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CONFORMAL SCATTERING OF MAXWELL
POTENTIALS

by Jean-Philippe NICOLAS & Grigalius TAUJANSKAS

Abstract. — We construct a complete conformal scattering theory for finite
energy Maxwell potentials on a class of curved, asymptotically flat spacetimes
with prescribed smoothness of null infinity and a non-zero ADM mass. In order to
define the full set of scattering data, we construct a Lorenz-like gauge which makes
the field equations hyperbolic and non-singular up to null infinity, and reduces to
an intrinsically solvable ODE on null infinity. We develop a method to solve the
characteristic Cauchy problem from this scattering data based on a theorem of
Hörmander. In the case of Minkowski space, we further investigate an alternative
formulation of the scattering theory by using the Morawetz vector field instead of
the usual timelike Killing vector field.

Résumé. — Nous construisons une théorie du scattering conforme complète
pour les potentiels de Maxwell d’énergie finie sur une famille d’espaces-temps
courbes, asymptotiquement plats, de régularité prescriptible à l’infini isotrope et
dont la masse ADM n’est pas nulle. Afin de définir précisément les données de scat-
tering, nous construisons une jauge qui rend les équations de Maxwell (décrites en
fonction du potentiel) hyperboliques et non singulières jusqu’à l’infini isotrope et
qui se réduit à une EDO résoluble de façon intrinsèque à l’infini isotrope. Nous
développons une méthode pour résoudre le problème de Cauchy caractéristique à
partir des données de scattering en utilisant un théorème de Hörmander. Dans
le cas de l’espace-temps de Minkowski, nous étudions en détail une formulation
alternative de la théorie du scattering basée sur l’utilisation du champ de vecteurs
de Morawetz plutôt que du champ de Killing temporel usuel.

1. Introduction

The study of scattering is crucial to the understanding of both non-
perturbative aspects of S-matrices arising in quantum field theory, and the

Keywords: Scattering, massless fields, Maxwell potentials, conformal geometry, asymp-
totic analysis.
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asymptotic behaviour of classical fields and spacetimes in general relati-
vity [59]. For instance, from the pioneering works of Dimock and Kay [22,
23, 24] and Bachelot [8, 9, 10, 11] on the Schwarzschild metric using spectral
theory, and the more recent studies on rotating black hole backgrounds [15,
33, 34, 35], to the work of Dafermos, Rodnianski, Shlapentokth-Rothman
and others using the vector field method [2, 4, 14, 20, 44], scattering theory
has been instrumental in studying questions of decay rates, the stability
of spacetimes, and the Hawking effect. Conformal scattering emerges as
a combination of Penrose’s ideas to apply the tools of conformal geom-
etry in the setting of general relativity [52, 53], the classical scattering
theory of Lax and Phillips [41, 42], and Friedlander’s work on radiation
fields [26, 27, 28]. Here, null infinity, I (a null hypersurface composed of
all endpoints of inextendible null geodesics in the spacetime) is brought
to a finite location using a conformal rescaling of the metric. Asympto-
tically, this scaling coincides with the scaling which returns Friedlander’s
radiation field, and scattering theory is reinterpreted as the characteris-
tic Cauchy, or Goursat, problem from I . A key ingredient is that massless
fields enjoy good conformal covariance properties, and so one is able to work
with field equations both in physical and rescaled spacetimes, as suited.
The construction of a scattering operator of this kind was first performed
by Friedlander [29] for the wave equation on a class of static, asymptotically
flat, but not necessarily Einstein, Lorentzian manifolds admitting a smooth
conformal compactification, including at i0. Friedlander observed that the
Lax–Phillips scattering theory could be reinterpreted as the resolution of
a Goursat problem in the compactified spacetime, which (on the curved
backgrounds mentioned above) enabled him to perform a scattering con-
struction in the conformal picture and show its equivalence to the analytic
ingredients of the Lax–Phillips theory. Baez, Segal and Zhou [12] subse-
quently extended the construction to a nonlinear wave equation on flat
spacetime. The later work of Mason and Nicolas [45, 46] reformulated the
conformal scattering construction in terms of Hörmander’s approach to the
resolution of the Goursat problem [37], which used energy estimates and
compactness arguments. As a result of the flexibility of the method, Mason
and Nicolas were able to extend the construction to fields of spin 0, 1/2,
and 1 evolving in the background of a large class of curved, non-stationary
spacetimes. Since then, linear scattering processes have been studied con-
formally on exteriors of black hole spacetimes [47, 50, 51, 56, 57, 58] as well
as in the interior of black holes [40, 48]. Further work has also been done
on nonlinear fields [38, 39, 60].
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CONFORMAL SCATTERING OF MAXWELL POTENTIALS 3

An important distinction between the constructions of [12, 29] and the
series of works spurred by [45] is the treatment of spatial infinity i0, the
endpoint of all inextendible spacelike geodesics. It is by now well-known
that a point compactification of i0 must generically result in a singularity in
the Weyl tensor, the only exception being the case of Minkowski space. As a
result, Friedlander’s decay assumptions [29] for a smooth compactification
at i0 excluded non-trivial solutions to the Einstein equations. The work of
Mason and Nicolas therefore introduces a partial compactification of the
spacetime in which I is brought to a finite distance but i0 is left at infinity,
and treats the region near i0 separately. It is worth noting that near i0,
this conformal scale is the same, at least in the case of Minkowski space, as
that which had previously been used by Friedrich to construct the so-called
cylinder at spatial infinity [31]; a key point there is a judicious choice of
coordinates (which we do not adopt in this paper) which blows up i0 to a
(2 + 1)-dimensional submanifold in order to allow a more detailed analysis
of the asymptotics at i0. It has recently been observed that Friedrich’s
formalism is closely related to Ashtekar and Hansen’s earlier notion of the
so-called hyperboloid at spatial infinity [3, 7]. One further expects that both
of these frameworks are also closely related to the more recent celebrated
work of Hintz and Vasy [36] on the stability of Minkowski space.

In the present paper we construct a complete conformal scattering the-
ory for Maxwell potentials on a class of non-stationary curved spacetimes
which may contain matter. Combined with [45], our construction settles,
on a large class of spacetimes, a conjecture made by Geroch [25] in 1976.
We further obtain precise decay rates for all components of finite-energy
potentials towards and along I , and towards i0. There are several reasons
it is of interest to study the scattering of Maxwell potentials (in contrast
to fields). For instance, if one is interested in scattering from the perspec-
tive of asymptotic symmetries, the electromagnetic memory effect may be
expressed at the level of the potential, so one is led to understanding the
scattering matrix for the potential. Moreover, it is essential to understand
potential scattering in order to have any hope of developing a scattering
theory for nonlinear Yang–Mills fields, where the field is no longer gauge-
invariant and the potential becomes fundamental. Indeed, even in the case
of nonlinear abelian fields (such as the Maxwell–Klein–Gordon system), the
potential plays a fundamental role and must be handled. In fact, it may be
argued that even in the abelian Maxwell case the potential, rather than the
field, ought to be treated as fundamental, as there exist physical situations
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4 Jean-Philippe NICOLAS & Grigalius TAUJANSKAS

in which the potential plays a role despite the field being zero, such as the
Aharonov–Bohm effect.

