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A UNIQUENESS RESULT FOR A TWO-DIMENSIONAL
VARIATIONAL PROBLEM

by Benjamin LLEDOS

Abstract. — We investigate the uniqueness of the solutions for a non-strictly
convex problem in the Calculus of Variations of the form

∫
φ(∇v) − λv. Here, φ

is a convex function define on R2 and λ is Lipschitz continuous. We establish the
uniqueness of the solutions when the gradient of λ is small and give some coun-
terexamples when that is not the case. The proof is based on the global Lipschitz
regularity of the minimizers and on the study of their level sets.

Résumé. — Nous étudions l’unicité des solutions d’un problème non strictement
convexe en calcul des variations de la forme

∫
φ(∇v) − λv. Ici, φ est une fonction

convexe définie sur R2 et λ est une fonction lipschitzienne. Nous établissons l’unicité
des solutions lorsque le gradient de λ est petit et donnons des contre-exemples
lorsque ce n’est pas le cas. La preuve est basée sur la régularité lipschitzienne
globale des minimiseurs et sur l’étude de leurs ensembles de niveau.

1. Introduction

1.1. A model case

The motivation of this article is to study non-strictly convex problems
in the Calculus of Variations in dimension two, as in the following model
case:

(1.1) Ĩλ : u 7−→
∫

Ω
F (∇u(x)) − λ(x)u(x)dx

where Ω is a bounded open set in R2, λ ∈ L∞(Ω) and F (y) = f(|y|) with

(1.2) f(t) =


1
2 |t|2 if |t| ⩽ 1,
|t| − 1

2 if 1 < |t| < 2,
1
4 |t|2 + 1

2 if 2 ⩽ |t|.

Keywords: uniqueness, level sets, Lipschitz regularity.
2020 Mathematics Subject Classification: 35A02, 49J45, 49N99.
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For this functional, the admissible functions u belong to W 1,2
ψ (Ω), which

is the subset of the Sobolev space W 1,2(Ω) of functions that have a pre-
scribed trace ψ : R2 → R on the Lipschitz boundary ∂Ω of Ω. The objective
is to demonstrate the uniqueness of solutions for the subsequent minimiza-
tion problem:

P̃λ : min
u∈W 1,2

ψ
(Ω)

Ĩλ(u).

When λ ≡ λ0 ∈ R+, this problem studied by Kawohl, Stara and Wittum
in [15] arises as the convexification of a non-convex problem of shape opti-
mization in the theory of elasticity. In this example, f is the convexification
of the minimum of two parabolas: t 7→ 1

2 |t|2 and t 7→ 1
4 |t|2 + 1

2 . Observe in
particular that f is affine on the interval (1, 2). Since f is convex but not
strictly convex, there is no obvious reason for P̃λ to have only one solution.

In fact, the authors of [15] rely on the assumption that the level sets
of one minimizer u are star-shaped. Furthermore, they suppose that the
boundary of the set in Ω where f ′(|∇u|) = 1 is piecewise C1. In this paper,
we do not require such additional assumptions.

There is no general answer to the question of uniqueness for non strictly
convex problems in the Calculus of Variations, especially when λ is not
constant. For this reason, we restrict our attention to the framework (1.1)
where f can be replaced by more general convex functions provided that
they are strictly convex around the origin and at infinity.

1.2. Main results

More precisely, let g : R → R be an even C1 convex function with g(t) >
g(0) = 0 for all t ̸= 0. Additionally, we assume that g ∈ C1,1

loc (R\{0}).
We suppose that g has p-growth for p > 1, namely, there exist C1 > 0

and C2 > 0 such that:

(1.3) C1|t|p ⩽ g(t) ⩽ C2(1 + |t|p) for all t ∈ R.

We introduce the following set of strict convexity of g:

(1.4) SC =
{
x ∈ R, ∀ y ∈ R\{x}, ∀ t ∈ ]0, 1[,
g(tx+ (1 − t)y) < tg(x) + (1 − t)g(y)

}
.

For instance, SC = (−∞,−2) ∪ (−1, 1) ∪ (2,+∞) when g is equal to the
function f in (1.2).

ANNALES DE L’INSTITUT FOURIER



UNIQUENESS FOR A TWO-DIMENSIONAL PROBLEM 3

We make some structural assumptions on SC:
• The set SC has finitely many connected components, in particular

SC is open and

(1.5) SC ∩ R+ =
N⋃
n=0

SCn

with SC0 := [0, b0), SCn := (an, bn) for every n ∈ N∗, n < N

and SCN := (aN ,+∞). For every n ∈ N, n < N we introduce
dn := g′(bn) = g′(an+1).

• We assume that g is C2 and g′′ > 0 on SC\{0} and that g is strongly
convex at +∞ in the following sense:

lim inf
t→+∞

tg′′(t)
g′(t) > 0.

We define φ(·) := g(| · |) and for λ ∈ L∞(Ω) we introduce the following
functional:

Iλ : u 7−→
∫

Ω
φ(∇u(x)) − λ(x)u(x)dx

on W 1,p
ψ (Ω), where Ω is an open simply connected bounded set of R2 with a

Lipschitz continuous boundary ∂Ω and ψ is a Lipschitz-continuous function
on ∂Ω. Here, W 1,p

ψ (Ω) is the subset of those functions in W 1,p(Ω) that are
equal to ψ on ∂Ω.

We introduce the minimization problem:

Pλ : min
u∈W 1,p

ψ
(Ω)

Iλ(u).

The main result of the paper is the following:

Theorem 1.1. — Let Ω be a simply connected bounded open set of R2.
We assume that Ω has a C1,1 boundary, ψ ∈ C1,1(R2), λ is Lipschitz con-
tinuous on Ω, minx∈Ω λ(x) > 0. There exists a positive constant

C := C

(
N, |Ω|, max

Ω
λ, min

Ω
λ, ∥ψ∥C1,1(Ω), κ

)
where κ is the essential infimum of the curvature of ∂Ω, such that if
∥∇λ∥L∞(Ω) ⩽ C then Pλ admits a unique solution on W 1,p

ψ (Ω).

Remark 1.2. — When λ is constant, a more general result, true in any
dimension, can be found in [17].

Moreover, the boundedness condition on ∇λ is natural since:

Proposition 1.3. — There exists λ ∈ C∞(B1(0)) with min
B1(0) λ > 0

such that Pλ has more than one solution on W 1,p
0 (B1(0)).

TOME 0 (0), FASCICULE 0



4 Benjamin LLEDOS

1.3. Ideas of the proof

We want to prove the uniqueness of the solution for the variational prob-
lem Pλ. According to classical theory (see [10, 14]), there exists at least
one minimizer, u, to the problem Pλ. This function u is bounded, globally
Hölder continuous by [14, Theorem 7.8] and locally Lipschitz continuous
by [7, Theorem 1.1].

When λ = 0, the proof is substantially simplified. In this case, the strat-
egy has been developed by Marcellini in [19] under additional assumptions,
and the proof itself in a general framework is due to Lussardi and Mascolo
in [18]. The proof in those papers is divided into two parts:
(Part 1) If u and v are two solutions of the same problem, then v is constant

on the level sets of u.
(Part 2) The level sets of u intersect the boundary ∂Ω of Ω. Since u and v

are equal on ∂Ω, they are equal on Ω.
As noted in Remark 1.2, a shorter proof can be found in [17] when

λ ≡ λ0 ∈ R+. However, when λ ∈ W 1,∞(Ω) the proof requires new ideas
and turns out to be fairly intricate. Although Part 1 remains true, Part 2
is not. The term u 7→

∫
Ω λu changes the geometry of the level lines, which

may not intersect the boundary ∂Ω of Ω. It is even possible that only one
level set intersects the boundary, see Proposition 2.10.

A very important subset of Ω is the following:

Proposition 1.4. — There exists an open set U such that for every
minimizer u of the same problem Pλ, one has u ∈ C1(U) and for every
x ∈ U , |∇u(x)| ∈ SC\{0} while for a.e. x /∈ U, |∇u(x)| /∈ SC\{0}.

When λ ̸= 0, the set U∪∂Ω has the same role as ∂Ω in Part 2 when there
is no lower order term. However, the fact that u = v on U is far from being
obvious. Nevertheless, if u and v are two minimizers of the same problem,
we can easily see that ∇u and ∇v are equal on U . Additionally, we can
even prove that this is also true on the level sets that intersect U . The aim
of the proof is to demonstrate that u = v or ∇u = ∇v on the level sets of u
and v. Consequently, for a.e. x ∈ Ω, the Lipschitz map w(x) := u(x) − v(x)
is equal to 0 or ∇w(x) = 0, thus u− v = w = 0.

This idea of using U ∪ ∂Ω comes from a paper by Bouchitté and Bous-
quet [5]. However, in their study, that fact that SC is of the form (1,+∞)
implies that the boundary of every connected component of U intersects
∂Ω. Since ∇u = ∇v on U and u = v on ∂Ω, they readily deduce that
u = v on U and this part of the proof is easier. We would like to clarify

ANNALES DE L’INSTITUT FOURIER



UNIQUENESS FOR A TWO-DIMENSIONAL PROBLEM 5

to the reader that this paper is not a generalization of [5] because g has
no singularity at the origin, unlike in [5]. This singularity of g in [5] and in
its generalization [16] creates some regularity issues that are not present in
this study.

