[Scattering Conforme des Potentiels de Maxwell]
We construct a complete conformal scattering theory for finite energy Maxwell potentials on a class of curved, asymptotically flat spacetimes with prescribed smoothness of null infinity and a non-zero ADM mass. In order to define the full set of scattering data, we construct a Lorenz-like gauge which makes the field equations hyperbolic and non-singular up to null infinity, and reduces to an intrinsically solvable ODE on null infinity. We develop a method to solve the characteristic Cauchy problem from this scattering data based on a theorem of Hörmander. In the case of Minkowski space, we further investigate an alternative formulation of the scattering theory by using the Morawetz vector field instead of the usual timelike Killing vector field.
Nous construisons une théorie du scattering conforme complète pour les potentiels de Maxwell d’énergie finie sur une famille d’espaces-temps courbes, asymptotiquement plats, de régularité prescriptible à l’infini isotrope et dont la masse ADM n’est pas nulle. Afin de définir précisément les données de scattering, nous construisons une jauge qui rend les équations de Maxwell (décrites en fonction du potentiel) hyperboliques et non singulières jusqu’à l’infini isotrope et qui se réduit à une EDO résoluble de façon intrinsèque à l’infini isotrope. Nous développons une méthode pour résoudre le problème de Cauchy caractéristique à partir des données de scattering en utilisant un théorème de Hörmander. Dans le cas de l’espace-temps de Minkowski, nous étudions en détail une formulation alternative de la théorie du scattering basée sur l’utilisation du champ de vecteurs de Morawetz plutôt que du champ de Killing temporel usuel.
Révisé le :
Accepté le :
Première publication :
Keywords: Scattering, massless fields, Maxwell potentials, conformal geometry, asymptotic analysis
Mots-clés : scattering, champs sans masse, potentiels de Maxwell, géométrie conforme, analyse asymptotique
Nicolas, Jean-Philippe 1 ; Taujanskas, Grigalius 2
@unpublished{AIF_0__0_0_A21_0, author = {Nicolas, Jean-Philippe and Taujanskas, Grigalius}, title = {Conformal {Scattering} of {Maxwell} {Potentials}}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3733}, language = {en}, note = {Online first}, }
Nicolas, Jean-Philippe; Taujanskas, Grigalius. Conformal Scattering of Maxwell Potentials. Annales de l'Institut Fourier, Online first, 68 p.
[1] Sobolev spaces, Pure and Applied Mathematics, 140, Academic Press Inc., 2003 | Zbl | MR
[2] The Scattering Map on Oppenheimer–Snyder Space-Time, Ann. Henri Poincaré, Volume 21 (2020) no. 6, pp. 2031-2092 | DOI | Zbl | MR
[3] A comparison of Ashtekar’s and Friedrich’s formalisms of spatial infinity, Class. Quant. Grav., Volume 38 (2021) no. 16, 165015, 39 pages | DOI | Zbl | MR
[4] A non-degenerate scattering theory for the wave equation on extremal Reissner–Nordström, Commun. Math. Phys., Volume 380 (2020), pp. 323-408 | DOI | Zbl | MR
[5] Geometry and Physics of Null Infinity, One hundred years of general relativity. A jubilee volume on general relativity and mathematics (Bieri, Lydia; Yau, Shing-Tung, eds.) (Surveys in Differential Geometry), Volume 20, International Press, 2015, pp. 99-122 | DOI | MR | Zbl
[6] Asymptotics with a positive cosmological constant. I. Basic framework, Class. Quant. Grav., Volume 32 (2014) no. 2, 025004, 41 pages | DOI | Zbl | MR
[7] A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity, J. Math. Phys., Volume 19 (1978), pp. 1542-1566 | DOI | MR
[8] Gravitational scattering of electromagnetic field by a Schwarzschild black hole, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 54 (1991) no. 3, pp. 261-320 | Zbl | MR
[9] Asymptotic completeness for the Klein–Gordon equation on the Schwarzschild metric, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 61 (1994) no. 4, pp. 411-441 | Zbl | MR | Numdam