The difficulties in extending the constructions of [45] to Maxwell poten-
tials are twofold. First, the question of gauge choice must be addressed, and
second, the Goursat problem for the resulting equations must be solved.
For the latter, we make use of Bär–Wafo’s extension [13] to spatially non-
compact spacetimes of a theorem due to Hörmander [37], which ensures
that a solution to the characteristic initial value problem for linear wave
equations can be obtained with no loss of regularity. We solve the Goursat
problem in two stages, first solving in a neighbourhood of timelike infinity,
and then near the rest of null infinity. For our spaces of scattering data
the solution near i± is pure gauge, but non-zero at i±. For the former pro-
blem, in the general case we construct a Lorenz-like gauge which involves
an additional residual gauge fixing condition on null infinity, and allows one
to define a complete set of scattering data for the potential. Roughly, the
residual gauge fixing condition corresponds to the vanishing of the trans-
verse derivative of the component of the potential parallel to the generators
of I . This Lorenz-like gauge reduces to a first-order ODE on I , which may
be integrated and yields an integration constant. We believe this constant
to be related to the memory effect.

We work on a class of background spacetimes which we refer to as CSCD
spacetimes. These spacetimes are constructed using the initial data gluing
theorems of Corvino, Schoen, Chrusćiel and Delay [16, 17, 18, 19] and
Friedrich’s theorem for the semi-global stability of Minkowski space [30],
possess regular (but not C∞) null and timelike infinities, and are diffeomor-
phic to the Schwarzschild spacetime in a neighbourhood of i0.

This paper is divided into two parts. In the first part (Section 3) we con-
struct a conformal scattering theory for Maxwell potentials on Minkowski
space. Even though a complete compactification is available, here we use
a partial compactification in which i0 remains at an infinite distance. In
Section 3.3 we fix the gauge and derive an implied condition on I , which is
necessary to recover the full set of scattering data. Due to the triviality of
the background, here one is able to choose the gauge “greedily” and impose
the temporal, Lorenz and Coulomb gauges simultaneously. In Section 3.4
we construct function spaces of initial and scattering data on Minkowski
space and prove the existence and invertibility of a scattering operator. In
Section 3.4.5 we also consider an alternative formulation of the scattering
theory using the Morawetz vector field K0 = (t2 + r2)∂t + 2tr∂r as the
multiplier in place of the Killing vector field ∂t. We show that this gives
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CONFORMAL SCATTERING OF MAXWELL POTENTIALS 5

a scattering theory which is in some sense strictly stronger (that is, the
space of scattering data is strictly smaller). In the second part (Section 4)
we extend the constructions to CSCD spacetimes. A first step is to prove
two-way energy estimates between initial data and scattering data, which
are given in Appendix A. Then, in order to define the required gauge, in
Section 4.4 we first construct a conformal scale in which I is as flat as
possible, and define the gauge condition near I with respect to this scale.
We also analyse the gauge near the initial surface, and interpolate between
the two conditions in the bulk of the spacetime. Finally, we construct spaces
of scattering data and prove the existence and invertibility of the scatter-
ing operator in Section 4.7 using a similar approach to that on Minkowski
space. In the general case our space of scattering data for the potential
turns out to be isomorphic to Ḣ1(R;L2(S2)). The space of initial data for
the potential is slightly more complicated to describe and is given in Sec-
tion 4.6.1. Here, in order to recover sufficient regularity for the potential,
we make an assumption on the Ricci curvature of a Cauchy surface in the
spacetime, precisely that its L∞ norm is not too large. Roughly, the main
results of the paper are the following.

Theorem (Scattering theory on Minkowski space). — Let Σ be the
standard initial Cauchy surface in Minkowski space. A finite energy so-
lution to Maxwell’s equations on Minkowski space admits the Coulomb,
temporal, and Lorenz gauges simultaneously, and there exist bounded, in-
vertible linear operators

T± : Ḣ1
C(Σ) ⊕ L2

C(Σ) −→ Ḣ1(R;L2(S2)
)
,

corresponding to the future/past Cauchy development of Maxwell’s equa-
tions, which map finite energy Maxwell potential initial data on Σ to finite
energy Maxwell potential characteristic data on null infinity. The resulting
scattering operator S = T+ ◦ (T−)−1 is an isomorphism of Hilbert spaces.

Theorem (Scattering theory on CSCD spacetimes). — Let Σ be an
initial Cauchy surface in a Corvino–Schoen–Chruściel–Delay spacetime M

which is sufficiently close to Minkowski space. Then a finite energy solution
to Maxwell’s equations on M admits Lorenz-like gauges near Σ and null
infinity, and there exist bounded, invertible linear operators

T± : Ḣ1
C(Σ)curl ⊕ L2(Σ) −→ Ḣ1(R;L2(S2)

)
,

corresponding to the future/past Cauchy development of Maxwell’s equa-
tions on M, which map finite energy Maxwell potential initial data on Σ to
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finite energy Maxwell potential characteristic data on null infinity. The re-
sulting scattering operator S = T+ ◦ (T−)−1 is an isomorphism of Hilbert
spaces.

In the above theorems, the subscript C denotes the spaces of gauge-fixed
initial data. Full descriptions are given in Sections 3.4.1 and 4.6.1.

2. Setup

2.1. Conventions and Notation

Our conventions are consistent with Penrose & Rindler [54, 55]. In par-
ticular, we work on 4-dimensional spacetimes M with metric signature
(+,−,−,−), and the Riemann curvature tensor Rc

dab is defined by
2∇[a∇b]X

c = −Rc
dabX

d. We denote the Weyl tensor by Cabcd, and the
trace-free part of the Ricci tensor by Φab. For a connection ∇a (e.g. the
Levi-Civita connection of a Lorentzian metric gab), we denote by□ = ∇a∇a

the associated wave operator. We will work with conformally related met-
rics such as ĝab = Ω2gab, and for the metric ĝab will denote the associated
Levi-Civita connection by ∇̂a, and the corresponding wave operator by
□̂ = ∇̂a∇̂a. Given a conformal factor Ω relating gab and ĝab, we will fre-
quently employ the notation Υa = ∂a log Ω, and will use the symbol ≈ to
denote equality on null infinity, i.e. where Ω = 0 for an appropriate choice
of Ω. For a spacelike hypersurface (Σ, hab) of M, we will denote by Ck(Σ)
and Hk(Σ) the standard spaces of functions on Σ which have k continuous
derivatives and k derivatives in L2(Σ), respectively. We will use the same
notation, e.g. L2(Σ), to refer to the space L2(Σ;S) of sections of a vector
bundle S → Σ over Σ, where in each case the vector bundle will be clear
from context. We will denote by dv the 4-volume form associated to the
spacetime metric gab, by d̂v the 4-volume form of ĝab, and by dvΣ the
volume form of a hypersurface (Σ, hab).