For instance, in our situation, we have that max(α, g′(|∇u|)) ∈ W 1,2
loc (Ω)

for any α > 0 thanks to [20]. Then, we prove that max(d0, g
′(|∇u|)) has a

representative that is absolutely continuous on almost every level sets.
The other major difference between this paper and [5, 16] lies in the

continuity of max(1, g′(|∇u|) over Ω, which permits the demonstration of
their results for higher dimensions. Conversely, we heavily rely on two re-
sults that exclusively hold in dimension two. Firstly, a general regularity
result for Lipschitz continuous functions, see Theorem 2.8 below and sec-
ondly, the Jordan curve theorem. The latter is the reason why we assume
that Ω simply connected: this prevents the existence of holes inside the
connected components of the upper level set Es := {u > s} for s ∈ R.

When λ is sufficiently small, it can be proven that almost every level set
intersects a connected component of U in which |∇u| < b0. As a result, we
are able to establish the following theorem:

Theorem 1.5. — We assume that φ is as in Section 1.2 and 0 ⩽ λ(x) ⩽
d0hΩ for a.e. x ∈ Ω. Then, the problem Pλ admits a unique minimizer.

Here, d0 = g′(b0) and hΩ is the Cheeger constant of Ω:

Definition 1.6. — The Cheeger constant of Ω is defined as:

hΩ = inf
D⊂Ω

Per
(
D,R2)
|D|

where

Per
(
D,R2) = sup

{∫
D

div θ
∣∣∣∣ θ ∈ C1

c

(
R2;R2), |θ(x)| ⩽ 1, ∀ x ∈ R2

}
is called the Perimeter of the set D. A set D ⊂ Ω of finite perimeter with
|D| > 0 is said to be a Cheeger set if Per(D,R2) = hΩ|D|.

The proof of the main theorem is based on an induction argument related
to the family {dn, n ∈ N, 0 ⩽ n < N} with the previous theorem as the
initialization step.

We study the connected components ls(u) of Ls(u) := u−1(s) ⊂ R2 such
that ls(u) is a closed simple curve. If ls(u) ∩ ∂Ω ̸= ∅, then u− v is constant
on ls(u) and u − v = 0 on ∂Ω, implying u − v on ls(u). Hence, we can
assume that ls(u) ⋐ Ω. Utilizing the Jordan curve theorem, we can define

TOME 0 (0), FASCICULE 0
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Fs as the bounded connected component of R2\ls(u). When ls(u) ∩ U = ∅
we use the following proposition:

Proposition 1.7. — There exists a representative f0 of the function
max(d0, g

′(|∇u|)) such that for a.e. s ∈ R, if ls(u) ∩U = ∅ then f0 is equal
to a constant C(ls(u)) ∈ {di, 0 ⩽ i < N} on ls(u).

Another important result is a maximum principle proved in Section 5 for
smooth approximations of our problem Pλ. To begin with, we regularize
the problem to obtain a sequence (un)n∈N of smooth minimizers of smooth
problems Pλn , where (gn)n∈N and (λn)n∈N are smooth approximations of g
and λ. In Section 4, we use the fact that the sequence (∇un)n∈N generates
Young measures (νx)x∈Ω to prove that g′

n(∇un) → g′(∇u) a.e. in Ω when
n → +∞. For such approximations, we have:

Proposition 1.8. — For a.e. s ∈ R, if ls(u) is a connected component
of Ls(u) which is a closed simple curve and such that ls(u) ⋐ Ω then

sup
ls(u)

max
(
d0, g

′
n(|∇un|)

)
= sup

Fs

g′
n(|∇un|).

Plan of the paper

In the next section, we recall some classical results, and we introduce
the notations and notions useful throughout the article. In Section 3, we
study the regularity properties of the level sets of the minimizers. In the
subsequent Section 4, we prove that max(α, g′(|∇u|) ∈ W 1,2

loc (Ω). We prove
the maximum principle for max(d0, |σn|) in Section 5. Section 6 is dedicated
to the proof of Theorem 1.1 and Theorem 1.5. In the last section, we present
a possible extension to the main theorem.

2. Preliminary results

In this section, we introduce some known results related to this problem.

2.1. Direct methods

We know from the direct method in the calculus of variations (see [10,
14]) that the problem Pλ has at least one minimizer. We recall that ev-
ery minimizer u is bounded, globally Hölder continuous according to [14,
Theorem 7.8] and locally Lipschitz continuous by [7, Theorem 1.1].

ANNALES DE L’INSTITUT FOURIER



UNIQUENESS FOR A TWO-DIMENSIONAL PROBLEM 7

We begin this subsection by observing that the minimum of a solution
is attained on the boundary of Ω.

Proposition 2.1. — Let u be a minimizer of Pλ on W 1,p
ψ (Ω) with λ ∈

L∞(Ω) and λ(x) ⩾ 0 for a.e. x ∈ Ω. Then minΩ u = min∂Ω ψ.

Proof. — Since minΩ u ⩽ c := min∂Ω ψ, we have to prove that minΩ u ⩾
min∂Ω ψ. We introduce w := max(u, c). If there exists a point x ∈ Ω such
that u(x) < c, then by continuity of u, the set {u < c} has a positive
measure. We have w = u and ∇w = ∇u on {u > c}. Moreover, since
{u < c} has a positive measure we have that:

0 =
∫

{u⩽c}
g(|∇w|) <

∫
{u⩽c}

g(|∇u|)

and
−
∫

{u⩽c}
λw = −

∫
{u⩽c}

λc ⩽ −
∫

{u⩽c}
λu.

Hence, Iλ(w) < Iλ(u) on Ω, which contradicts the fact that u is a minimizer.
Thus, u ⩾ c on Ω. □

We prove that the gradients of two minimizers of the same problem are
collinear. This feature is useful in numerous following proofs.

Lemma 2.2. — Let u and v be two minimizers of Pλ with λ ∈ L∞(Ω).
Then for a.e. x ∈ Ω, ∇u(x) and ∇v(x) are collinear and g is affine on the
interval [|∇u(x)|, |∇v(x)|].

Proof. — Since u is a solution of Pλ,

Iλ(u) ⩽ Iλ
(
u+ v

2

)
.

By the fact that g is non-decreasing and the convexity of g and of the
Euclidean norm,

Iλ
(
u+ v

2

)
=
∫

Ω
g

(∣∣∣∣∇u+ ∇v
2

∣∣∣∣)− λ
u+ v

2

⩽
1
2

∫
Ω

(
g(|∇u|) − λu

)
+ 1

2

∫
Ω

(
g(|∇v|) − λv

)
= 1

2Iλ(u) + 1
2Iλ(v).

Since v is another solution,

Iλ(u) = 1
2Iλ(u) + 1

2Iλ(v).

TOME 0 (0), FASCICULE 0



8 Benjamin LLEDOS

This implies that∫
Ω
g

(∣∣∣∣∇u+ ∇v
2

∣∣∣∣) =
∫

Ω

1
2
(
g(|∇u|) + g(|∇v|)

)
.

Hence, for a.e. x ∈ Ω,

(2.1) g

(∣∣∣∣∇u(x) + ∇v(x)
2

∣∣∣∣) = 1
2
(
g(|∇u(x)|) + g(|∇v(x)|)

)
.

Thus, for a.e. x ∈ Ω, g ◦ | · | is affine on the segment [∇u(x),∇v(x)]. In view
of the definition of g and the strict convexity of the lower level sets of | · |,
it follows that ∇u(x) and ∇v(x) are collinear for a.e. x ∈ Ω. Additionally,
g is affine on [|∇u(x)|, |∇v(x)|] for a.e. x ∈ Ω. □

We use a result from [3] to introduce a set where ∇u is continuous and
|∇u| only takes values in SC\{0}, as defined in Section 1.4.

Proposition 2.3. — When λ ∈ C0(Ω), there exists an open set U such
that u ∈ C1(U) and for every x ∈ U , |∇u(x)| ∈ SC\{0}, while for a.e.
x /∈ U , |∇u(x)| /∈ SC\{0}.

Proof. — By [3, Theorem 6.1], for a.e. x ∈ Ω such that |∇u(x)| ∈ SC\{0}
there exists a neighborhood V of x such that u ∈ C1,α(V). Since SC\{0} is
open, there exists ϵ > 0 such that for every x′ ∈ Bϵ(x), |∇u(x′)| ∈ SC\{0}.
Let U be the set of such x, then U is open and for a.e. x /∈ U , |∇u(x)| /∈
SC\{0}. □

One of the interests of this set is the following:

Proposition 2.4. — The set U does not depend on the choice of a
minimizer. Moreover, let u and v be two minimizers of Pλ, then ∇u = ∇v
on U .

Proof. — Let us consider two minimizers u and v of the same problem.
We define, respectively, Uu and Uv as the open sets of the previous propo-
sition for u and v. By Lemma 2.2 and strict convexity of g on SC, we
have that ∇u = ∇v a.e. on Uu. Hence, v ∈ C1(Uu) and for every x ∈ Uu,
|∇v(x)| ∈ SC\{0}. Thus, by definition of Uv, we have that Uu ⊂ Uv.
To prove the other inclusion, we just have to exchange u and v. Hence,
Uu = Uv = U and ∇u = ∇v on U . □

A direct consequence of this result is that:

Remark 2.5. — For every connected component Ui of U , u−v is constant
on Ui.

ANNALES DE L’INSTITUT FOURIER



UNIQUENESS FOR A TWO-DIMENSIONAL PROBLEM 9

To conclude this section, we introduce the weak Euler–Lagrange equation
associated to Pλ:

(2.2) div
(
∇φ(∇u)

)
= −λ on Ω.

Remark 2.6. — By Lemma 2.2 the function ∇φ(∇u) = g′(|∇u|) ∇u
|∇u| is

independent of the choice of the minimizer of Pλ and will be denoted by σ.

2.2. Lipschitz regularity of a minimizer u and its level lines

In this subsection, we recall some Lipschitz regularity results for u and
its level lines.