[10] Scattering of scalar fields by spherical gravitational collapse, J. Math. Pures Appl. (9), Volume 76 (1997) no. 2, pp. 155-210 | DOI | Zbl | MR
[11] The Hawking effect, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 70 (1999) no. 1, pp. 41-99 | Zbl | MR | Numdam
[12] The global Goursat problem and scattering for nonlinear wave equations, J. Funct. Anal., Volume 93 (1990) no. 2, pp. 239-269 | DOI | Zbl | MR
[13] Initial Value Problems for Wave Equations on Manifolds, Math. Phys. Anal. Geom., Volume 18 (2015) no. 1, 7, 29 pages | DOI | Zbl | MR
[14] Scattering Theory for the Charged Klein–Gordon Equation in the Exterior De Sitter–Reissner–Nordström Spacetime, J. Geom. Anal., Volume 31 (2021) no. 11, pp. 10521-10585 | DOI | Zbl | MR
[15] Existence of exponentially growing finite energy solutions for the charged Klein–Gordon equation on the De Sitter–Kerr–Newman metric, J. Hyperbolic Differ. Equ., Volume 18 (2021) no. 2, pp. 293-310 | DOI | Zbl | MR
[16] Existence of non-trivial, vacuum, asymptotically simple spacetimes, Class. Quant. Grav., Volume 19 (2002) no. 12, p. l71-l79 erratum ibid. 19, no. 12, p. 3389 (2002) | DOI | Zbl | MR
[17] On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Mémoires de la Société Mathématique de France. Nouvelle Série, 94, Société Mathématique de France, 2003 | DOI | Zbl | Numdam
[18] Scalar Curvature Deformation and a Gluing Construction for the Einstein Constraint Equations, Commun. Math. Phys., Volume 214 (2000) no. 1, pp. 137-189 | MR | DOI | Zbl
[19] On the Asymptotics for the Vacuum Einstein Constraint Equations, J. Differ. Geom., Volume 73 (2006) no. 2, pp. 185-217 | DOI | Zbl | MR
[20] A scattering theory for the wave equation on Kerr black hole exteriors, Ann. Sci. Éc. Norm. Supér. (4), Volume 51 (2018) no. 2, pp. 371-486 | DOI | Zbl | MR | Numdam
[21] Hardy inequalities on Riemannian manifolds and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014) no. 3, pp. 449-475 | DOI | Zbl | MR | Numdam
[22] Scattering for the wave equation on the Schwarzschild metric, Gen. Relativ. Gravit., Volume 17 (1985) no. 4, pp. 353-369 | DOI | Zbl | MR
[23] Scattering for massive scalar fields on Coulomb potentials and Schwarzschild metrics, Class. Quant. Grav., Volume 3 (1986) no. 1, pp. 71-79 | DOI | Zbl | MR
[24] Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric I, Ann. Phys., Volume 175 (1987) no. 2, pp. 366-426 | DOI | Zbl | MR
[25] Asymptotic Structure of Space-Time, Springer, 1977 | DOI
[26] On the Radiation Field of Pulse Solutions of the Wave Equation, Proc. R. Soc. Lond., Ser. A, Volume 269 (1962) no. 1336, pp. 53-65 | DOI | Zbl | MR
[27] On the Radiation Field of Pulse Solutions of the Wave Equation. II, Proc. R. Soc. Lond., Ser. A, Volume 279 (1964), pp. 386-394 | DOI | Zbl
[28] On the Radiation Field of Pulse Solutions of the Wave Equation. III, Proc. R. Soc. Lond., Ser. A, Volume 299 (1967), pp. 264-278 | DOI | Zbl | MR
[29] Radiation fields and hyperbolic scattering theory, Math. Proc. Camb. Philos. Soc., Volume 88 (1980) no. 3, pp. 483-515 | MR | DOI | Zbl
[30] Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant, J. Geom. Phys., Volume 3 (1986) no. 1, pp. 101-117 | Zbl | DOI | MR
[31] Gravitational fields near space-like and null infinity, J. Geom. Phys., Volume 24 (1997) no. 2, pp. 83-163 | DOI | Zbl | MR
[32] Late-time asymptotics for geometric wave equations with inverse-square potentials, J. Funct. Anal., Volume 285 (2023) no. 7, 110058, 114 pages | DOI | Zbl | MR
[33] Boundary values of resolvents of self-adjoint operators in Krein spaces (2013) (https://hal.science/hal-0074818v3)
[34] Resolvent and propagation estimates for Klein–Gordon equations with non-positive energy, J. Spectr. Theory, Volume 5 (2015) no. 1, pp. 113-192 | DOI | Zbl | MR