We will make use of the Newman–Penrose and Geroch–Held–Penrose
(GHP) formalisms throughout the paper; the reader entirely unfamiliar
with the notation might like to consult [54, 55]. On Minkowski space
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CONFORMAL SCATTERING OF MAXWELL POTENTIALS 7

we choose a Newman–Penrose (NP) tetrad (la,ma,ma, na) of null vectors,
given in standard radial coordinates (t, r, θ, ϕ) by

la = ∂t + ∂r,

ma = 1√
2r

(
∂θ + i

sin θ∂ϕ

)
,

ma = 1√
2r

(
∂θ − i

sin θ∂ϕ

)
,

na = 1
2(∂t − ∂r).

(2.1)

These satisfy lana = 1 = −mama and lama = lama = nama = nama = 0.
The integral curves of la and na trace out, respectively, the outgoing and
incoming radial null geodesics, and ma and ma span the tangent space of
spacelike spheres at each point. The directions of na and la are shown on the
Penrose diagram of Minkowski space below (Figure 2.1). Here, the points i±
denote future and past timelike infinities (the endpoints of all inextendible
future- and past-directed timelike geodesics), i0 denotes spatial infinity,
the endpoint of all inextendible spacelike geodesics, and I ± (future and
past null infinities) are surfaces consisting of all endpoints of future- and
past-directed null geodesics.

i+

i−

I −

I +

r
=

0

i0

la
na

Figure 2.1. The Penrose diagram of Minkowski space showing
surfaces of constant r and surfaces of constant t.
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8 Jean-Philippe NICOLAS & Grigalius TAUJANSKAS

In curved spacetimes, la and na will be similarly aligned with outgoing
and incoming radial null geodesics. Note that na is tangent to I +, and
in fact becomes a generator of I + at the conformal boundary. The direc-
tional derivatives along an NP tetrad (la,ma,ma, na) will be denoted by
(D, δ, δ,∆) respectively, with (þ, ð, ð,þ′) the corresponding spin-weighted
directional derivatives. For the benefit of the reader unfamiliar with the
GHP formalism, we give expressions for spin-weighted directional deriva-
tives below. The way in which (þ, ð, ð,þ′) act on scalars depends on their
weight. Precisely, an NP tetrad (la,ma,ma, na) may be rescaled according
to

la 7−→ λλla, ma 7−→ λλ
−1
ma, ma 7−→ λ−1λma, na 7−→ λ−1λ

−1
na

for any nowhere vanishing complex scalar field λ, leaving the orthognality
relations of the tetrad and the metric gab = lanb + nalb − mamb − mamb

unchanged. A scalar (or tensor), say η, formed by contracting a spacetime
tensor with elements of the NP tetrad therefore acquires weights under the
above rescaling, say η 7→ λpλ

q
η. We say that η is a (p, q)-scalar (or -tensor).

The spin-weighted directional derivatives are then defined by

þη = (D − pε− qε)η,
þ′η = (∆ − pγ − qγ)η,
ðη = (δ − pβ − qα)η,

ð′η = (δ − pα− qβ)η,

where the definitions of the spin coefficients (ε, γ, α, β) may be found in [55].

2.2. Background Spacetimes

Let (M, gab) be a smooth globally hyperbolic four-dimensional spacetime
diffeomorphic to R4. We will consider conformal rescalings of gab of the form
ĝab = Ω2gab for suitable functions Ω : M→ R, and in order to distinguish
gab from ĝab will refer to gab as the physical metric and ĝab as the rescaled,
or unphysical, metric. We perform orthogonal 3 + 1 decompositions of the
physical and rescaled metrics as follows. Since M is globally hyperbolic,
there exists a smooth time function t : M→ R such that ∇at is uniformly
timelike on M, where ∇ is the Levi-Civita connection of gab. The level
sets {Σt}t of t define a uniformly spacelike foliation of M. Since M is
diffeomorphic to R4, each Σt is diffeomorphic to some Σ ≃ R3, and the
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CONFORMAL SCATTERING OF MAXWELL POTENTIALS 9

flow of the vector field ∇at effects the identification M ≃ Rt × Σ. The
metric gab then decomposes as

ds2 = gab dxa dxb = N2dt2 − h,

where h is a smooth Riemannian metric on Σt for each t, and N is a smooth
non-vanishing lapse function. The unit normal to the hypersurfaces Σt is

T a = 1
N

∂

∂t
, i.e. Tadxa = Ndt,

so the metric can be written as

gab = TaTb − hab.

The Levi-Civita connection of gab decomposes as

∇a = Ta∇T + ∇⊥
a ,

where ∇⊥
a = −hb

a∇b is the part of ∇a orthogonal to T a, T a∇⊥
a = 0. It is the

4-dimensional covariant derivative ∇ projected onto Σt, and differs from
the Levi-Civita connection ∇ of (Σt, hab(t)) by the extrinsic curvature κab
of Σt. Indeed,

∇⊥
a Tb = −hc

a∇cTb = κab = κ(ab),

so that for any Xa such that T aXa = 0

∇aXb − ∇⊥
a Xb = κ c

a TbXc.

We also define the trace of the extrinsic curvature by

trκ = κa
a = −hab∇aTb.

A similar decomposition may be performed for the rescaled metric ĝab.
Here we choose a smooth time function τ such that ∇̂aτ is uniformly time-
like and such that τ(i±) = ±τmax, 0 < τmax < ∞, where ∇̂ is the Levi-
Civita connection of ĝab. The level surfaces {Σ̂τ }τ of τ define a uniformly
spacelike foliation of M̂ such that the leaves Σ̂τ are transverse to I , and,
as τ → ±τmax, the leaves Σ̂τ shrink to the points i±. With respect to this
foliation the rescaled metric decomposes as

ĝab = T̂ aT̂ b − ĥab, ĝab dxa dxb = N̂2dτ2 − ĥ,

where T̂ a is the unit normal to Σ̂τ with respect to ĝab, and ĥab is a smooth
Riemannian metric on Σ̂τ for each τ . As before, the Levi-Civita connection
∇̂ of ĝab decomposes as

∇̂a = T̂ a∇̂T̂ + ∇̂⊥
a .

TOME 0 (0), FASCICULE 0
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We assume that the functions t and τ are such that the initial leaf of
the rescaled foliation {Σ̂τ }τ agrees with the initial leaf of the physical
foliation {Σt}t, Σ̂0 = Σ0. The vector fields T̂ a and T a are therefore parallel
on Σ̂0 = Σ0 =.. Σ, and the above decomposition of the metric gives the
relation

T̂ a|Σ = Ω−1T a
∣∣
Σ.

We will also assume that the time derivative of the conformal factor van-
ishes on Σ,

∂tΩ|Σ ∝ ∂τ Ω|Σ = 0.
The uniformly spacelike foliation {Σt}t of the physical spacetime extends
to an asymptotically null foliation of the rescaled spacetime (we say that
the leaves accumulate at I ± as t → ±∞). Indeed, the unit normal T a

with respect to gab has norm Ω2 with respect to ĝab, which tends to zero as
Ω → 0. Conversely, the uniformly spacelike foliation {Σ̂τ }τ of the rescaled
spacetime corresponds to a foliation of the physical spacetime by hyper-
boloids which are asymptotically null.

i+

i−

I + I +

i0i0

I − I −

Σ

Figure 2.2. The asymptotically null foliation {Σt}t of M̂.