We use the following result from [16, Theorem 1.4] that states that our
minimizers are globally Lipschitz-continuous on Ω:

Proposition 2.7. — We assume that Ω has a C1,1 boundary and ψ ∈
C1,1(R2). Then any minimizer u of Pλ is globally Lipschitz-continuous on Ω.
Moreover, there exists L > 0 such that

∥∇u∥L∞(Ω) ⩽ L
(
p, C1, |Ω|, ∥λ∥L∞(Ω), ∥ψ∥C1,1(R2), κ

)
where κ is the essential infimum of the curvature of ∂Ω and C1 is introduced
in (1.3).

For a function f : R2 → R and for every s ∈ R, we define L∗
s(f) as the

union of all connected components ls(f) of Ls(f) = f−1(s) ⊂ R2 such that
H1(ls(f)) > 0. Here, H1 denotes the one-dimensional Hausdorff measure.

We state the following theorem from [1, Theorem 2.5] on the level sets
of Lipschitz continuous functions.

Theorem 2.8. — Let f : R2 → R be a Lipschitz continuous function
with compact support. For a.e. s ∈ R, we have:

• H1(Ls(f)\L∗
s(f)) = 0.

• Every connected component ls(f) of Ls(f) that is not a point is a
closed simple curve with a Lipschitz parametrization γs.

• L∗
s(f) has a countable number of connected components.

It follows that the level lines of a minimizer u have a Lipschitz-continuous
parametrization:

Remark 2.9. — Let u be a globally Lipschitz-continuous minimizer of
Pλ with λ ∈ L∞(Ω). We extend it outside Ω by ψ, which can be assumed
to have compact support. For a.e. s ∈ R, every connected component of
L∗
s(u) ⊂ R2 has a Lipschitz-continuous parametrization.

TOME 0 (0), FASCICULE 0
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2.3. Explicit solution on the ball and counter-example

The unique solution on W 1,p
0 (Br(x0)) for our problem Pλ, in dimension

two, given that λ is a positive constant, can be expressed explicitly by
utilizing [8, Theorem 1].

Proposition 2.10. — When Ω = Br(x0) and λ is constant, the prob-
lem Pλ admits a unique minimizer on W 1,p

0 (Br(x0)). We can compute it
explicitly:

u(x) := C − 2
λ
g∗
(
λ

2 |x− x0|
)

with g∗(x) := supy∈R⟨x, y⟩ − g(y) being the Legendre transform of g, and
C the constant such that u ∈ W 1,p

0 (Br(x0)).

The following proposition uses the Euler–Lagrange equation (2.2) to
prove that a function is a minimizer.

Proposition 2.11. — Let u be in W 1,p(Ω) and φ a convex function. If
there exists λ ∈ L∞(Ω) such that div ∇φ(∇u) = −λ, then u is a minimizer
of Pλ on W 1,p

u (Ω).

Proof. — By convexity of φ, for every w ∈ W 1,p
u (Ω) we have:∫

Ω
φ(∇w) ⩾

∫
Ω
φ(∇u) +

〈
∇φ(∇u),∇w − ∇u

〉
.

Since div ∇φ(∇u) = −λ we get:∫
Ω

〈
∇φ(∇u),∇w − ∇u

〉
=
∫

Ω
λ(w − u).

Hence, Iλ(w) ⩾ Iλ(u) for every w ∈ W 1,p
u (Ω). Thus, u is a minimizer of

Pλ on W 1,p
u (Ω). □

We apply this result to show that when λ is not constant, we can have
more than one solution.

Proposition 2.12. — Let g : R+ → R be a non-strictly convex function
such that g(0) < g(t) for every t > 0. We assume that g ∈ C1([0,+∞)) with
g′(0) = 0. Then, there exists λ∞ ∈ C∞(B1(0)), λ∞ > 0 such that Pλ∞ has
an infinite number of solutions on W 1,p

0 (B1) with φ(·) = g(| · |) and

Iλ∞(u) :=
∫
B1

φ(∇u(x)) − λ∞(x)u(x)dx.

ANNALES DE L’INSTITUT FOURIER



UNIQUENESS FOR A TWO-DIMENSIONAL PROBLEM 11

Proof. — We construct two different radial solutions u and v of the same
problem. For every x ∈ B1(0), we set u(x) := ũ(|x|) and v(x) := ṽ(|x|).
Our goal is to define ũ′ and ṽ′ on (0, 1).

Since g is not strictly convex on R+, there exist a, b ∈ R+ such that g′

is constant on (a, b) and g′(t) ̸= g′(a) for every t /∈ [a, b]. Since g(0) < g(t)
for every t > 0 and g′(0) = 0, we have that a > 0.

Let us introduce a smooth increasing function f : R+ → R+ such that
f(t) = t for every t ⩾ 0 small and f(t) = g′(a) for every t ⩾ 1

2 . We use the
fact that for every x > 0 if x ∈ ∂g∗(y) then g′(x) = y. Hence, for every
t > 0, g′(∂g∗(f(t))) = {f(t)}. For every t ∈ (0, 1), we set ũ′(t) = −xt with
xt ∈ ∂g∗(f(t)) such that ũ′ is measurable. Such a choice is possible by [9,
Theorem 5.3, p. 151]. In order to define ṽ′, we set ṽ′(t) = ũ′(t) on (0, 1

2 )
and ṽ′(t) = −b for every t > 1

2 .
Hence, g′(|ṽ′|) = g′(|ũ′|) = f is a smooth function. Then, we can set

u(x) :=
∫ 1

|x| −ũ′(t)dt and v(x) :=
∫ 1

|x| −ṽ′(t)dt that are Lipschitz-continuous
on B1(0) and vanish at the boundary.

Finally, we set

λ∞(x) = div f(|x|) x
|x|

∈ C∞(B1(0)).

Hence, by Proposition 2.11, u and v are solutions of the same pro-
blem Pλ∞ . Moreover, a direct computation shows that λ∞(x) > 0 on
B1(0). □

We can give an explicit counter-example where Pλ has more than one
solution with λ > 0 and U ̸= ∅ with g is as in (1.2):

(2.3) g(t) =


1
2 |t|2 if |t| ⩽ 1,
|t| − 1

2 if 1 < |t| < 2,
1
4 |t|2 + 1

2 if 2 ⩽ |t|.

Proposition 2.13. — There exists λ ∈ C∞(B1(0)), min
B1(0) λ > 0

such that Pλ has more than one solution on W 1,2
0 (B1(0)) and U ̸= ∅.

Proof. — We take the same notations as in the previous proof. In this
case, we have

g∗(t) =
{

1
2 |t|2 if |t| ⩽ 1,
|t|2 − 1

2 if 1 < |t|.
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For t ∈ R, we define:

θ(t) =


t if t ⩽ 1

4 ,

3t− 1
2 if 1

4 < t < 1
2 ,

1 if 1
2 ⩽ t.

Hence, we can take f as the convolution of θ with a smooth standard
mollifier. For instance,

f(t) := C

∫ t+ 1
8

t− 1
8

θ(s) exp
(

− 1
1

64 − |t− s|2

)
ds

with

C−1 =
∫ 1

8

− 1
8

exp
(

− 1
1

64 − |s|2

)
ds.

Then ũ′ = −f on [0, 1], ṽ′ = −f on [0, 5
8 ) and ṽ′ = −2 on ( 5

8 , 1].
Thus, u(x) :=

∫ 1
|x| −ũ′(t)dt and v(x) :=

∫ 1
|x| −ṽ′(t)dt are two solutions

on W 1,2
0 (B1(0)) with λ(x) := N−1

|x| f(|x|) + f ′(|x|).
Moreover, U ̸= ∅ since |∇u| < 1 on B 1

2
(0). □

2.4. BV functions

We start by giving the definitions of functions of bounded variation and
sets of finite perimeter:

Definition 2.14. — A function f ∈ L1(Ω) has bounded variation in Ω
if∫

Ω
|Df | := sup

{∫
Ω
f div θdx

∣∣∣∣ θ ∈ C1
c

(
Ω;R2), |θ(x)| ⩽ 1, ∀ x ∈ Ω

}
< ∞.

We denote by BV (Ω) the set of functions in L1(Ω) having bounded varia-
tion in Ω.

If f ∈ BV (Ω), the distributional gradient of f is a vector valued Radon
measure that we denote by Df and |Df | is the total variation of Df .

Definition 2.15. — Let E be a Borel set. We say that E has finite
perimeter in Ω if the characteristic function χE of E belongs to BV (Ω).
The perimeter Per(E,Ω) is defined as:

Per(E,Ω) =
∫

Ω
|DχE | = sup

{∫
E

div θ
∣∣∣∣ θ ∈ C1

c

(
Ω;R2), ∥θ∥L∞(Ω) ⩽ 1

}
.
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Definition 2.16. — For a set E of finite perimeter in R2, we define
the reduced boundary ∂∗E of E as the subset of supp |DχE | such that for
every x ∈ ∂∗E,

νE(x) := lim
r→0

∫
Br(x) DχE∫
Br(x)

∣∣DχE∣∣
exists and |νE(x)| = 1.

Remark 2.17. — The reduced boundary ∂∗E is a subset of ∂E and we
have that Per(E,Ω) = H1(∂∗E ∩ Ω).

We recall the coarea formula for Lipschitz continuous functions from [11,
Theorem 3.4.2.1, p. 112] that will be useful throughout the article.

Proposition 2.18 (Coarea formula). — Let u be a Lipschitz conti-
nuous function with compact support and f be a nonnegative measurable
function. Then ∫

R2
f |∇u|dx =

∫
R

∫
Ls(u)

f(x)dH1(x)ds

where Ls(u) := u−1(s) ⊂ R2.

