spaces and X ′ ⊂
X, Y ′ ⊂ Y be 1-complemented subspaces. If (X, Y ) has the NTP, then
(X ′, Y ′) has the NTP.

Proof. — Let ι1 : X ′ → X, ι2 : Y ′ → Y be the inclusion maps, and
P1 : X → X ′, P2 : Y → Y ′ be projections of norm 1. Let T ∈ L(X ′, Y ′) a
linear map and set S = ι2TP1 ∈ L(X, Y ). The ideal property of the nuclear
norm and the NTP for (X, Y ) imply that

∥T∥N(X′→Y ′) = ∥P2Sι1∥N(X′→Y ′) ⩽ ∥S∥N(X→Y ) = τ∞(S).

Similarly, the ideal property of the tensor radius (see Lemma 3.3) implies
that τ∞(S) ⩽ τ∞(T ). We conclude that τ∞(T ) = ∥T∥N(X′→Y ′) and the
result follows. □

Let X be a finite-dimensional normed space containing a subspace iso-
metric to ℓ2

∞ (this includes in particular the spaces ℓn
∞ and, in the real

case, the spaces ℓn
1 ). Such a subspace is necessarily 1-complemented (this

follows from the Hahn–Banach theorem). It follows from Proposition 5.4
and Lemma 5.5 that (X, Y ) fails the NTP whenever Y is not Euclidean.
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Our methods also imply that the ℓp-spaces over the reals, denoted by
ℓn

p (R), only have the NTP in the Euclidean case.

Proposition 5.6. — Let m, n ⩾ 2 and p, q ∈ [1, ∞]. If (ℓm
p (R), ℓn

q (R))
has the NTP, then p = 2 or q = 2.

Proof. — By Lemma 5.5, we may assume that m = n = 2 (ℓn
p contains a

1-complemented subspace isometric to ℓ2
p). If p ̸= 2, the John contact points

of ℓ2
p (which coincide with the Loewner contact points of ℓ2

p∗ if 1/p+1/p∗ =
1), are the following 4 points (up to normalization){

(±1, 0) or (0, ±1) if p > 2
(±1, ±1) if p < 2.

If both p ̸= 2 and q ̸= 2, the fact that the pair (ℓ2
p, ℓ2

q) does not have
the NTP follows from Proposition 5.3, by choosing T : R2 → R2 to be a
rotation of angle not multiple of π/4. The result follows. □

Some natural pairs of spaces are not covered by the criterion of Propo-
sition 5.3. Examples of such pairs, for which we do not know whether they
have the NTP, are

(1) the pair (X, X∗), where X is the space R2 equipped with the norm

max(∥ · ∥2, (1 + ε)∥ · ∥∞)

for some small ε > 0,
(2) the pair (X, X∗), where X is the space ℓ2

1 ⊗π ℓ2
2,

(3) in the complex case, the pair (ℓ2
1, ℓ2

∞) (the previous example is ob-
tained by forgetting the complex structure). (Over C, ℓ2

1 and ℓ2
∞

are not isometric, so this is not covered by Proposition 5.4).
Note that these examples have enough symmetries.

6. Further questions about tensor radii and some answers

6.1. Is the tensor radius continuous, or even a norm?

One may wonder whether τk is a norm on the space L(X, Y ). Here is an
example showing that this is not the case in full generality.

Example 6.1. — Over the real field, consider the operators S, T : ℓ2
1 → ℓ2

1
given by the following matrices

S =
(

1 1/3
1/3 1

)
, T =

(
1/2 0
0 1

)
.
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One computes that τ2(S) =
√

2, τ2(S) = 3
2

√
2 and τ2(S + T ) =

√
155
24 , so

that
2.54 . . . ≈ τ2(S + T ) > τ2(S) + τ2(T ) ≈ 2.47 . . .

To obtain these values, we used the fact that the extreme points of the unit
ball for the norm ε2(ℓ2

1) are given by ±ei ⊗ej and 1
2 (η1e1 ⊗e1 +η2e1 ⊗e2 +

η3e2 ⊗ e1 + η4e2 ⊗ e2), where (ηi) is a permutation of either (1, 1, 1, −1) or
(1, −1, −1, −1).