We define the projection onto (Σt, hab) of a 1-form Aa on M by

Aα
..= −ha

αAa.

The Σt-covariant derivative ∇α applied to Aβ is then given by

∇αAβ = hb
βh

a
α∇aAb = −hb

βh
a
α∇a(hc

bAc),

ANNALES DE L’INSTITUT FOURIER
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and more generally the Σt-covariant derivative of a tensor field T a1,...,an

b1,...,bm
is

∇γT
α1,...,αn

β1,...,βm
= (−1)n+m+1hc

γh
α1
a1
, . . . , hαn

an
hb1

β1
, . . . , hbm

βm
∇cT

a1,...,an

b1,...,bm
.

The factor of (−1)n+m+1 is included to account for the successive changes
of sign each time the projector ha

b is applied: note that hachcb = −ha
b =

δa
b − T aTb. On tensors on Σt, −ha

b acts as δa
b .

i+

i−

I + I +

i0i0

I − I −

Σ

Figure 2.3. The foliation {Σ̂τ }τ of M̂ whose leaves are transverse
to I +.

2.3. Maxwell Fields and Potentials

For a real 2-form F = Fab dxa ∧dxb on M, the extremizers of the Lagran-
gian L = − 1

4FabF
ab are called Maxwell fields. The Euler–Lagrange equa-

tions satisfied by Maxwell fields (Maxwell’s equations) are given by

(2.2) ∇aFab = 0,

together with the so-called Bianchi identity

(2.3) ∇[aFbc] = 0.

The identity (2.3) states that the 2-form F is closed (similarly, the equa-
tion (2.2) states that F is co-closed), so by the Poincaré lemma F is exact:
there exists a real 1-form A = Aa dxa such that F = dA, or

Fab = 2∂[aAb] = ∇aAb − ∇bAa.

TOME 0 (0), FASCICULE 0



12 Jean-Philippe NICOLAS & Grigalius TAUJANSKAS

The 1-form A is called the Maxwell potential. Since d2 = 0, the Maxwell
potential is only determined by the Maxwell field F up to exact 1-forms
dχ, so that the potentials A and A + dχ give rise to the same Maxwell
field. This is the gauge freedom in the Maxwell potential, so that a gauge
transformation is given by

Aa Aa + ∇aχ.

The equations of motion (2.2), written in terms of the potential, become

(2.4) □Aa − ∇b(∇aA
a) + RabA

a = 0.

The canonical Maxwell stress-energy tensor is given by

(2.5) Tab = −F c
a Fbc + 1

4gabFcdF
cd,

and is conserved on-shell.
A key feature of Maxwell’s equations is that they are conformally invari-

ant. That is, under the conformal transformation gab ⇝ ĝab = Ω2gab, if Aa

is chosen to have conformal weight zero,

Âa = Aa,

then F̂ ab = Fab and the physical and rescaled field equations are equivalent:

∇aFab = 0 = ∇[aFbc] ⇐⇒ ∇̂aF̂ ab = 0 = ∇̂[aF̂ bc].

This is clear, since the action S =
∫
M

L dv is invariant:

S =
∫
M

L dv =
∫
M̂

−1
4Ω4F̂ abF̂

abΩ−4d̂v = Ŝ.

2.4. Maxwell Components

With respect to an NP tetrad (la,ma,ma, na) (on any spacetime), we
denote the two real and one complex component of the physical Maxwell
potential Aa and the three complex components of the physical Maxwell
field Fab by(

A0 A1 A2
F0 F1 F2

)
=
(

Aal
a Aan

a Aam
a

Fabl
amb 1

2Fab
(
lanb +mamb

)
Fabm

anb

)
.

We also denote by
a ..= T aAa,

and define the electric and magnetic fields with respect to the foliation
(Σt, hab) by

Ea
..= T bFba = −hα

a Eα

ANNALES DE L’INSTITUT FOURIER



CONFORMAL SCATTERING OF MAXWELL POTENTIALS 13

and
Ba

..= 1
2ε

bc
a Fbc = −1

2εαβγh
α
ah

βbhγcFbc = −hα
a Bα,

where εabc is the volume form of hab. The components of the rescaled
Maxwell potential Âa and rescaled Maxwell field F̂ ab with respect to
(l̂a, m̂a, m̂

a
, n̂a), as well as Êa and B̂a, are defined in the same way.

The components of Tab with respect to the causal vectors of the tetrad
(la,ma,ma, na) are given by(

|F0|2, |F1|2, |F2|2
)

=
(

1
2Tabl

alb,
1
2Tabl

anb,
1
2Tabn

anb

)
,

and similarly for the rescaled stress-energy tensor T̂ab with respect to the
rescaled tetrad (l̂a, m̂a, m̂

a
, n̂a). The components of the Maxwell field Fab

are given in terms of the components of the Maxwell potential Aa by

F0 = (þ − ρ)A2 + κA1 − (ð + π)A0 − σA2,(2.6)

F1 = 1
2

(
− (þ′ − µ+ µ)A0 + (þ + ρ− ρ)A1

+ (ð − τ − π)A2 − (ð + τ + π)A2

)
,(2.7)

F2 = −(þ′ + µ)A2 − νA0 + (ð + τ)A1 − λA2.(2.8)

3. Minkowski Space

3.1. Partial Conformal Compactifications

In this section we work on Minkowski space (M= R4, η),

(3.1) η = dt2 − dr2 − r2gS2 ,

where (t, r) ∈ R × [0,∞). We introduce two conformal scales. The first,
which we refer to as the checked conformal scale, allows us to define I =
I + ∪ I − as the null boundary of the rescaled spacetime, but i± and i0

remain at infinity. Although it provides an incomplete compactification,
this scale is natural and useful because it preserves the symmetry associ-
ated to the timelike Killing vector field ∂t. The second, the hatted conformal
scale, is obtained by modifying the checked conformal scale in a neighbour-
hood of timelike infinity in order to bring it to a finite distance. In this new
scale, the boundary of the rescaled spacetime will be I ∪ i− ∪ i+. It will
be useful in situations when we will need to see I + as the regular back-
wards lightcone of i+, e.g. when performing energy estimates and solving
the Goursat problem. These compactifications are time-symmetric, so we
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14 Jean-Philippe NICOLAS & Grigalius TAUJANSKAS

shall mostly focus on future null infinity, although some details about past
null infinity will also be given.

For the checked conformal scale, the conformal factor is a smooth positive
function on M, depending only on r, such that Ω = 1/r for, say, r > 1. In
terms of the retarded Bondi or Eddington–Finkelstein coordinate u = t− r

and the inverted radial variable R = 1/r, the Minkowski metric takes the
form

(3.2) η = du2 − 2
R2 dudR− 1

R2 gS2 .