Remark 2.19. — By replacing f by the indicator function

1A(x) =
{

1 if x ∈ A,

0 if x /∈ A,

we observe that if |A| = 0 then for a.e. s ∈ R, H1(Ls(u) ∩A) = 0.

Proposition 2.20. — Let v be a Lipschitz continuous function with
compact support in R2. For a.e. s ∈ R we have

∇v(x)
|∇v(x)| =

D1[v>s](x)
|D1[v>s]|(x) for H1 a.e. x ∈ Ls(v).

Proof. — By the vector valued coarea formula [2, Theorem 3.40] we have
that ∫

A

∇v =
∫
R

∫
A

D1[v>s]ds

for every Borel set A.
By linearity, for every linear combination of indicator functions χ, we

have ∫
supp v

⟨χ,∇v⟩ =
∫
R

∫
supp v

〈
χ,D1[v>s]

〉
ds.

By density, for every θ ∈ L∞(supp v;RN ), we get∫
R2

⟨θ,∇v⟩ =
∫
R

∫
R2

〈
θ,D1[v>s]

〉
ds.
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We fix θ := ∇v
|∇v| when ∇v ̸= 0, θ := 0 when ∇v = 0 and obtain

(2.4)
∫
R2

|∇v| =
∫
R

∫
R2

〈
∇v
|∇v|

, D1[v>s]

〉
ds.

But, by [13, Theorem 4.4] we have for a.e. s ∈ R that∣∣D1[v>s]
∣∣ = H1⌞∂∗[v > s].

Hence, ∫
R2

〈
θ,D1[v>s]

〉
=
∫
R2

〈
θ,

D1[v>s]∣∣D1[v>s]
∣∣
〉

d
∣∣D1[v>s]

∣∣
=
∫
∂∗[v>s]

〈
θ,

D1[v>s]∣∣D1[v>s]
∣∣
〉

dH1.

(2.5)

Since ⟨θ, D1[v>s]
|D1[v>s]|

⟩ ⩽ 1 for a.e. s ∈ R, with (2.4) and (2.5) we get∫
R2

|∇v| ⩽
∫
R

H1(∂∗[v > s])ds.

By Remark 2.17, we have∫
R2

|∇v| ⩽
∫
R

H1(∂∗[v > s])ds ⩽
∫
R

H1(Ls(v))ds.

By the coarea formula given in Proposition 2.18, the following equalities
hold true: ∫

R2
|∇v| =

∫
R

H1(∂∗[v > s])ds =
∫
R

H1(Ls(v))ds.

Hence, we get ⟨θ, D1[v>s]
|D1[v>s]|

⟩ = 1 for H1 a.e. x ∈ ∂∗[v > s] and

H1(Ls(v)\∂∗[v > s]) = 0 for a.e. s ∈ R.

Thus, θ = D1[v>s]
|D1[v>s]|

H1 a.e. on Ls(v) for a.e s ∈ R, as desired. □

3. Relation between the level lines and U

In this section, we use the Lipschitz regularity of the level lines of a
minimizer u to prove that they are level sets for the other minimizers in a
generic sense. Subsequently, we study the case where a level line intersects
the set U , which implies that the gradient of another solution is equal to
∇u on that particular level line.
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3.1. Equality on level lines

We first prove that the difference between two minimizers is constant on
every connected component of almost every level sets.

Proposition 3.1. — Let u and v be two minimizers of the same pro-
blem Pλ. There exists a negligible subset N0 of R such that for every
s ∈ S0 := R\N0, for every connected component ls(u) of Ls(u), the map
u− v is constant on ls(u).

Proof. — We consider that u and v are extended by ψ outside of Ω. By
Proposition 2.9 there is a negligible set N∞ such that for every s ∈ R\N∞,
every connected component ls(u) of Ls(u) ⊂ R2 that is not a point has a
parametrization that is Lipschitz continuous.

Since ∇u and ∇v are defined and collinear a.e. on R2, by the coarea
formula we obtain that there exists a negligible set N ′

∞ such that for every
s ∈ R\N ′

∞, ∇u and ∇v are defined and collinear H1 a.e. on Ls(u). We set
N0 := N∞ ∪N ′

∞.
Hence, for every s ∈ R\N0, we have that ∇v is orthogonal to each Lips-

chitz connected curve ls(u). We introduce γs : [0, length(ls(u))) 7→ ls(u) a
Lipschitz-continuous parametrization of ls(u). Then, by the chain rule, we
have (v ◦ γs)′ = ⟨∇v(γs), γ′

s⟩ a.e. on [0, length(ls(u))). By orthogonality of
∇v to ls(u), we have that v is constant on ls(u). □

The following proposition is the first step to prove the uniqueness result.

Proposition 3.2. — For s ∈ S0, if ls(u) ∩ (R2\Ω) ̸= ∅ then u = v on
ls(u).

Proof. — Thanks to the previous proposition, we know that u − v is
constant on ls(u). Since u and v are extended by ψ outside Ω, we have
u ≡ v on R2\Ω. By assumption, we have ls(u) ∩ R2\Ω ̸= ∅ then u = v on
ls(u). □

3.2. Relation between U and the level lines

In this section, we consider two minimizers u and v of Iλ with the same
boundary condition. According to Proposition 2.4, ∇u = ∇v on U . We will
extend this result to the level lines that intersect U .

Notation 3.3. — We denote by S ⊂ R the set of these s that satisfy the
two following conditions:
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• s ∈ S0 with S0 defined in Proposition 3.1,
• ∇u ̸= 0 H1 a.e. on Ls(u).

We introduce the following set:

Γ :=
{
lis(u), s ∈ S and i ∈ Is

}
where the index set Is corresponds to the non-constant curves lis(u) among
the connected components of Ls(u) inside Ω which do not intersect ∂Ω.

Proposition 3.4. — Given s ∈ S and i ∈ Is, let F is be the bounded
connected component of R2\lis(u) given by the Jordan curve theorem. Then,
for every i ∈ Is, u > s on F is .

Proof. — We fix s ∈ S. Let lis(u) a connected component of Ls(u) such
that lis(u) ⋐ Ω. Since Ω is simply connected, F is ⊂ Ω and by Proposition 2.1,
we have that u ⩾ s on F is . If l′s(u) is a connected component of L∗

s(u) that
is inside F is then for H1 a.e. y ∈ l′s(u), ∇u(y) is defined and ∇u(y) ̸= 0.
Since u ⩾ s on F is , every point y in l′s(u) is a local minimum on F is and
hence, either ∇u(y) = 0 or ∇u(y) is not defined. Thus, there is no such
l′s(u) in F is . By assumptions on s, we have that H1(Ls\L∗

s) = 0. Therefore,
H1({u = s} ∩ F is) = 0.

Let us assume that there exists x ∈ F is such that u(x) = s. Then
by Proposition 2.1 for every ϵ < dist(x, lis(u)) there exists yϵ ∈ ∂Bϵ(x)
such that u(yϵ) = s and we define the following set Y := {yϵ, 0 < ϵ <

dist(x, lis(u))}. We have that

H1(Y ) := lim
δ→0

H1
δ(Y )

with

H1
δ(Y ) := inf

{∑
n∈N

diam(Vn)
}

where the infimum is taken over the families of sets (Vn)n∈N such that
Y ⊂

⋃
n Vn and diam(Vn) < δ for every n ∈ N.

For every admissible (Vn)n∈N, we define En as the set of those ϵ such
that yϵ ∈ Vn ∩ Y . We define em := inf{ϵ ∈ En}, eM := sup{ϵ ∈ En} and
Ṽ n := [em, eM ]. We have that diam(Ṽ n) = eM − em ⩽ diam(Vn) < δ and
]0,dist(x, lis(u))[ ⊂ ∪Ṽ n.

Hence, (Ṽ n)n∈N is admissible for H1
δ((0,dist(x, lis(u)))) and

H1
δ(Y ) ⩾ H1

δ

(
(0,dist(x, lis(u)))

)
.

By taking the limit when δ goes to 0, we obtain:

H1(Y ) ⩾ H1((0,dist(x, lis(u))
)

= dist
(
x, lis(u)

)
.
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Thus H1({u = s} ∩ F is) ⩾ dist(x, lis(u)) > 0. That is a contradiction.
Hence, there is no such x. Therefore, u > s on F is . □

A direct consequence of that result is the following:

Proposition 3.5. — For every s ∈ S, Is is countable. Moreover, for
every i ∈ Is, lis(u) is the boundary of a connected component F is of Es =
{u > s}.

Proof. — By Theorem 2.8, Is is countable. Let us consider i ∈ Is. By
the previous proposition, lis(u) is the boundary of a connected component
of Es = {u > s}. □

We also have that:

Proposition 3.6. — For every s ∈ S, every connected component Fs
of Es, if Fs ⋐ Ω then Fs is simply connected and its boundary is a closed
simple curve ls(u) with Lipschitz parametrization.

Proof. — Since Fs is bounded, R2\Fs has only one unbounded connected
component. We call F̃ s the complement of this unbounded set. We claim
that F̃ s = Fs. We have that ∂F̃ s ⊂ ∂Fs. Hence, u ≡ s on ∂F̃ s. Since F̃ s
is simply connected, ∂F̃ s is a connected set in Ls(u) with H1(∂F̃ s) > 0.
By Theorem 2.8, ∂F̃ s is a closed subset of a closed simple curve ls(u),
which has a Lipschitz parametrization. Hence, F̃ s is a bounded set such
that ∂F̃ s ⊂ ls(u). We have that F̃ s is an open set in R2\ls(u). Since,
∂F̃ s ⊂ ls(u), F̃ s is also closed in R2\ls(u). The fact that F̃ s is bounded and
connected gives that F̃ s is the bounded connected component of R2\ls(u)
and by the Jordan curve theorem we have ∂F̃ s = ls(u). By Proposition 3.4,
F̃ s ⊂ Es. Since F̃ s contains Fs, we get that F̃ s = Fs. Moreover, we have
proved that Fs is simply connected with ls(u) as boundary. □

The main result of this subsection is the following:

Proposition 3.7. — For a.e. s ∈ S, for every i ∈ Is, if lis(u) ∩ U ̸= ∅
then ∇(u− v) = 0 H1 a.e. on lis(u).