[35] Asymptotic completeness for superradiant Klein–Gordon equations and applications to the de Sitter–Kerr metric, J. Eur. Math. Soc., Volume 19 (2017) no. 8, pp. 2371-2444 | Zbl | DOI | MR
[36] Stability of Minkowski space and polyhomogeneity of the metric, Ann. PDE, Volume 6 (2020) no. 2, 2, 146 pages | DOI | Zbl
[37] A remark on the characteristic Cauchy problem, J. Funct. Anal., Volume 93 (1990) no. 2, pp. 270-277 | DOI | Zbl
[38] Conformal scattering for a nonlinear wave equation on a curved background, J. Hyperbolic Differ. Equ., Volume 9 (2012) no. 1, pp. 1-65 | DOI | Zbl | MR
[39] Hörmander’s method for the characteristic Cauchy problem and conformal scattering for a nonlinear wave equation, Lett. Math. Phys., Volume 110 (2020), pp. 1391-1423 | DOI | Zbl | MR
[40] A scattering theory for linear waves on the interior of Reissner–Nordström black holes (2018) | arXiv
[41] Scattering theory, Bull. Am. Math. Soc., Volume 70 (1964) no. 1, pp. 130-142 | DOI | Zbl
[42] Scattering theory, Pure and Applied Mathematics, 26, Academic Press Inc., 1967 | Zbl
[43] Hyperbolic Differential Equations, Institute for Advanced Study, 1953 | MR
[44] A Scattering Theory for Linearised Gravity on the Exterior of the Schwarzschild Black Hole. I: The Teukolsky Equations, Commun. Math. Phys., Volume 393 (2022), pp. 477-581 | DOI | Zbl | MR
[45] Conformal Scattering and the Goursat Problem, J. Hyperbolic Differ. Equ., Volume 01 (2004) no. 02, pp. 197-233 | DOI | Zbl | MR
[46] Regularity at spacelike and null infinity, J. Inst. Math. Jussieu, Volume 8 (2009) no. 1, pp. 179-208 | DOI | Zbl | MR
[47] Conformal Scattering of Maxwell Fields on Reissner–Nordström–De Sitter black hole spacetimes, Ann. Inst. Fourier, Volume 69 (2019) no. 5, pp. 2291-2329 | DOI | Zbl | Numdam | MR
[48] Conformal scattering and the Goursat problem for Dirac fields in the interior of charged spherically symmetric black holes, Rev. Math. Phys., Volume 34 (2022) no. 1, 2150037, 16 pages | DOI | Zbl | MR
[49] The decay of solutions of the exterior initial-boundary value problem for the wave equation, Commun. Pure Appl. Math., Volume 14 (1961) no. 3, pp. 561-568 | DOI | Zbl | MR
[50] Conformal scattering on the Schwarzschild metric, Ann. Inst. Fourier, Volume 66 (2016) no. 3, pp. 1175-1216 | DOI | Zbl | MR | Numdam
[51] Peeling on Kerr Spacetime: Linear and Semi-linear Scalar Fields, Ann. Henri Poincaré, Volume 20 (2019), pp. 3419-3470 | DOI | Zbl | MR
[52] Asymptotic Properties of Fields and Space-Times, Phys. Rev. Lett., Volume 10 (1963) no. 2, pp. 66-68 | DOI | MR
[53] Zero rest-mass fields including gravitation: asymptotic behaviour, Proc. R. Soc. Lond., Ser. A, Volume 284 (1965) no. 1397, pp. 159-203 | DOI | Zbl | MR
[54] Spinors and space-time. Vol. 1: Two-spinor calculus and relativistic fields, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1984 | Zbl | DOI | MR
[55] Spinors and space-time. Vol. 2: Spinor and twistor methods in space-time geometry, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1986 | Zbl | DOI | MR
[56] Conformal scattering theories for tensorial wave equations on Schwarzschild spacetime (2020) | arXiv | DOI
[57] Conformal scattering theory for the linearized gravity fields on Schwarzschild spacetime, Ann. Global Anal. Geom., Volume 60 (2021), pp. 589-608 | DOI | Zbl | MR
[58] Conformal Scattering Theory for the Dirac Equation on Kerr Spacetime, Ann. Henri Poincaré, Volume 23 (2022), pp. 3053-3091 | DOI | Zbl | MR
[59] An Introduction to Non-Perturbative Foundations of Quantum Field Theory, International Series of Monographs on Physics, 158, Oxford University Press, 2013 | Zbl | DOI | MR
[60] Conformal scattering of the Maxwell-scalar field system on De Sitter space, J. Hyperbolic Differ. Equ., Volume 16 (2019) no. 4, pp. 743-791 | DOI | Zbl | MR
Cité par Sources :