Applying the checked conformal rescaling gives, for R < 1,

(3.3) η̌ ..= R2η = R2du2 − 2dudR− gS2 .

The rescaled metric is now regular at R = 0, unlike the physical met-
ric at r = ∞. In these coordinates, the set {R = 0} is the set of end-
points of outgoing radial null geodesics that are the u coordinate lines, i.e.
{R = 0} =I +. Using the advanced coordinate v = t + r instead of u, we
have

η̌ = R2dv2 + 2 dv dR− gS2 ,

and in these coordinates the set {R = 0} is now I −. We define the com-
pactified spacetime as

M̌ ..= M∪ I − ∪ I +.

Note that timelike infinities i± and spacelike infinity i0 are not brought to
a finite distance in this scale. This can be seen by observing that the u
coordinate lines on I + are null geodesics for η̌, and that they admit u as
an affine parameter. Hence

I + = Ru × {R = 0} × S2 and I − = Rv × {R = 0} × S2

are infinite cylinders, diffeomorphic to R × S2. Future timelike infinity i+

is the “future end” of I +, given by u = +∞, R = 0, whereas spacelike
infinity i0 is its “past end”, at u = −∞, R = 0. Similarly, past timelike
infinity i− is the past end of I −, while spacelike infinity is the future end
of I −.

The boundary of M̌ is I . Although it is a null hypersurface (the induced
metric has signature (0,−,−)), one may integrate over I + with respect
to the measure |dvI + = ∂u ⌟

|dv, where |dv is the volume form of the
rescaled spacetime, i.e. |dvI + = du ∧ dvS2 . Since ∂u is tangent to I + and
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CONFORMAL SCATTERING OF MAXWELL POTENTIALS 15

η̌(∂u, ∂R) = −1, the vector field ∂R is transverse to I +. The inverse metric
to (3.3) is(1)

η̌−1 = −2 ∂u ⊙ ∂R −R2∂R ⊗ ∂R − g−1
S2 ,

from which one sees in particular that ∂R is null for R < 1. In fact, we may
write on the whole of M̌

η̌ = Ω2du2 − 2 Ω2

R2 dudR− Ω2

R2 gS2 ,

η̌−1 = −2R
2

Ω2 ∂u ⊙ ∂R − R4

Ω2 ∂R ⊗ ∂R − R2

Ω2 g
−1
S2 .

The vector field ∂R in coordinates (u,R, θ, ϕ) is therefore null where it is
defined, i.e. on the whole of M̌ \ I −. Similarly, in the (v,R, θ, ϕ) coordi-
nates, ∂R is null on M̌\I +. Note also that when working with (u,R, θ, ϕ),
∂R is past-oriented, but it is future-oriented in the coordinates (v,R, θ, ϕ).

i+

I + I +

Σ
i0 i0

Ω = R

Ω = ΩR×S3

Figure 3.1. We choose a conformal factor Ω which is equal to
R near I + away from i+, and smoothly brings i+ to a finite
distance.

For the hatted conformal scale, we consider the conformally rescaled un-
physical metric η̂ab ..= Ω2ηab, where Ω is a smooth positive radial function
on M chosen in the future of Σ as shown in Figure 3.1.

We assume in addition that Ω is time-symmetric, which implies in par-
ticular that ∂tΩ|Σ = 0. This conformal factor is such that Ω = R near I +

(1) Here ⊙ denotes the symmetric tensor product v ⊙ w = 1
2 (v ⊗ w + w ⊗ v).
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16 Jean-Philippe NICOLAS & Grigalius TAUJANSKAS

and away from i+ (i.e. in the region where u ⩽ u0, and r ≫ 1 for u0 ≫ 1
given), and

Ω = 2R√
1 + u2

√
R2 + (2 + uR)2

=.. ΩR×S3

in a neighbourhood of i+. In the white region near I + in Figure 3.1 the
conformal factor Ω interpolates smoothly between R and ΩR×S3 in such
a manner that the function Ω/R is smooth near I + away from i+, and
does not vanish at null infinity. The function ΩR×S3 is precisely the con-
formal factor which embeds Minkowski space into the Einstein cylinder
R × S3, and so the smoothness of the rescaled metric at i+ is automatic.
The compactified spacetime is then defined as

M̂ ..= M∪ I − ∪ I + ∪ i− ∪ i+.

The boundary of M̂ is I − ∪ I + ∪ i− ∪ i+, i± are finite regular points of
η̂ab and I ± are semi-infinite cylinders that focus to i± in the future (resp.
past). A natural measure on I + is now given by d̂vI + = ∂u ⌟ d̂v, where
d̂v is the volume form of the rescaled spacetime.

Where Ω = ΩR×S3 , the rescaled metric η̂ab can in fact be written as

η̂ = dτ2 − dζ2 −
(
sin2 ζ

)
gS2 = dτ2 − gS3 ,

where τ = arctan(u+2/R)+arctan(u) and ζ = arctan(u+2/R)−arctan(u).

Remark 3.1. — It will be useful to denote by

χ(u,R) ..= ΩR−1,

where Ω is the conformal factor corresponding to the hatted conformal
scale. The resulting function χ is then smooth near and on I +, and equal
to unity for u ⩽ u0, r ≫ 1. Near i+, χ ≈ (1 + u2)−1/2, and therefore on
I + depends only on u. The decay of χ as u → +∞ is responsible for the
shrinking of the 2-spheres at i+; the rescaled metric in the hatted scale is
given by (for R < 1)

η̂ = χ2R2du2 − 2χ2 dudR− χ2gS2 .
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The NP tetrad (2.1) in the coordinates (u, r, θ, ϕ) becomes

na = ∂u − 1
2∂r, na = 1

2 du+ dr,(3.4)

la = ∂r, la = du,(3.5)

ma = 1√
2r

(
∂θ + i

sin θ∂ϕ

)
, ma = − r√

2
(dθ + i sin θ dϕ),(3.6)

ma = 1√
2r

(
∂θ − i

sin θ∂ϕ

)
, ma = − r√

2
(dθ − i sin θ dϕ).(3.7)

To obtain a related NP tetrad (l̂a, m̂a, m̂
a
, n̂a) on M̂, we employ the con-

formal scaling

n̂a = na, n̂a = Ω2na,(3.8)

l̂a = Ω−2la, l̂a = la,(3.9)

m̂a = Ω−1ma, m̂a = Ωma,(3.10)

m̂
a = Ω−1ma, m̂a = Ωma.(3.11)

Explicitly, we obtain a tetrad on M̂ which near I + takes the form

n̂a = ∂u + 1
2R

2∂R, n̂a = 1
2χ

2R2du− χ2dR,(3.12)

l̂a = −χ−2∂R, l̂a = du,(3.13)

m̂a = 1√
2χ

(
∂θ + i

sin θ∂ϕ

)
, m̂a = − χ√

2
(dθ + i sin θ dϕ),(3.14)

m̂
a = 1√

2χ

(
∂θ − i

sin θ∂ϕ

)
, m̂a = − χ√

2
(dθ − i sin θ dϕ).(3.15)

The explicit tetrad on M̌ (in the checked scale) is given, for R < 1, by the
expressions (3.12)–(3.15), with χ ≡ 1. In this setting the normal T a = ∂t =
∂u to the surfaces Σt of constant t reads

T a = na + 1
2 l

a = n̂a + Ω2

2 l̂a = ňa + R2

2 ľa.