In order to prove this result, we state two technical lemmata:

Lemma 3.8. — For a.e. s ∈ S, for every i ∈ Is there exists a decreasing
sequence (sn)n∈N converging to s such that:

• There exists a simple connected curve lsn(u) in Lsn with Lipschitz
parametrization that is inside F is .

• (Fsn)n∈N is an increasing sequence with
⋃
n∈N Fsn = F is .
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Here, Ft is the bounded connected component of R2\lt(u) given by the
Jordan curve theorem and F is is the bounded connected component of
R2\lis(u).

Proof of Lemma 3.8. — By Proposition 3.4 we have that u > s on F is . By
the coarea formula in Proposition 2.18 there exists s0 > s, s0 ∈ S such that
H1(Ls0(u) ∩ F is) > 0. Moreover, by Theorem 2.8, H1(Ls0(u)\L∗

s0
(u)) = 0.

Hence, there exists ls0(u) in Ls0 satisfying the assumptions of Lemma 3.8.
Then, we next select s<s1<s0 with s1 ∈S such that H1(Ls1(u)∩F is) > 0.

We have that Fs0 ⊂ Es1 . Hence, Fs0 is in one connected component of Es1 ,
we call ls1(u) the boundary of that connected component. By Proposi-
tion 3.6 we have that ls1(u) is a connected simple curve with Lipschitz
parametrization. We repeat this argument to find a sequence (sn)n∈N that
satisfies the first part of the lemma. By construction (Fsn)n∈N is an in-
creasing sequence, it remains to prove that

⋃
n∈N Fsn = F is .

We introduce F∞ :=
⋃
n∈N Fsn a subset of F is . If y ∈ ∂F∞ there exists a

sequence (yn)n∈N such that yn ∈ ∂Fsn and yn → y. By continuity of u and
the fact that yn converges to y we obtain that u(y) = s.

By Proposition 3.4 we have that ∂F∞ ⊂ ∂F is . We claim that F∞ = F is .
Indeed, if those two sets are not equal, then there exists x ∈ F is\F∞. Since
F is is a connected open set, for every y ∈ F∞ there exists a continuous path
from x to y included in F is . By continuity, this path must intersect ∂F∞ ⊂
∂F is , contradicting the fact that the path is in F is . Hence, F∞ = F is . □

Lemma 3.9. — Let u be a minimizer. For a.e. s ∈ S and every i ∈ Is,
we consider a sequence (lsn)n∈N as in the previous lemma. Then, we have
that limn→+∞ D(lsn , lis(u)) = 0 where D(E,F ) := supe∈E inff∈F |e − f |.
Moreover, let v be another minimizer, if there exists a constant C such that
u− v ≡ C on every lsn then ∇(u− v) = 0 H1 a.e on lis(u).

Proof of Lemma 3.9. — For every ϵ > 0, we claim that there exists
N ∈ N such that for every n ⩾ N , D(lsn , lis(u)) < ϵ. Indeed, assume by
contradiction that there exists ϵ > 0 such that ∀ N , there exist n ⩾ N

and yn ∈ lsn(u) such that ∀ x ∈ lis(u), d(yn, x) ⩾ ϵ. Since all these yn are
in Ω, there exists a sequence (yg(n))n∈N converging towards some y ∈ F is .
We have that d(y, x) ⩾ ϵ for every x ∈ lis(u). By continuity of u, we
have that u(y) = s. Thus, by Proposition 3.4, y ∈ ∂F is = lis(u). That is a
contradiction.

For H1 a.e. x ∈ lis(u) we have that ∇u(x) ̸= 0 and ∇v(x) exist. Moreover,
for H1 a.e. x ∈ lis(u) we have that ∇u(x) and ∇v(x) are orthogonal to lis(u)
at x in the sense that ⟨∇u(x), γ′

s(γ−1
s (x))⟩ = 0 where γs is a Lipschitz
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parametrization of lis(u). We consider dx := x+R∇u(x). Let us call H− and
H+ the two half-planes of R2\dx. For every r > 0, H± ∩ lis(u) ∩Br(x) ̸= ∅,
otherwise it would contradict the fact that ∇u(x) is orthogonal to lis(u).
A direct consequence is the fact that H− ∩ F is ̸= ∅ and H+ ∩ F is ̸= ∅.

We assume that for every N ∈ N, there exists ñ ⩾ N such that lsñ(u) ∩
dx = ∅. Thus, we can assume that lsñ(u) ∩ H− = ∅. Hence, there exist
y ∈ lis(u) and ϵ0 > 0 such that d(y, Fsñ) > ϵ0. Since lsñ(u) → lis(u) in
the sense of D that is a contradiction. Then, there exists N ∈ N such
that for every n ⩾ N , lsn(u) ∩ dx ̸= ∅. For every such n, we take xn as a
point that minimizes d(x, y) on lsn(u) ∩ dx. Since this sequence (xn)n∈N is
bounded, it converges, up to a subsequence, to a point x′ ∈ F is such that
u(x′) = s. By Proposition 3.4, x′ ∈ lis(u). If x′ ̸= x then there exists r > 0
such that dx ∩ Br(x) ∩ lsn(u) = ∅ for every n ∈ N large enough. Hence,
dx ∩ Br(x) ∩ Fsn = ∅ for every n ∈ N large enough which contradicts the
fact that

⋃
n∈N Fsn = F is . Thus, x = x′ and we can find a sequence (xn)n∈N

such that xn ∈ lsn(u)∩dx and xn → x. By assumption, u−v ≡ C on lsn(u)
for n large enough. By continuity of u − v we obtain that u − v(x) = C.
Then, (u−v)(x)−(u−v)(xn)

|x−xn| = C−C
|x−xn| = 0. Moreover, ∇(u − v)(x) is collinear

to ∇u(x), hence, we obtain ∇(u− v)(x) = 0. Since that is the case for H1

a.e. x ∈ lis(u), we have the desired conclusion. □

Proof of Proposition 3.7. — For every s ∈ S, lis(u) is a Lipschitz contin-
uous closed curve such that ∇u and ∇v are defined and collinear H1 a.e.
on lis(u) and ∇u ̸= 0H1 a.e. on lis(u). If lis(u) ∩ U ̸= ∅ then there exists Ui
a connected component of U such that lis(u) ∩ Ui ̸= ∅. By Proposition 2.5
and Proposition 3.1 we have u−v ≡ Ci on lis(u). We consider the sequences
(sn)n∈N, (lsn(u))n∈N and (Fsn)n∈N from Lemma 3.8.

Hence, by the first part of Lemma 3.9, there exists N ∈ N such that for
every n ⩾ N , lsn(u)∩Ui ̸= ∅. Thus, by Proposition 2.5 and Proposition 3.1,
u − v ≡ Ci on lsn(u) for every n ⩾ N . By the second part of Lemma 3.9,
we have that ∇(u− v) = 0 H1 a.e on lis(u). □

4. W 1,2 regularity of |σ|

In this section, we prove the following proposition on σ = ∇φ(∇u):

Proposition 4.1. — For every α > 0, the function f := max(α, |σ|) is
in W 1,2(Ω′) for any Ω′ ⋐ Ω.

Proof of Proposition 4.1. — We prove this result in four parts. In Step 1,
we regularize our problem in order to work with smooth solutions (un)n∈N.
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Then in Step 2, we prove that ∥ max(α, |∇φn(∇un)|)∥W 1,2(Ω′) is uniformly
bounded in n ∈ N. In the subsequent Step 3, we show that

max(α, |∇φn(∇un)|) −→ f

a.e. on Ω. We conclude that f is in W 1,2(Ω′) in Step 4.
Step 1. — For every n ∈ N, we introduce (ρn)n∈N a standard mollifying

sequence with supp ρn ⊂ B 1
n

(0). If we set gn := g∗ρn and λn := λ∗ρn then
(gn)n∈N and (λn)n∈N are sequences of smooth approximations of g and λ.
We consider φn := gn(| · |) + 1

nθ(| · |). The function θ is smooth quadratic
around the origin such that 0 < θ′′(x) for every x ∈ R and

C−|x|p ⩽ θ(z) ⩽ C+(|x|p + 1)

for all |x| ⩾ 1 with 0 < C− < C+.
Let un be the minimizer of:

In : v −→
∫

Ω
φn(∇v(x)) − λnv(x)dx

on W 1,p
ψ (Ω).

Proposition 4.2. — The sequence (un)n∈N is uniformly bounded in
W 1,∞(Ω). There exists a subsequence still denoted by (un)n∈N that weakly
converges in W 1,p(Ω) towards ũ ∈ W 1,∞(Ω). Moreover, ũ is a minimizer of
Pλ on W 1,p

ψ (Ω).

Proof. — By Proposition 2.7 we have that the sequence (un)n∈N is uni-
formly bounded in W 1,∞(Ω). Hence, we can extract a subsequence, still de-
noted by (un)n∈N, that converges strongly in Lp(Ω) and weakly in W 1,p

ψ (Ω)
towards ũ ∈ W 1,∞(Ω). It remains to prove that ũ is a minimizer of Pλ on
W 1,p
ψ (Ω).
By Jensen’s inequality, we have φn ⩾ φ. Hence

(4.1) lim inf
n→+∞

∫
Ω
φn(∇un) ⩾ lim inf

n→+∞

∫
Ω
φ(∇un).

