[La Diagonale des Intersections Complètes en de Degré (3,3)]
We show that a very general (3,3) complete intersection in over an uncountable algebraically closed field of characteristic different from admits no decomposition of the diagonal, in particular it is not retract rational. This strengthens Nicaise and Ottem’s result proving stable irrationality of this complete intersection in characteristic 0. The main tool is a Chow-theoretic obstruction which was found by Pavic and Schreieder, who studied quartic fivefolds.
En travaillant sur un corps algébriquement clos non dénombrable de caractéristique différente de 2, nous montrons qu’une intersection complète de bidegré (3,3) et de dimension 5 n’a pas de décomposition de la diagonale. En particulier, une telle intersection complète n’est pas rétracte rationnelle. Cela renforce un résultat de Nicaise et Ottem, qui ont montré qu’en caractéristique 0, une telle intersection complète n’est pas stablement rationnelle. L’outil principal est une obstruction découverte par Pavic et Schreieder, qui ont étudié les hypersurfaces quartiques de dimension cinque.
Révisé le :
Accepté le :
Première publication :
Keywords: complete intersections, rational, retract rational
Mots-clés : intersection complète, rationnelle, rétracte rationnelle
Lange, Jan 1 ; Skauli, Bjørn 2
@unpublished{AIF_0__0_0_A23_0, author = {Lange, Jan and Skauli, Bj{\o}rn}, title = {The {Diagonal} of (3,3) fivefolds}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3735}, language = {en}, note = {Online first}, }
Lange, Jan; Skauli, Bjørn. The Diagonal of (3,3) fivefolds. Annales de l'Institut Fourier, Online first, 31 p.
[1] Some elementary examples of unirational varieties which are not rational, Proc. Lond. Math. Soc. (3), Volume 25 (1972) no. 3, pp. 75-95 | DOI | Zbl | MR
[2] Variétés stablement rationnelles non rationnelles, Ann. Math. (2), Volume 121 (1985) no. 2, pp. 283-318 | DOI | Zbl | MR
[3] Torsion orders of complete intersections, Algebra Number Theory, Volume 11 (2017) no. 8, pp. 1779-1835 | DOI | Zbl | MR
[4] Cyclic covers that are not stably rational, Izv. Math., Volume 80 (2016) no. 4, pp. 665-677 | Zbl | DOI
[5] Hypersurfaces quartiques de dimension 3 : non rationalité stable, Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016) no. 2, pp. 371-397 | DOI | Zbl | MR | Numdam
[6] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 2, Springer, 1998 | Zbl | DOI
[7] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | Zbl | DOI | MR
[8] Intersections of three quadrics in , Surveys in differential geometry 2017. Celebrating the 50th anniversary of the Journal of Differential Geometry (Surveys in Differential Geometry), Volume 22, International Press, 2018, pp. 259-274 | DOI | MR | Zbl
[9] Stable rationality of quadric surface bundles over surfaces, Acta Math., Volume 220 (2018) no. 2, pp. 341-365 | DOI | Zbl | MR
[10] Rationality Problem for Algebraic Tori, Memoirs of the American Mathematical Society, 248, American Mathematical Society, 2017 | DOI | MR | Zbl
[11] Exposé X. Gabber’s modification theorem (log smooth case), Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. Séminaire à l’École Polytechnique 2006–2008 (Astérisque), Volume 363-364, Société Mathématique de France, 2014, pp. 167-212 | Zbl
[12] Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., Volume 83 (1996), pp. 51-93 | DOI | Zbl | MR | Numdam
[13] Nonrational hypersurfaces, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 241-249 | DOI | Zbl | MR
[14] Specialization of birational types, Invent. Math., Volume 217 (2019) no. 2, pp. 415-432 | DOI | Zbl | MR
[15] Unramified elements in cycle modules, J. Lond. Math. Soc. (2), Volume 78 (2008) no. 1, pp. 51-64 | DOI | Zbl | MR
[16] Tropical degenerations and stable rationality, Duke Math. J., Volume 171 (2022) no. 15, pp. 3023-3075 | DOI | Zbl | MR
[17] The motivic nearby fiber and degenerations of stable rationality, Invent. Math., Volume 217 (2019) no. 2, pp. 377-413 | DOI | Zbl | MR
[18] The diagonal of quartic fivefolds, Algebr. Geom., Volume 10 (2023) no. 6, pp. 754-778 | DOI | Zbl | MR
[19] On the rationality problem for quadric bundles, Duke Math. J., Volume 168 (2019) no. 2, pp. 187-223 | DOI | Zbl | MR
[20] Stably irrational hypersurfaces of small slopes, J. Am. Math. Soc., Volume 32 (2019) no. 4, pp. 1171-1199 | DOI | Zbl | MR
[21] Unramified Cohomology, Algebraic Cycles and Rationality, Rationality of Varieties (Farkas, Gavril; van der Geer, Gerard; Shen, Mingmin; Taelman, Lenny, eds.), Springer (2021), pp. 345-388 | DOI | Zbl
[22] A (2,3)-complete intersection fourfold with no decomposition of the diagonal, Manuscr. Math., Volume 171 (2023), pp. 473-486 | DOI | Zbl
[23] Hypersurfaces that are not stably rational, J. Am. Math. Soc., Volume 29 (2016) no. 3, pp. 883-891 | DOI | Zbl
[24] Algebraic cycles and fibrations, Doc. Math., Volume 18 (2013), pp. 1521-1553 | DOI | Zbl
[25] Unirational threefolds with no universal codimension cycle, Invent. Math., Volume 201 (2015) no. 1, pp. 207-237 | DOI | Zbl | MR
Cité par Sources :