Despite this counterexample, it turns out that τ2 is a norm in the special
case of L(ℓm

2 , ℓn
2 ). We have the following proposition, observed without

proof in [10]

Proposition 6.2. — Let m, n be integers. For T ∈ L(ℓm
2 , ℓn

2 ), the quan-
tity τ2(T ) coincides with the Hilbert–Schmidt norm given by ∥T∥HS =
(Tr[TT ∗])1/2.

Proof. — Consider T ∈ L(ℓm
2 , ℓn

2 ). If U ∈ L(ℓm
2 , ℓm

2 ) and V ∈ L(ℓn
2 , ℓn

2 )
are isometries, we have τ2(UTV ) = τ2(T ) by the ideal property of τ2
(Lemma 3.3). Using the singular value decompositions, it suffices to prove
the result when T is diagonal, i.e., of the form T =

∑min(m,n)
i=1 λieie

∗
i for

λi ⩾ 0. We have then

τ2(T )2 = sup
{

|⟨(T ⊗ T )(x), y⟩| : ∥x∥ℓm
2 ⊗εℓm

2
⩽ 1, ∥y∥ℓn

2 ⊗εℓn
2
⩽ 1
}

= sup
{∣∣Tr

[
TXTY t

]∣∣ : ∥X∥ℓm
2 →ℓm

2
⩽ 1, ∥Y ∥ℓn

2 →ℓn
2
⩽ 1
}

after identifying tensors with operators. For X, Y as above, we have∣∣Tr
[
TXTY t

]∣∣ ⩽ ∥T∥HS
∥∥XTY t

∥∥
HS ⩽ ∥T∥2

HS

with equality when X = idℓm
2

, Y = idℓn
2
, proving the result. □

We do not know whether τk is a norm on L(ℓm
2 , ℓn

2 ) for any other k ∈ N.
It would also be interesting to decide whether the tensor radius τ∞ is a
norm on L(X, Y ) (that question also appears in [11]). By Theorem 1.5 the
answer to this question is positive when X or Y is Euclidean. However, in
general we do not know the answer. We will now show a weaker version of
the triangle inequality, which implies that the tensor radius is a continuous
function.

Proposition 6.3. — For finite-dimensional normed spaces X, Y and
S, T ∈ L(X, Y ), we have

τ∞(S + T ) ⩽ τ∞(S) + ∥T∥N .

Using Corollary 5.2, the previous proposition implies:
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Corollary 6.4 (Weak triangle inequality). — Let X, Y be finite-di-
mensional normed spaces and S, T ∈ L(X, Y ). Then

τ∞(S + T ) ⩽ τ∞(S) + min(dX , dY )τ∞(T ).

We first prove a lemma:

Lemma 6.5. — For T ∈ L(X1, Y1), y ∈ Y2, and x∗ ∈ X∗
2 , we have

∥T ⊗ yx∗∥X1⊗εX2→Y1⊗πY2 = ∥T∥X1→Y1∥x∗∥X∗
2
∥y∥Y2 .

Proof. — For any z ∈ X1 ⊗ X2 we have

∥(T ⊗ yx∗)(z)∥Y1⊗πY2 = ∥T (zx)∥Y1∥y∥Y2 ,

for zx = (idX1 ⊗x∗)(z) ∈ X1, by the metric mapping property of π. Since
∥zx∥X1 ⩽ ∥x∗∥X∗

2
∥z∥X1⊗εX2 , we conclude that

∥(T ⊗ yx∗)(z)∥Y1⊗πY2 ⩽ ∥T∥X1→Y1∥x∗∥X∗
2
∥y∥Y2∥z∥X1⊗εX2 ,

showing one direction of the identity in the lemma. The other direction
follows by inserting z = z1 ⊗ z2 for a suitable choice of z1 and z2. □