By weak lower semi-continuity of Iλ, (4.1) and the fact that un is the
minimizer for In we have∫

Ω
φ(∇ũ) − λũ ⩽ lim inf

n→+∞

∫
Ω
φ(∇un) − λun

⩽ lim inf
n→+∞

∫
Ω
φn(∇un) − λnun

⩽ lim
n→+∞

∫
Ω
φn(∇u) − λnu.

(4.2)
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By the dominated convergence theorem applied to the last quantity we
obtain ∫

Ω
φ(∇ũ) − λũ ⩽

∫
Ω
φ(∇u) − λu.

Hence, ũ is a minimizer on W 1,p
ψ (Ω). □

Step 2. — For every n ∈ N, we introduce σn := ∇φn(∇un). In this part,
we prove the following result on fn := max(α, |σn|):

Proposition 4.3. — For every α > 0 and every Ω′ ⋐ Ω, the functions
fn := max(α, |σn|) are uniformly bounded in W 1,2(Ω′).

Proof. — By [20, Proposition 2.4], we have for every b > 0 and k ∈ {1, 2}
that:∫

Ω′∩{∂kun⩾b}
|∇σn|2

⩽ C1

(
b, ∥∇un∥L∞(Ω), sup

b⩽t⩽∥∇un∥L∞(Ω)

g′′
n(t) + θ′′(t)

n

)
.

Thus,∫
Ω′∩{|∇un|⩾b}

|∇σn|2

⩽ C2

(
b, ∥∇un∥L∞(Ω), sup

b⩽t⩽∥∇un∥L∞(Ω)

g′′
n(t) + θ′′(t)

n

)
.

Finally,∫
Ω′∩{|σn|⩾g′

n(b)}
|∇σn|2

⩽ C2

(
b, ∥∇un∥L∞(Ω), sup

b⩽t⩽∥∇un∥L∞(Ω)

g′′
n(t) + θ′′(t)

n

)
.

By Proposition 2.7 we have that ∥∇un∥L∞(Ω) can be bounded by L uni-
formly in n ∈ N. Moreover, g ∈ C1,1

loc (R\{0}) and gn is a convolution of
g. Hence, supb⩽t⩽∥∇un∥L∞(Ω)

g′′
n(t) + θ′′(t)

n can be bounded by sup b
2⩽t⩽L+ b

2

g′′(t) + 1 for every n ∈ N such that g′′
n is close enough to g′′ on ( b2 ,+∞)

and larger than supb⩽t⩽L θ′′(t). Namely, every n ∈ N larger than max{ 2
b ,

supb⩽t⩽L θ′′(t)}. Thus, we get∫
Ω′∩{|σn|⩾g′

n(b)}
|∇σn|2 ⩽ C2

(
b, L, sup

b
2⩽t⩽L+ b

2

g′′(t) + 1
)
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for every n ∈ N larger than max{ 2
b , supb⩽t⩽L+ b

2
g′′(t)}.

By growing assumptions on g, for every α > 0 we can find b > 0 such
that g′

n(b) ⩽ α for n ∈ N large enough. Hence, for every α > 0 and every
n ∈ N large enough we have:∫

Ω′∩[|σn|>α]
|∇σn|2 ⩽ C(α, g′′, L).

Thus, the sequence (fn)n∈N is uniformly bounded in W 1,2(Ω′). □

Remark 4.4. — In the case where g′′ is also bounded around the origin,
we can apply directly [20, Proposition 2.4] or [6, Theorem 2.1] to obtain
that fn := |σn| are uniformly bounded in W 1,2(Ω′).

Since fn := max(α, |σn|) are uniformly bounded in W 1,2(Ω′), we can
extract a subsequence which converges weakly.

Step 3. — We prove that σn → σ a.e. Ω up to a subsequence. To do so,
we use the Young measures associated to (∇un)n∈N.

Proposition 4.5. — We have the following equality

(4.3) lim inf
n→+∞

∫
Ω
φ(∇un) =

∫
Ω
φ(∇ũ).

Proof. — If we replace u by ũ in the last term of (4.2) we obtain that∫
Ω
φ(∇ũ) − λũ ⩽ lim inf

n→+∞

∫
Ω
φ(∇un) − λun

⩽ lim inf
n→+∞

∫
Ω
φn(∇un) − λnun

⩽ lim inf
n→+∞

∫
Ω
φn(∇ũ) − λnũ.

(4.4)

Since ũ ∈ W 1,∞(Ω), the uniform convergence of (φn)n∈N and (λn)n∈N over
compact sets t‘he last term is equal to the first term. Hence, all those
inequalities are equalities, in particular:

lim inf
n→+∞

∫
Ω
φ(∇un) − λun =

∫
Ω
φ(∇ũ) − λũ.

Since un → ũ in Lp(Ω) we have that

lim
n→+∞

∫
Ω
λun =

∫
Ω
λũ.

Hence,

lim inf
n→+∞

∫
Ω
φ(∇un) =

∫
Ω
φ(∇ũ). □
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We consider (uψ(n))n∈N a subsequence such that

(4.5) lim inf
n→+∞

∫
Ω
φ(∇un) = lim

n→+∞

∫
Ω
φ(∇uψ(n)).

In order to simplify the notations, we still denote (uψ(n))n∈N by (un)n∈N.

Proposition 4.6. — For a.e. x ∈ Ω we have

φ(∇ũ(x)) = φ(x) :=
∫
R2
φ(y)dνx(y)

where νx is a probability measure that depends on x and on the weak con-
vergence of (∇un)n∈N towards ∇ũ. Moreover, supp νx ⊂ {y ∈ R2,∇φ(y) =
∇φ(∇ũ(x))} for a.e. x ∈ Ω.

Proof. — Let (νx)x∈Ω be the Young measures associated to a subse-
quence of (∇un)n∈N given by [4, Theorem 2]. For every Carathéodory func-
tion F such that {F (·,∇un(·))}n∈N is uniformly integrable, we have:

(4.6) lim
n→+∞

∫
Ω
F (x,∇un(x))dx =

∫
Ω
F (x)dx

with F (x) =
∫
R2 F (x, y)dνx(y). Moreover, for a.e. x ∈ Ω,

(4.7) ∇ũ(x) =
∫
R2
ydνx(y).

Since un is uniformly bounded in W 1,∞(Ω),

(4.8) lim
n→+∞

∫
Ω
φ(∇un(x))dx =

∫
Ω
φ(x)dx where φ(x) =

∫
R2
φ(y)dνx(y).

If we combine this last equation with (4.5) we get∫
Ω
φ(∇ũ) = lim

n→+∞

∫
Ω
φ(∇un(x))dx =

∫
Ω
φ(x)dx.

If we apply the triangle inequality and Jensen’s inequality to (4.7) we
obtain for a.e. x ∈ Ω,

(4.9) φ(∇ũ(x)) ⩽
∫
R2
φ(y)dνx(y)dx = φ(x).

If we combine the two last equations, we obtain for a.e. x ∈ Ω that

(4.10) φ(∇ũ(x)) = φ(x).

By Jensen’s inequality, φ is affine on supp νx and thus, for a.e. x ∈ Ω we
have that supp νx ⊂ {y ∈ R2,∇φ(y) = ∇φ(∇ũ(x))}. □

Then, we can prove the following convergence result:

Proposition 4.7. — We have that σn → σ in L1(Ω) when n → +∞.
Here, σn = ∇φn(∇un).
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Proof. — If we set F (x, y) = |∇φ(y) − σ(x)| in (4.6), we obtain that

lim
n→+∞

∫
Ω

|∇φ(∇un(x)) − σ(x)|dx =
∫

Ω

∫
R2

|∇φ(y) − σ(x)|dνx(y)dx = 0.

Since ∇un is uniformly bounded in L∞(Ω), we have that

lim
n→+∞

∫
Ω

|∇φn(∇un) − ∇φ(∇un)| = 0.

Hence, by the triangle inequality,

lim
n→+∞

∫
Ω

|σn(x) − σ(x)|dx = 0.

Hence, σn → σ in L1(Ω) when n → +∞. □

Thanks to the previous Proposition, we can extract a subsequence, we
do not relabel, such that σn → σ a.e. on Ω when n → +∞.

Step 4. — Since σn → σ a.e. on Ω when n → +∞, we have that
fn → max(α, |σ|) a.e. on Ω. By Proposition 4.3, we have that max(α, |σ|) ∈
W 1,2(Ω′). □

5. Continuity of |σ| on the level lines and a maximum
principle

In this section, we prove that, generically, max(d0, |σ|) is continuous on
the level lines of u and also satisfies a maximum principle.

For u and v two minimizers, we introduce

Γ′ :=
{
lis(u), s ∈ S and i ∈ Is

}
where S ⊂ R is the set of those s that satisfy the conclusion of Theorem 2.8
and such that ∇u, ∇v are defined, ∇u ̸= 0, ∇u and ∇v are collinear H1

a.e. on Ls(u). The index set I ′
s corresponds to the non-constant curves lis(u)

among the connected components of Ls(u) such that lis(u) ⋐ Ω.

Proposition 5.1. — There exists a representative f0 of max(d0, |σ|)
that is absolutely continuous on lis(u) for a.e. s ∈ S and every i ∈ Is.

