A uniqueness result for a two-dimensional variational problem
[Un résultat d’unicité pour un problème variationnel en dimension deux]
Annales de l'Institut Fourier, Online first, 33 p.

We investigate the uniqueness of the solutions for a non-strictly convex problem in the Calculus of Variations of the form φ(v)-λv. Here, φ is a convex function define on 2 and λ is Lipschitz continuous. We establish the uniqueness of the solutions when the gradient of λ is small and give some counterexamples when that is not the case. The proof is based on the global Lipschitz regularity of the minimizers and on the study of their level sets.

Nous étudions l’unicité des solutions d’un problème non strictement convexe en calcul des variations de la forme φ(v)-λv. Ici, φ est une fonction convexe définie sur 2 et λ est une fonction lipschitzienne. Nous établissons l’unicité des solutions lorsque le gradient de λ est petit et donnons des contre-exemples lorsque ce n’est pas le cas. La preuve est basée sur la régularité lipschitzienne globale des minimiseurs et sur l’étude de leurs ensembles de niveau.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3734
Classification : 35A02, 49J45, 49N99
Keywords: uniqueness, level sets, Lipschitz regularity
Mots-clés : unicité, ensembles de niveau, régularité lipschitzienne

Lledos, Benjamin 1

1 Laboratoire MIPA, Université de Nîmes, Site des Carmes, Place Gabriel Péri, 30000 Nîmes (France)
@unpublished{AIF_0__0_0_A22_0,
     author = {Lledos, Benjamin},
     title = {A uniqueness result for a two-dimensional variational problem},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3734},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Lledos, Benjamin
TI  - A uniqueness result for a two-dimensional variational problem
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3734
LA  - en
ID  - AIF_0__0_0_A22_0
ER  - 
%0 Unpublished Work
%A Lledos, Benjamin
%T A uniqueness result for a two-dimensional variational problem
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3734
%G en
%F AIF_0__0_0_A22_0
Lledos, Benjamin. A uniqueness result for a two-dimensional variational problem. Annales de l'Institut Fourier, Online first, 33 p.

[1] Alberti, Giovanni; Bianchini, Stefano; Crippa, Gianluca Structure of level sets and Sard-type properties of Lipschitz maps, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 12 (2013) no. 4, pp. 863-902 | DOI | Zbl | MR | Numdam

[2] Ambrosio, Luigi; Fusco, Nicola; Pallara, Diego Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Clarendon Press, 2000 | Zbl | DOI | MR

[3] Anzellotti, Gabriele; Giaquinta, Mariano Convex functionals and partial regularity, Arch. Ration. Mech. Anal., Volume 102 (1988) no. 3, pp. 243-272 | DOI | Zbl | MR

[4] Ball, John M. A version of the fundamental theorem for young measures, PDEs and continuum models of phase transitions. Proceedings of an NSF–CNRS (Lecture Notes in Physics), Volume 344, Springer, 1989, pp. 207-215 | Zbl | DOI

[5] Bouchitté, Guy; Bousquet, Pierre On a degenerate problem in the calculus of variations, Trans. Am. Math. Soc., Volume 371 (2019) no. 2, pp. 777-807 | DOI | Zbl | MR

[6] Carstensen, Carsten; Müller, Stefan Local stress regularity in scalar nonconvex variational problems, SIAM J. Math. Anal., Volume 34 (2002) no. 2, pp. 495-509 | DOI | Zbl | MR

[7] Celada, Pietro; Cupini, Giovanni; Guidorzi, Marcello Existence and regularity of minimizers of nonconvex integrals with p-q growth, ESAIM, Control Optim. Calc. Var., Volume 13 (2007) no. 2, pp. 343-358 | DOI | Zbl | MR | Numdam

[8] Cellina, Arrigo Uniqueness and comparison results for functionals depending on u and on u, SIAM J. Optim., Volume 18 (2007), pp. 711-716 | DOI | Zbl | MR

[9] Clarke, Francis H.; Ledyaev, Yuri S.; Stern, Ronald J.; Wolenski, Peter R. Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178, Springer, 1998 | Zbl | MR

[10] Dacorogna, Bernard Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, 78, Springer, 2008 | Zbl | MR

[11] Evans, Lawrence C.; Gariepy, Ronald F. Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992 | Zbl | MR

[12] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001 | Zbl | DOI

[13] Giusti, Enrico Minimal surfaces and functions of bounded variation, Monographs in Mathematics, 80, Birkhäuser, 1984 | Zbl | DOI | MR

[14] Giusti, Enrico Direct methods in the calculus of variations, World Scientific, 2003 | Zbl | DOI

[15] Kawohl, Bernhard; Stara, Jana; Wittum, Gabriel Analysis and numerical studies of a problem of shape design, Arch. Ration. Mech. Anal., Volume 114 (1991) no. 4, pp. 349-363 | DOI | Zbl | MR

[16] Lledos, Benjamin A uniqueness result for a non-strictly convex problem in the calculus of variations, ESAIM, Control Optim. Calc. Var., Volume 29 (2023), 87, 32 pages | DOI | Zbl | MR

[17] Lledos, Benjamin A uniqueness result for a translation invariant problem in the calculus of variations, J. Convex Anal., Volume 31 (2024) no. 1, pp. 121-130 | Zbl | MR

[18] Lussardi, Luca; Mascolo, Elvira A uniqueness result for a class of non-strictly convex variational problems, J. Math. Anal. Appl., Volume 446 (2017) no. 2, pp. 1687-1694 | DOI | Zbl

[19] Marcellini, Paolo A relation between existence of minima for nonconvex integrals and uniqueness for non strictly convex integrals of the calculus of variations, Mathematical Theories of Optimization (Cecconi, Jaurés P.; Zolezzi, Tullio, eds.) (Lecture Notes in Mathematics), Volume 979, Springer, 1983, pp. 216-231 | MR | Zbl | DOI

[20] de Silva, Daniela; Savin, Ovidiu Minimizers of convex functionals arising in random surfaces, Duke Math. J., Volume 151 (2010), pp. 487-532 | DOI | Zbl | MR

Cité par Sources :