For reference, we also note that the full sets of physical and rescaled (in
both the hatted and checked scales) spin coefficients on M are given by
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18 Jean-Philippe NICOLAS & Grigalius TAUJANSKAS

(for R < 1 in the case of the checked scale)
ε κ π

α ρ λ

β µ σ

γ ν τ

 =


0 0 0

1
2

√
2r

cot θ − 1
r 0

−1
2

√
2r

cot θ − 1
2r 0

0 0 0

,(3.16)


ε̂ κ̂ π̂

α̂ ρ̂ λ̂

β̂ µ̂ σ̂

γ̂ ν̂ τ̂

 =


0 0 0

Ω−1α −Ω−2(R+D log Ω) 0
Ω−1β − R

2 + ∆ log Ω 0
−∆ log Ω 0 0

,(3.17)


ε̌ κ̌ π̌

α̌ ρ̌ λ̌

β̌ µ̌ σ̌

γ̌ ν̌ τ̌

 =


0 0 0

R−1α 0 0
R−1β 0 0

R
2 0 0

.(3.18)

3.2. A Priori Energy Estimates

The volume form on the rescaled spacetime M̂ is given by

d̂v = n̂♭ ∧ l̂♭ ∧
(
im̂♭ ∧ m̂

♭
)
,

and, in the hatted scale, is explicitly given for R < 1 by d̂v = χ4 du∧ dR∧
dvS2 . Using Ka = T a as a multiplier vector field, we compute the energy
density 3-form

KaT̂ b
a ∂b ⌟ d̂v

=
(
n̂a + 1

2Ω2 l̂a
)

T̂ac

(
n̂b l̂c + n̂c l̂b − m̂cm̂

b − m̂
c
m̂b
)
∂b ⌟ d̂v

= −
(

2|F̂ 1|2 + Ω2|F̂ 0|2
)
n̂♭ ∧

(
im̂♭ ∧ m̂

♭
)

+
(

2|F̂ 2|2 + Ω2|F̂ 1|2
)
l̂♭ ∧

(
im̂♭ ∧ m̂

♭
)

+ . . . ,

where the ellipsis represents contractions of d̂v with either m̂ or m̂. One
immediately reads off the energy on I +,

(3.19) EI + [F̂ ] ≃
∫

I +
|F̂ 2|2 d̂vI + = ∥F̂ 2∥2

L2(I +),
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CONFORMAL SCATTERING OF MAXWELL POTENTIALS 19

where d̂vI + = l̂♭ ∧ (im̂♭ ∧ m̂
♭) = χ2 du ∧ dvS2 . Similarly, on the initial

surface Σ = {t = 0} whose future-pointing unit normal with respect to η̂ is

T̂ a
∣∣∣
Σ

=
(

Ω−1n̂a + 1
2Ωl̂a

)∣∣∣∣
Σ
,

the energy density 3-form is

KaT̂ b
a ∂b ⌟ d̂v

∣∣
Σ = KaT̂ bT̂ab

(
T̂ ⌟ d̂v

)∣∣
Σ

=
(

2
Ω |F̂ 2|2 + 2Ω|F̂ 1|2 + Ω3

2 |F̂ 0|2
)

d̂vΣ,

so that

(3.20) EΣ[F̂ ] ≃
∫

Σ

(
Ω−1|F̂ 2|2 + Ω|F̂ 1|2 + Ω3|F̂ 0|2

)
d̂vΣ,

where d̂vΣ = (T̂ ⌟ d̂v)
∣∣
Σ. The following theorem is then largely a triviality.

Theorem 3.2. — For smooth compactly supported Maxwell initial data
on Σ there exists a unique smooth rescaled solution F̂ ab which extends
smoothly to I + and satisfies the energy estimate

(3.21) EI + = EΣ.

Proof. — The rescaled Maxwell field F̂ ab satisfies(2) the linear wave
equation □̂F̂ ab + L̂0[F̂ ]ab = 0 on M̂, where L̂0 is a linear zeroth or-
der differential operator involving the curvature of M̂. It is classical [43]
that therefore F̂ ab propagates at finite speed, and for smooth data f =
(Ê0, B̂0, Ê1, B̂1) = (Ê, B̂, ∂τ Ê, ∂τ B̂)|Σ ∈ C∞

c (Σ)4 there exists a unique
smooth solution F̂ ab on M̂, for example by using the foliation {Σ̂τ }τ to
solve the Cauchy problem on M̂. We therefore have a unique smooth solu-
tion F̂ ab which extends smoothly to I +, and has support as depicted in
Figure 3.2.

To prove the energy estimate, choose a compact subset K ⋐ Σ of the
initial surface such that suppf ⊂ K and consider the null hypersurface
J = ∂J+(K). Then J+(K) ∩ M̂ is a compact manifold with boundary
K ∪ J ∪ (I + ∩ J+(K)). We integrate the divergence

∇̂b
(
KaT̂ab

)
= ∇̂(bKa)T̂ab +Ka∇̂bT̂ab

(2) By differentiating ∇̂[aF̂ bc] = 0 and using ∇̂aF̂ ab = 0, or, more geometrically, noting
that dF̂ = 0 and δF̂ = 0 imply (dδ + δd)F̂ = 0, where δ is the codifferential on M̂, and
dδ + δd is □̂ up to lower order terms.
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20 Jean-Philippe NICOLAS & Grigalius TAUJANSKAS

over J+(K)∩M̂ and apply the divergence theorem. Since the stress-energy
tensor T̂ab is conserved and Ka = ∂t is conformally(3) Killing on the
rescaled spacetime (M̂, η̂), one sees that the current Ĵb = KaT̂ab is ex-
actly conserved, ∇̂bĴb = 0. We therefore have, using the earlier expression
for the energy density 3-form,

0 = −EΣ[F̂ ] + EI + [F̂ ] +
∫

J

Ĵb∂b ⌟ d̂v.

Since the hypersurface J is outside of the support of F̂ ab, the last integral
vanishes identically, and we conclude the result. □

i+

I + I +

suppfi0 i0

J

Figure 3.2. For smooth compactly supported data the solution
is smooth and compactly supported in M̂.

3.2.1. Conformal invariance of energies

On any hypersurface H of M̂⊃ M the energies induced by the rescaled
stress-energy tensor T̂ab and the physical stress-energy tensor Tab are equal

(3) This follows from the fact that Ka = ∂t is exactly Killing on the physical spacetime
M, and the identity £K η̂ab = £K(Ω2ηab) = (Ω−2£KΩ2)η̂ab = 2(Ω−1∂uΩ)η̂ab, where
£K denotes the Lie derivative along K. In fact, Ka is also exactly Killing with respect to
η̂ since the conformal factor Ω is purely a function of r and therefore satisfies ∂uΩ = 0.
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as a consequence of the conformal covariance T̂ab = Ω−2Tab of Tab. In-
deed, for any multiplier vector field Ka∫

H
KaT b

a ∂b ⌟ dv =
∫

H
KaTacg

bc∂b ⌟ dv

=
∫

H
KaΩ2T̂acΩ2ĝbc∂b ⌟ Ω−4d̂v

=
∫

H
KaT̂ b

a ∂b ⌟ d̂v.