Proof. — We consider the sequence (σn)n∈N introduced in the previous
section. We have that σn → σ a.e. on Ω when n → +∞. By Proposition 4.1,
we have ∥∇ max(d0, |σn|)∥L2(Ω1) ⩽ C1 with Ω1 ⋐ Ω and C1 independent of
n ∈ N. Thus, there exists a constant C2 independent of n such that

C2 ⩾
∫

Ω1

|∇ max(d0, |σn|)|2|∇u| =
∫
R

∫
Ls(u)∩Ω1

|∇ max(d0, |σn|)|2dH1ds
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where the equality is given by Proposition 2.18. With Fatou’s lemma we
obtain that for a.e. s ∈ S,

(5.1) lim inf
n→+∞

∫
Ls(u)∩Ω1

|∇ max(d0, |σn|)|2dH1 ⩽ C3(s).

We define S1 as the subset of S such that (5.1) holds. We have |S\S1| = 0.
We introduce the index I1

s that corresponds to the non-constant curves
lis(u) among the connected components of Ls(u) such that lis(u) ⋐ Ω1.

Now, we fix s ∈ S1 and i ∈ I1
s . We can extract a subsequence such that

for every n ∈ N: ∫
lis(u)

|∇ max(d0, |σn|)|2dH1 ⩽ 2C3(s).

Let us call γis : [0, length(lis(u))) → lis(u) a Lipschitz parametrization of
lis(u). We have that max(d0, |σn|) ◦ γis is uniformly bounded in W 1,2([0,
length(lis(u)))). By the Arzelà–Ascoli theorem,there exists a subsequence
of max(d0, |σn|) ◦ γis converging uniformly to v ∈ C0([0, length(lis(u)))).

Since max(d0, |σn|) → max(d0, |σ|)H1 a.e. on ljt (u) for a.e. t ∈ R and
every j ∈ It, we choose f0 as a representative of max(d0, |σ|) such that
f0 = v ◦ (γis)−1 on lis(u).

Now, we introduce an increasing sequence of open sets (Ωk)k∈N such that
χΩk → χΩ in L1(R2). For a.e. s ∈ S1 and for every i ∈ I2

s\I1
s , we can define

f0 as we did on Ω1. Hence, there exists S2 ⊂ S1 satisfying |S\S2| = 0
such that for every s ∈ S2 and every i ∈ I2

s , we have that f0 absolutely
continuous on lis(u).

Thus, we can select by induction a representative of max(d0, |σ|) that is
absolutely continuous on lis(u) for a.e. s ∈ S and every i ∈ Is. □

For a.e. s ∈ S, if lis(u) ∩ U = ∅ we have some additional information
that will be useful in the final proof.We recall that g is strictly convex
on SC =

⋃N
n=1 SCn with SCn = (an, bn) for every n ∈ N∗, n < N and

dn = g′(bn) = g′(an+1).

Proposition 5.2. — For a.e. s ∈ S and for every i ∈ Is, if lis(u)∩U = ∅,
then f0 = Cis is constant on lis(u) with Cis ∈ {dn, n ∈ N, 0 ⩽ n < N}.

Proof. — For a.e. x ∈ Ω\U we have |σ(x)| ∈ {0} ∪ g′(R\SC). By the
coarea formula for a.e. s ∈ R, for H1 a.e. x ∈ (Ω ∩ Ls(u))\U we have
|σ(x)| ∈ g′(R\SC). Hence, for a.e. s ∈ R if lis(u) ∩ U = ∅ then f0(lis(u)) ⊂
g′(R\SC) ∪ f0(X) for some X ⊂ lis(u) with H1(X) = 0.

Moreover, for a.e. s ∈ R and every i ∈ Is, lis(u) is a Lipschitz continuous
curve such that f0 is absolutely continuous on lis(u). Since g′(R\SC) is
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finite and f0(X) is the image of a negligible set by an absolutely continuous
function, we have |g′(R\SC) ∪ f0(X)| = 0. The continuity of f0 on lis(u)
implies that f0 is constant on lis(u). Since lis(u) ∩ U = ∅ we obtain that

f0|lis(u) ≡ Cis ∈ {dn, n ∈ N, 0 ⩽ n < N}. □

We adopt the notations of Section 4, where (σn)n∈N is a smooth approx-
imation that converges a.e. on Ω to σ. We prove the following maximum
principle on max(d0, |σn|):

Proposition 5.3. — We assume that Ω has a C1,1 boundary, ψ ∈
C1,1(R2), λ is globally Lipschitz continuous on Ω and λ > 0. There ex-
ists

Υ := Υ
(

|Ω|,max
Ω

λ,min
Ω
λ, ∥ψ∥C1,1(R2), κ

)
> 0

where κ is the essential infimum of the curvature of ∂Ω, such that if
∥∇λ∥L∞(Ω) ⩽ Υ then for n ∈ N large enough, for a.e. every s ∈ S, for
every i ∈ Is, if lis(u) ∩ U = ∅ we have

sup
F is

|σn| ⩽ sup
lis(u)

max(d0, |σn|)

where F is is the bounded connected component of R2\lis(u).

Remark 5.4. — When λ is constant, this result is true even if Ω and ψ

are only Lipschitz continuous.

Proof. — By the coarea formula in Proposition 2.18, σn → σH1 a.e. on
lis(u) for a.e. s ∈ S and every i ∈ Is. We apply the maximum principle
from [12, Theorem 15.1] to |∇un| on F is . To do so, we assume that

∥∇λ∥L∞(Ω) ⩽
min

Ω
λ2

2 × L× sup
x∈[ b0

2 ,L]
g′′(x) + g′(x)

x

.

Here L is the Lipschitz constant introduced in Proposition 2.7. For every
n ∈ N, there exists bn such that g′

n(bn) = d0.
Hence, for n ∈ N large enough, bn ⩾ b0

2 and

∥∇λn∥L∞(Ω) ⩽
min

Ω
λ2
n

∥∇un∥L∞(Ω) × sup
x∈[ bn2 ,L]

g′′
n(x) + g′

n(x)
x

.

Thus, thanks to [12, Theorem 15.1, Eq. (15.15)] for a.e. s ∈ R we have

sup
Fs

|∇un| ⩽ sup
lis(u)

max
(
b0

2 , |∇un|
)

⩽ sup
lis(u)

max(bn, |∇un|)
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for n ∈ N large enough. Since g′
n is increasing, we obtain supFs |σn| ⩽

suplis(u) max(d0, |σn|). □

We have the following partial maximum principal for |σ|:

Proposition 5.5. — Let us consider s ∈ S and i ∈ Is such that lis(u) ∩
U = ∅ and f0 = Cis on lis(u). Then for a.e. t > s, for every j ∈ It such that
ljt (u) ⋐ F is and ljt (u) ∩ U = ∅, we have max(d0, |σ|) = CjtH1 a.e. on ljt (u)
with Cjt ∈ {dn, n ∈ N, 0 ⩽ n < N} not larger than Cis.

Proof. — By construction of f0 in the proof of Proposition 5.1 and
Proposition 5.2, we can construct a subsequence max(d0, |σψ(n)|) converg-
ing uniformly to Cis on lis(u) that also converges uniformly to Cjt on ljt (u).
Hence, with the previous proposition we get:

Cjt ⩽ lim sup
n→+∞

sup
ljt (u)

max
(
d0, |σψ(n)|

)
⩽ lim sup

n→+∞
sup
F is(u)

max
(
d0, |σψ(n)|

)
⩽ lim
n→+∞

sup
lis(u)

max
(
d0, |σψ(n)|

)
= Cis.

Thus, we have that Cjt ⩽ Cis. □

6. Proof of the main theorem

6.1. Pseudo Cheeger problem

In this part, we combine the maximum principle for |σ| and the Euler–
Lagrange equation to prove that the level sets are almost Cheeger sets.

We recall the definition of the Cheeger constant of a set:

Definition 6.1. — The Cheeger constant of Ω is defined as:

hΩ = inf
D⊂Ω

Per(D,R2)
|D|

A set D ⊂ Ω of finite perimeter with |D| > 0 is said to be a Cheeger set if
Per(D,R2) = hΩ|D|.

Remark 6.2. — There is no Cheeger set D of Ω such that D ⋐ Ω because
the function t 7→ Per(tD,R2)

|tD| is −1-homogeneous.

The following equality is a consequence of Proposition 5.2:
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Proposition 6.3. — For a.e. s ∈ S, for every i ∈ Is if lis(u) ∩U = ∅ we
have ∫

F is

λ = Cis Per
(
F is
)

where F is is the bounded connected component of R2\lis(u) and Cis is the
constant introduced Proposition in Section 5.2.

Proof. — By [11, Section 5.11, Theorem 1], for a.e. s ∈ S and for every
i ∈ Is, we have that D1F is ∈ BV (Ω).

We consider the sequence (σn)n∈N that converges a.e. on Ω towards σ
introduced in Section 4. By [11, Section 5.8, Theorem 1] we obtain:∫

F is

div(σn)dx =
∫

Ω
1F is (x) div(σn)dx

= −
∫

Ω

〈
σn,

D1F is∣∣D1F is ∣∣
〉

d
∣∣D1F is ∣∣

= −
∫
∂∗F is

〈
σn,

D1F is∣∣D1F is ∣∣
〉

dH1.

The set ∂∗F is is introduced in Definition 2.16. We can use Proposition 2.20
that gives:

−
∫
F is

div(σn)dx =
∫
∂∗F is

〈
σn,

∇u
|∇u|

〉
dH1.

But by the coarea formula σn → σH1 a.e. on ∂∗F is ⊂ lis(u) for a.e. s ∈ R
and every i ∈ Is. By Proposition 5.2 and since σ is collinear to ∇u

|∇u| H
1 a.e.

on lis(u), we get for such an s:

(6.1) lim
n→+∞

−
∫
F is

div(σn)dx =
∫
∂∗F is

|σ|dH1 = Cis Per
(
F is
)
.