Proof of Proposition 6.3. — Let T =
∑

i yix
∗
i denote a nuclear decom-

position. For integers j ⩽ k, Lemma 6.5 implies∥∥∥S⊗(k−j) ⊗ T ⊗j
∥∥∥

εk−j(X)⊗εεj(X)→πk−j(Y )⊗ππj(Y )

⩽
∑

i1,...,ij

∥∥∥S⊗(k−j) ⊗ yi1x∗
i1

⊗ · · · ⊗ yij
x∗

ij

∥∥∥
εk−j(X)⊗εεj(X)→πk−j(Y )⊗ππj(Y )

⩽
∥∥∥S⊗(k−j)

∥∥∥
εk−j(X)→πk−j(Y )

(∑
i

∥yi∥Y ∥x∗
i ∥X∗

)j

.

Using the associativity and commutativity of the injective and projective
tensor products, we may write

τk(S + T )k =
∥∥(S + T )⊗k

∥∥
εk(X)→πk(Y )

⩽
k∑

j =0

(
k

j

)∥∥∥S⊗(k−j) ⊗ T ⊗j
∥∥∥

εk−j(X)⊗εεj(X)→πk−j(Y )⊗ππj(Y )

⩽
k∑

j =0

(
k

j

)∥∥∥S⊗(k−j)
∥∥∥

εk−j(X)→πk−j(Y )

(∑
i

∥yi∥Y ∥x∗
i ∥X∗

)j

⩽

(
τ∞(S) +

∑
i

∥yi∥Y ∥x∗
i ∥X∗

)k

.

We conclude by taking k → ∞ and optimizing over nuclear decompositions
of T . □
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6.2. Is the tensor radius multiplicative?

Another natural question is whether the quantities τ∞ and ρ∞ are multi-
plicative under taking injective or projective tensor products. The examples
for which we know ρ∞ immediately give a counterexample:

ρ∞
(
ℓd

2 ⊗π ℓd
2
)

= ρ∞
(
Sd

1
)

= d3/2 < d2 = ρ∞
(
ℓd

2
)2

.

However, it turns out that τ∞ and ρ∞ are submultiplicative in the following
sense:

Proposition 6.6. — Let X, Y be finite dimensional normed spaces and
T ∈ L(X, Y ). Consider a cross norm ⊗α on X ⊗ X and a cross norm ⊗β

on Y ⊗ Y . Then

τ∞([T ⊗ T : X ⊗α X −→ Y ⊗β Y ]) ⩽ τ∞(T )2,

In particular, we have

ρ∞(X ⊗α X) ⩽ ρ∞(X)2,

for any tensor norm ⊗α.

We start with the following lemma.

Lemma 6.7. — For finite-dimensional normed spaces X and Y , we have

∥ · ∥πk(X⊗αY ) ⩽ ∥ · ∥πk(X⊗πY ) and ∥ · ∥εk(X⊗αY ) ⩾ ∥ · ∥εk(X⊗εY ),

for every cross norm ⊗α on X ⊗ Y .

Proof. — Combine the metric mapping property of πk and εk and the
inequality ∥ · ∥ε ⩽ ∥ · ∥α ⩽ ∥ · ∥π on X ⊗ Y . □

We can now present the proof of Proposition 6.6:
Proof of Proposition 6.6. — We consider the operator T ⊗T : X ⊗α X →

Y ⊗β Y . For every k ∈ N we have

τk(T ⊗ T )k = sup
z ∈(X ⊗X)⊗k

∥∥(T ⊗ T )⊗k(z)
∥∥

πk(Y ⊗αY )

∥z∥εk(X⊗βX)

⩽ sup
z ∈(X ⊗X)⊗k

∥∥(T ⊗ T )⊗k(z)
∥∥

πk(Y ⊗πY )

∥z∥εk(X⊗εX)
= τ2k(T )2k.

Taking the kth root and the limit k → ∞ finishes the proof. □

Note that X ⊗α X has enough symmetries for any tensor norm α and
any X with enough symmetries (see [14, p. 62]). Combining this fact with
the previous proposition and with Theorem 1.2 leads to an estimate of
independent interest:

ANNALES DE L’INSTITUT FOURIER



ASYMPTOTIC TENSOR POWERS OF BANACH SPACES 25

Corollary 6.8. — Let X be an n-dimensional normed space with
enough symmetries and α a tensor norm. Then

dX⊗αX ⩾ d2
X .