(3.22)

In particular, the initial energy (3.20) is

EΣ[F̂ ] =
∫

Σ
KaT̂abT̂

b
(
T̂ ⌟ d̂v

)
=
∫

Σ
KaTabT

b(T ⌟ dv)

= 1
2

∫
Σ

(
|E|2 + |B|2

)
dvΣ

=.. EΣ[F ],

where dvΣ = (T ⌟ dv)
∣∣
Σ. We also note that d̂vΣ = Ω3 dvΣ and the compo-

nents of the Maxwell field scale according to

(F0, F1, F2) =
(

Ω3F̂ 0,Ω2F̂ 1,ΩF̂ 2

)
,

or Fi = Ω3−iF̂ i, i ∈ {0, 1, 2},
(3.23)

so the expression (3.20) can be rewritten as

EΣ[F̂ ] ≃
∫

Σ

(
|F0|2 + |F1|2 + |F2|2

)
dvΣ

= ∥F0∥2
L2(Σ) + ∥F1∥2

L2(Σ) + ∥F2∥2
L2(Σ) ≃ EΣ[F ].

3.3. Field Equations and Gauge Fixing

The equations (2.4) on M read

(3.24) □Ab − ∇b(∇aA
a) = 0,

and, by conformal invariance, are equivalent to

(3.25) □̂Âb − ∇̂b

(
∇̂aÂ

a
)

+ R̂abÂ
a = 0

on M̂. The energies defined by (3.19) and (3.20), when written out in terms
of the potential Aa, contain antisymmetrized derivatives of Aa and do not
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define norms on the potential without a choice of gauge. To construct the
trace and scattering operators as maps between Hilbert spaces, one thus
aims to fix the gauge in such a way that the natural energies on the initial
surface Σ and I + become norms on the space of Maxwell potentials. To
this end, we will impose a gauge on the physical field Aa, and show that
it leads to an admissible gauge fixing condition on Âa throughout M̂, all
the way up to and on I +. To reduce the natural energy in the physical
spacetime to a norm in Aa on Σ ≃ R3, the obvious choice of gauge is
the Coulomb gauge ∇ · A = 0 throughout M, since then for a smooth
compactly supported potential on Σ

EΣ[F ] = 1
2

∫
Σ

(
|E|2 + |B|2

)
dvΣ

= 1
2

∫
Σ

(
|Ȧ|2 − 2Ȧ · ∇a + |∇a|2 + |∇A|2 − ∇jAi∇iAj

)
dvΣ

= 1
2

∫
Σ

(
|Ȧ|2 + |∇a|2 + |∇A|2

)
dvΣ,

where ∇ is the Levi-Civita connection on Σ, A denotes the projection of
Aa onto Σ, Ȧ = ∂tA, and in the last line we integrated by parts and
used the Coulomb gauge conditions ∇ · A = 0 = ∇ · Ȧ on Σ. Now if one
contracts (3.24) with T a = ∂t, one ends up with the elliptic equation

(3.26) ∆a = 0 on Σt

for each t ∈ R. We therefore have the following result.

Proposition 3.3. — On Minkowski space (M= R4, η) one may impose
the gauges

(3.27) ∇ · A = 0, a = 0, and ∇aA
a = 0

simultaneously. We call the gauge (3.27) the temporal-Coulomb gauge.

Proof. — Let Aa = (a,A) be any smooth solution to Maxwell’s equations
on M. We impose the Coulomb gauge ∇ · A = 0, which has the residual
gauge freedom χres., where ∆χres. = 0 on Σt for all t. The solutions to
∆χres. = 0 are constants on Σt ≃ R3, so a residual gauge transformation
effects

a a + ∂tχres.,

where χres. is a function only of t. From (3.26), a is also a function only of t,
so we may choose χres. so that the residually gauge-transformed component
a is identically zero (by choosing χres. to be the negative of the antideriva-
tive of a). Then ∇aA

a = ∂ta − ∇ · A = 0 follows automatically. □
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To study Âa on the rescaled spacetime M̂ (and in particular to en-
sure that we can solve for Âa up to I ), we must convert the gauge
condition (3.27) into a gauge condition on the rescaled Maxwell poten-
tial Âa and solve the system (3.25). Under a conformal transformation
gab ⇝ ĝab = Ω2gab the spacetime divergence ∇aA

a transforms as

∇aA
a = Ω2

(
∇̂aÂ

a − 2ΥaÂ
a
)
,

so Lorenz gauge in the physical spacetime M is equivalent to the gauge
condition

(3.28) ∇̂aÂ
a = 2ΥaÂ

a = 2Ω−1(∇̂aΩ
)
Âa

on M̂. The equation (3.25) then reads

(3.29) □̂Âb − 2∇̂b

(
Ω−1(∇̂aΩ

)
Âa

)
+ R̂abÂ

a = 0.

Here the appearance of the Ω−1 factor in (3.29) is problematic; as it stands,
solutions to (3.29) may develop singularities on I = {Ω = 0}. The extra
temporal gauge condition a = 0 on M ensures that this cannot happen:
recalling that T a = na + 1

2 l
a = n̂a + 1

2 Ω2 l̂a, the temporal gauge transported
to M̂ reads

(3.30) 0 = Â1 + 1
2Ω2Â0.

Since Ω is radial, we must have ∇̂aΩ = fn̂a + g̃l̂a for some functions f and
g̃. Since ∇̂aΩ becomes proportional to n̂a on I +, we must also have g̃ → 0
as Ω → 0, i.e. g̃ = Ωg for some function g. Therefore, using (3.30),

Ω−1(∇̂aΩ
)
Âa =

(
−1

2Ωf + g

)
Â0 =.. ςÂ0,

showing that the coefficients of the equation (3.29) are in fact non-singular
up to I +. In the hatted conformal scale, Ω = Rχ(u,R) for R < 1, so one
may compute f = −χ−1(1 + Rχ−1χR), g = χ−1χu + 1

2R(1 + Rχ−1χR),
and ς = R(1 +Rχ−1χR) + χ−1χu. Equation (3.29) then becomes

(3.31) □̂Âb − 2∇̂b

(
ςÂ0

)
+ R̂abÂ

a = 0.