Moreover,

(6.2) −
∫
F is

div(σn) =
∫
F is

λn −→
∫
F is

λ

when n → +∞, where λn := λ ∗ ρn. Hence, with (6.1) and (6.2), we have
the desired result: ∫

F is

λ = Cis Per
(
F is
)

for a.e. s ∈ S, for every i ∈ Is when lis(u) ∩ U = ∅. □

We also have that:
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Proposition 6.4. — For every set F ⊂ F is of finite perimeter, we have∫
F

λ ⩽ Cis Per(F ).

Proof. — We follow the same ideas developed in the previous proof. We
have:

−
∫
F

div(σn) =
∫
∂∗F

⟨σn, νF ⟩dH1.

The term in the left-hand side tends to
∫
F
λ when n → +∞. For the term

in the right-hand side, we get:∫
∂∗F

⟨σn, νF ⟩dH1 ⩽
∫
∂∗F

|σn|dH1.

By Proposition 5.3, supF is |σn| ⩽ suplis max(d0, |σn|). By Proposition 5.1
and Proposition 5.2 we have max(d0, |σn|) → CisH1 a.e. on lis(u) when
n → +∞. Hence, ∫

F

λ ⩽ Cis Per(F ). □

6.2. Main proof

We first prove Theorem 1.5:
Proof of Theorem 1.5. — For a.e. s ∈ R, for every i ∈ Is if lis(u) ∩ (U ∪

∂Ω) = ∅ then by Proposition 6.3,∫
F is

λ = Cis Per
(
F is
)
.

We assume that such an lis(u) exists. Since F is ⋐ Ω by Remark 6.2 and
the previous equality, we have

hΩ <
Per
(
F is
)

|F is |
= 1
Cis|F is |

∫
F is

λ.

We have that ∥λ∥L∞(Ω) ⩽ d0hΩ. Thus,

hΩ <
d0hΩ

Cis
.

Hence, Cis < d0 which is a contradiction. Thus, for a.e. s ∈ R we have
lis(u) ∩ (U ∪ ∂Ω) ̸= ∅.

Let v be another minimizer. By Proposition 3.2 and Proposition 3.7, for
a.e. s ∈ R, on every connected component lis(u) of Ls(u) that is not a point
we have u = v on lis(u) or ∇(u− v) = 0H1 a.e. on lis(u).
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By the coarea formula:∫
R2∩{u ̸=v}

|∇(u− v)∥∇u| =
∫
R

∫
Ls(u)∩{u̸=v}

|∇(u− v)|dH1ds.

By Theorem 2.8, for a.e. s ∈ R, H1(Ls\L∗
s) = 0 and L∗

s is composed by
a countable number of curves lis(u). For every i ∈ Is, we have that:∫

lis(u)∩{u̸=v}
|∇(u− v)|dH1 = 0.

By Proposition 3.2, we get that∫
Ls(u)∩{u̸=v}

|∇(u− v)|dH1 = 0.

Hence, ∫
R2∩{u̸=v}

|∇(u− v)∥∇u|dx = 0.

For the same reasons,∫
R2∩{u ̸=v}

|∇(u− v)∥∇v|dx = 0.

Hence we have ∇(u− v) = 0 a.e. on {u ̸= v}. This implies that the map
u− v is constant on R2. Since u = v on ∂Ω, we have that u = v on Ω. □

Now, we are ready to prove the main theorem:
Proof of Theorem 1.1. — Let u and v be two minimizers of Pλ. We

introduce

Θ := min
{minΩ λ

diam Ω ,Υ
}

where Υ comes from Proposition 5.3 and we assume that ∥∇λ∥L∞(Ω) ⩽ Θ.
For a.e. s ∈ R, every i ∈ Is, if lis(u) ∩ (U ∪ ∂Ω) = ∅ by Proposition 5.2,
|σ| = CisH1 a.e. on lis(u) with Cis ∈ {dn, 0 ⩽ n < N}.

We prove by induction on 0 ⩽ n < N that if |σ| = dn on lis(u) then
∇(u− v) = 0H1 a.e. on lis.

Step 1. — As an initialization step, we assume that Cis = d0. By Propo-
sition 3.4, u > s on F is . By the coarea formula, for a.e. t > s, t belongs
to S. We assume that there exists t > s and j ∈ It such that ljt (u) ∩U = ∅
and Ft ⋐ F is . By Proposition 5.3, |σ| = d0 a.e. on ljt (u). Thus, by Proposi-
tion 6.3 we have that

∫
Ft
λ = d0 Per(Ft). For r > 1 close to 1 and x0 ∈ Ω,

we introduce F rt = r(Ft − x0) + x0 ⋐ Fs.
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Hence, by Proposition 5.3 we have |σ| ⩽ d0 on ∂F rt . Then, by Proposi-
tion 6.4,

r2
∫
Ft

λ(r(x− x0) + x0)dx =
∫
F rt

λ(y)dy ⩽ d0 Per
(
F rt
)
.

But,

d0 Per
(
F rt
)

= rd0 Per(Ft) = r

∫
Ft

λ(x)dx.

Thus, ∫
Ft

rλ
(
r(x− x0) + x0

)
− λ(x) ⩽ 0.

Since ∥∇λ∥L∞(Ω) <
minΩ̄ λ

diam(Ω) , for r > 1 small enough, we have that rλ(r(x−
x0) + x0) − λ(x) > 0 for every x ∈ F is . That is a contradiction. Hence, for
a.e. t > s and every j ∈ It such that ljt (u) ⋐ F is we have ljt (u) ∩ U ̸= ∅.
By Proposition 3.7, ∇(u− v) = 0H1 a.e. on ljt (u). By the coarea formula,
∇(u− v) = 0 a.e. in F is . By Lemma 3.9, we have that ∇(u− v) = 0H1 a.e.
on lis(u).

Step 2. — Now, we prove the induction part. We consider 1 ⩽ n < N .
Let us assume that for every k < n, for a.e. t ∈ R and every j ∈ It if
ljt (u) ∩ (U ∪ ∂Ω) = ∅ and Cjt = dk then ∇(u− v) = 0H1 a.e. on ljt (u).

If lis(u) is such that lis(u) ∩ (U ∪ ∂Ω) = ∅ and Cis = dn, we consider t > s

such that ljt (u) ∩ U = ∅ and Ft ⋐ F is . Hence, by Proposition 5.5, either
Cjt = dn or Cjt < dn. If Cjt = dn, then as in Step 1 we construct F rt ⋐ F is
and we prove that ∇(u − v) = 0H1 a.e. on ljt (u). In the second case, by
induction, we have ∇(u− v) = 0H1 a.e. on ljt (u). Hence, ∇(u− v) = 0H1

a.e. on ljt (u). We can conclude as in Step 1 that ∇(u − v) = 0H1 a.e. on
lis(u).

Step 3. — For a.e. s ∈ S, we consider ls(u) a connected component of
L∗(u). If ls(u) ∩ (R2\Ω) ̸= 0 then by Proposition 3.2, u = v on ls(u). If
ls(u) ⊂ Ω and ls(u) ∩U ̸= ∅ then by Proposition 3.7, ∇(u− v) = 0 H1 a.e.
on ls(u). Finally, thanks to Step 2 if ls(u) ⋐ Ω and ls(u) ∩ U = ∅ then we
have ∇(u− v) = 0H1 a.e. on ls(u). Hence, as in the proof of Theorem 1.5,
we can prove with the coarea formula that u = v. □

7. Extensions

In this section, we present an extension of the main theorem when SC has
a countable number of connected components. We assume that the convex
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function g is C2 and g′′ > 0 on int(SC)\{0} and:

SC ∩ R+ = SC∞ ∪

(⋃
n∈N

SCn

)
with SC0 := [0, b0), SCn := (an, bn) for every n ∈ N∗ and SC∞ is defined
below. We assume that (an)n∈N∗ and (bn)n∈N are strictly increasing se-
quences with an+1 < bn. Moreover, the sequence (an)n∈N∗ is bounded and
limn→+∞ an = α. For every n ∈ N, dn := g′(bn) = g′(an+1) is an increasing
sequence.

The connected component SC∞ is exceptional because it can have two
different shapes. We introduce α∞ := inf{t ∈ SC∞}. If α < a∞ then
SC∞ := (a∞,+∞) and SC∞ := [α,+∞) if α = a∞.

Proposition 7.1. — In that case, Theorem 1.1 is still valid.

Proof. — With this new structural assumptions, the minimizers are still
globally Lipschitz-continuous on Ω. We can define U as previously with
int(SC) instead of SC. The function max(d0, g

′(∇u)) is still in W 1,2
loc (Ω).

Since |g′(R\SC)| = 0, Proposition 5.2 remains valid. Hence, the last crucial
point is the end of the induction argument in Step 2 of the proof of Theo-
rem 1.1. We assume that there exists lis(u) ⋐ Ω such that lis(u) ∩ U = ∅
and Cis = g′(a∞). Then for every lt ⋐ F is , we either have that Ct = g′(a∞)
or ∇(u− v) = 0H1 a.e. on lt. Hence, we have that ∇(u− v) = 0H1 a.e. on
lis(u). Thus, u = v on Ω. □

Remark 7.2. — The sets[
0, 1

2

)
∪

( ⋃
n∈N∗

(
22n − 1

22n ,
22n+1 − 1

22n+1

))
∪ [1,+∞)

and [
0, 1

2

)
∪

( ⋃
n∈N∗

(
22n − 1

22n ,
22n+1 − 1

22n+1

))
∪ (2,+∞)

satisfy the new structural assumptions made on SC.
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