[Un résultat d’unicité pour un problème variationnel en dimension deux]
We investigate the uniqueness of the solutions for a non-strictly convex problem in the Calculus of Variations of the form . Here, is a convex function define on and is Lipschitz continuous. We establish the uniqueness of the solutions when the gradient of is small and give some counterexamples when that is not the case. The proof is based on the global Lipschitz regularity of the minimizers and on the study of their level sets.
Nous étudions l’unicité des solutions d’un problème non strictement convexe en calcul des variations de la forme . Ici, est une fonction convexe définie sur et est une fonction lipschitzienne. Nous établissons l’unicité des solutions lorsque le gradient de est petit et donnons des contre-exemples lorsque ce n’est pas le cas. La preuve est basée sur la régularité lipschitzienne globale des minimiseurs et sur l’étude de leurs ensembles de niveau.
Révisé le :
Accepté le :
Première publication :
Keywords: uniqueness, level sets, Lipschitz regularity
Mots-clés : unicité, ensembles de niveau, régularité lipschitzienne
Lledos, Benjamin 1
@unpublished{AIF_0__0_0_A22_0, author = {Lledos, Benjamin}, title = {A uniqueness result for a two-dimensional variational problem}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3734}, language = {en}, note = {Online first}, }
Lledos, Benjamin. A uniqueness result for a two-dimensional variational problem. Annales de l'Institut Fourier, Online first, 33 p.
[1] Structure of level sets and Sard-type properties of Lipschitz maps, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 12 (2013) no. 4, pp. 863-902 | DOI | Zbl | MR | Numdam
[2] Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Clarendon Press, 2000 | Zbl | DOI | MR
[3] Convex functionals and partial regularity, Arch. Ration. Mech. Anal., Volume 102 (1988) no. 3, pp. 243-272 | DOI | Zbl | MR
[4] A version of the fundamental theorem for young measures, PDEs and continuum models of phase transitions. Proceedings of an NSF–CNRS (Lecture Notes in Physics), Volume 344, Springer, 1989, pp. 207-215 | Zbl | DOI
[5] On a degenerate problem in the calculus of variations, Trans. Am. Math. Soc., Volume 371 (2019) no. 2, pp. 777-807 | DOI | Zbl | MR
[6] Local stress regularity in scalar nonconvex variational problems, SIAM J. Math. Anal., Volume 34 (2002) no. 2, pp. 495-509 | DOI | Zbl | MR
[7] Existence and regularity of minimizers of nonconvex integrals with growth, ESAIM, Control Optim. Calc. Var., Volume 13 (2007) no. 2, pp. 343-358 | DOI | Zbl | MR | Numdam
[8] Uniqueness and comparison results for functionals depending on and on , SIAM J. Optim., Volume 18 (2007), pp. 711-716 | DOI | Zbl | MR
[9] Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178, Springer, 1998 | Zbl | MR
[10] Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, 78, Springer, 2008 | Zbl | MR
[11] Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992 | Zbl | MR
[12] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001 | Zbl | DOI
[13] Minimal surfaces and functions of bounded variation, Monographs in Mathematics, 80, Birkhäuser, 1984 | Zbl | DOI | MR
[14] Direct methods in the calculus of variations, World Scientific, 2003 | Zbl | DOI
[15] Analysis and numerical studies of a problem of shape design, Arch. Ration. Mech. Anal., Volume 114 (1991) no. 4, pp. 349-363 | DOI | Zbl | MR
[16] A uniqueness result for a non-strictly convex problem in the calculus of variations, ESAIM, Control Optim. Calc. Var., Volume 29 (2023), 87, 32 pages | DOI | Zbl | MR
[17] A uniqueness result for a translation invariant problem in the calculus of variations, J. Convex Anal., Volume 31 (2024) no. 1, pp. 121-130 | Zbl | MR
[18] A uniqueness result for a class of non-strictly convex variational problems, J. Math. Anal. Appl., Volume 446 (2017) no. 2, pp. 1687-1694 | DOI | Zbl
[19] A relation between existence of minima for nonconvex integrals and uniqueness for non strictly convex integrals of the calculus of variations, Mathematical Theories of Optimization (Cecconi, Jaurés P.; Zolezzi, Tullio, eds.) (Lecture Notes in Mathematics), Volume 979, Springer, 1983, pp. 216-231 | MR | Zbl | DOI
[20] Minimizers of convex functionals arising in random surfaces, Duke Math. J., Volume 151 (2010), pp. 487-532 | DOI | Zbl | MR
Cité par Sources :