A natural question is whether the assumption that X has enough symme-
tries can be removed. More generally, we could ask if for finite-dimensional
normed spaces X and Y the inequality

dX⊗αY ⩾ dXdY

holds for every tensor norm α.

6.3. When is the tensor radius minimal?

Another natural problem is to determine the n-dimensional spaces for
which the tensor radius equals

√
n, the minimal possible value. This is

achieved by both ℓn
1 and ℓn

∞, but there are many more examples. The
construction from [2, Example 1] produces a continuum of normed spaces
(Rn, ∥ · ∥) for which Bn

2 is the John ellipsoid and
√

nBn
2 is the Loewner

ellipsoid; by Theorem 1.2, each such space has a tensor radius equal to
√

n.
Other examples can be produced by using Corollary 6.8: For any n ∈ N
and any tensor norm α, consider the space X = ℓn

1 ⊗α ℓn
1 . The space X

has enough symmetries and satisfies dX = n =
√

dim(X), and we con-
clude by Theorem 1.2 that ρ∞(X) =

√
dim(X). We should also note that

Corollary 6.8 produces many examples of spaces with maximal distance to
Euclidean in this way.

Another question concerns the lower bound

ρ∞(X) ⩾ n

dX
,

which holds for every n-dimensional normed space X: are there spaces for
which this inequality is strict?

7. Infinite dimensions

While we focused exclusively on finite-dimensional normed spaces, the
tensor radii also make sense for infinite-dimensional Banach spaces. Accor-
dingly, given Banach spaces X, Y and T : X → Y a bounded linear
operator, we may define τk(T ) for k ∈ N ∪ {+∞} exactly as in the finite-
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dimensional case (note that in that, case, the supremum in (1.1) is taken
over z in the algebraic product X⊗k). The elementary inequality τ∞(T ) ⩽
∥T∥N holds in generality (the nuclear norm ∥ · ∥N is defined in [16, p. 41]),
and nuclear operators have a finite tensor radius . The class of operators
for which τk is finite (at fixed k) has been discussed in a series of papers
by John [10, 12, 13].

Whenever X is an infinite-dimensional Banach space, we have ρ3(X) =
+∞ (i.e., the injective and projective norms are not equivalent on X ⊗X ⊗
X) and therefore ρ∞(X) = +∞. An argument for this is given in [11, Sec-
tion 4.5]. This has to be compared with the famous example by Pisier [15]
of an infinite-dimensional space X for which ρ2(X) < +∞, answering a
question by Grothendieck [8].

We now explain how Theorem 5.1 translates to the infinite-dimensional
setting. Consider two Banach spaces X and Y and assume that one of them
is a Hilbert space. Let T : X → Y be a bounded operator. An alternative
description of ∥T∥N can be given by trace duality: it is equal to the integral
norm of T , defined as

(7.1) ∥T∥I = sup
{

Tr[QT ] : ∥Q∥Y →X ⩽ 1, rank(Q) < ∞
}

.

We point out that, for general Banach spaces, the integral and nuclear norm
are not equal. However, both quantities coincide when X or Y is a Hilbert
space (or, more generally, when X∗ or Y has the metric approximation
property, see [16, Corollary 4.17]).

Theorem 7.1. — Let H be a Hilbert space, X be a Banach space. Let
T ∈ L(X, H) and S ∈ L(H, X) be bounded operators. Then τ∞(T ) = ∥T∥N

and τ∞(S) = ∥S∥N .

Proof. — For every finite rank operators Q : H → X and R : X → H

such that ∥Q∥ ⩽ 1, ∥R∥ ⩽ 1, we have

Tr[TQ] ⩽ τ∞(T ) and Tr[RS] ⩽ τ∞(S).

These inequalities are obtained by mimicking the proof of Theorem 5.1,
identifying TQ or RS as operator on ℓn

2 for some n. The result follows
from (7.1). □
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