This will ensure that the solution to (3.29) is in fact smooth throughout the
partially compactified spacetime M̂, including on I + and at i+. A little
care is needed to solve the Cauchy problem for equation (3.29), as the
background spacetime M̂ is singular at i0. To resolve this, we follow the
strategy of Mason and Nicolas [45] (see Lemma 2.4 therein for helpful
illustrations of the following procedure). For smooth compactly supported
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initial data (Âa, ∇̂T̂ Âa)|Σ the putative solution will have support bounded
away from i0. This allows us to deform the initial surface Σ away from
the support of the initial data in such a way that the new deformed initial
surface Σ̃ remains uniformly spacelike, intersects I + in the future of i0, and
the support of the solution in the future of Σ remains to the future of the
deformed surface Σ̃. We then cut off and discard the past of the deformed
surface Σ̃. The part of M̂ lying in the future of Σ̃ is now a completely regular
compact globally hyperbolic Lorentzian manifold with boundary, and from
the point of view of the solution to (3.31) in J+(Σ) is indistinguishable
from M̂. It may be extended to a smooth globally hyperbolic Lorentzian
manifold without boundary, say (M̂e = R × S3, ĥ), where ĥ agrees with
η̂ on J+(Σ̃) ∩ M̂. By standard theory (e.g. Leray’s theory for symmetric
hyperbolic systems [43]), the original smooth compactly supported data
(Âa, ∇̂T̂ Âa)|Σ gives rise to a unique smooth solution Âa on M̂e, which
solves (3.31) in J+(Σ) ∩ M̂ and whose support remains away from i0. In
particular, the components Â0 and Â1 of this solution are smooth up to
I +, and so the temporal gauge condition (3.30) can be extended smoothly
onto I +, where it becomes

(3.32) Â1 ≈ 0.

With the gauge condition (3.30) now satisfied throughout M̂, the equa-
tion (3.31) in fact consists of three, not four independent equations, since
the component Â1 can be determined from Â0. We are thus in a position
to prove the following.

Theorem 3.4. — To smooth compactly supported initial data (Aa,

∇TAa)|Σ for Maxwell’s equations in the temporal-Coulomb gauge a|Σ =
∇ ·A|Σ = ∇ · Ȧ|Σ = 0 one can associate a unique smooth rescaled solution
Âa on M̂. The support of Âa remains away from i0, and Âa satisfies the
gauge conditions (3.28) and (3.30) throughout M̂. In particular, Â1 ≈ 0
on I +.

Proof. — First, it is clear that for smooth compactly supported initial
data for the field there exists a unique smooth solution Fab on M, for
example by [43], and that the initial gauge constraints

a|Σ = ∇ · A|Σ = ∇ · Ȧ|Σ = 0

are propagated throughout M. By Proposition 3.3, we may impose the
temporal-Coulomb gauge on this solution throughout M. Once rescaled
initial data (Âa, ∇̂T̂ Âa)|Σ is obtained from the physical initial data (Aa,

∇TAa)|Σ, the above construction goes through to extend the solution
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Âa = Aa to I +, and ensure that the relevant gauge conditions are satis-
fied. The rescaled initial data is easily constructed from the physical initial
data; one has

Âa = Aa

and

∇̂T̂ Âa = T̂ b∇̂bÂa = Ω−1T b
(
∇bAa − ΥbAa − ΥaAb + ηabη

cdΥcAd

)
.

The first of these immediately gives the data for Âa in terms of the data
for Aa, while for the time derivative, restriction to Σ gives

(3.33) ∇̂T̂ Âa

∣∣
Σ = Ω−1(∇TAa + Taη

cdΥcAd

)∣∣
Σ,

since T bΥb|Σ = 0 and a|Σ = 0. Smoothness and compact support of
(Aa,∇TAa)|Σ then imply the smoothness and compact support of (Âa,

∇̂T̂ Âa)|Σ. □

3.3.1. Gauge reduction on I +

In addition to the gauge Â1 ≈ 0 on I +, the triple gauge fixing condi-
tion (3.27) in fact also gives rise to a kind of second-order gauge
reduction on I +, as we shall see now. Noting that a = Â1 + 1

2 Ω2Â0 = 0,
∇̂aΩ = fn̂a + Ωgl̂a, and the values of the rescaled spin coefficients (3.17),
we have

−∇ · A = ∇aA
a

= Ω2
(

∇̂aÂ
a − 2ΥaÂ

a
)

= Ω2
(

þ̂′Â0 − ð̂Â2 − ð̂Â2 + 2µ̂Â0 − 2gÂ0

)
+ O(Ω3).

In our hatted conformal scale g ≈ χ−1χu ≈ µ̂, so dividing by Ω2 and taking
the limit Ω → 0 we find that the Coulomb gauge ∇ · A = 0 implies the
condition

(3.34) þ̂′Â0 ≈ 2 Re ð̂Â2

on I +. We shall use this relation to construct a complete set of characte-
ristic data on I +, and hence define suitable spaces of scattering data.

Remark 3.5. — For R < 1, the checked conformal scale is related to the
hatted scale by ð̂ = χ−1ð̌, Â2 = χ−1Ǎ2, where the norms of the derivatives
ð̌ are now independent of u. In particular, 2 Re ð̌Ǎ2 = ∇S2 · ǍS2 , where ∇S2

is the Levi-Civita connection on the round sphere and ǍS2 are the (real)
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components of Aa with respect to a frame on S2 that does not depend on u.
The condition (3.34) then reads

(3.35) ∂uǍ0 ≈ 2 Re ð̌Ǎ2,

where Ǎ0 = χ2Â0.

3.4. The Scattering Construction

3.4.1. Spaces of initial and scattering data

Since Â1 ≈ 0 and the angular derivatives are tangential to I +, we have
ðÂ1 ≈ 0. Noting(4) that ν̂ ≈ 0 ≈ λ̂ and µ̂ ≈ µ̂, the expansion (2.8) for F̂ 2
reduces to

F̂ 2 ≈ −
(
þ̂′ + µ̂

)
Â2.

On I + the relevant spin coefficients are −γ̂ ≈ χ−1χu ≈ µ̂, so in fact

F̂ 2 ≈ −∂uÂ2 − χ−1χuÂ2 = −∂u

(
χÂ2

)
χ−1.

Therefore

EI + [Â] ≃
∫

I +
|F̂ 2|2 d̂vI + =

∫
I +

∣∣∂u

(
χÂ2

)∣∣2χ−2 d̂vI + .

Definition 3.6. — For the component Â2 of the Maxwell potential we
define the semi-norm ∥ · ∥Ḣ1(I +) by

(3.36) ∥Â2∥2
Ḣ1(I +)

..=
∫

I +

∣∣∂u

(
χÂ2

)∣∣2χ−2 d̂vI + .

Remark 3.7. — One can also rewrite the energy (3.36) in terms of the
checked conformal scale, which is perhaps more natural if I + ≃ R × S2 is
to be thought of as an abstract manifold detached from the interior of the
spacetime, with the degenerate metric 0 ·du2 −gS2 . In this scale one simply
has

(3.37)
∥∥Ǎ2

∥∥2
Ḣ1(I +) =

∫
I +

∣∣∂uǍ2
∣∣2 du ∧ dvS2 ,

where Ǎ2 is the conformally transformed Â2 on I +, Ǎ2 = χÂ2. The finite-
ness of the energy (3.37) then puts Ǎ2 ∈ Ḣ1(Ru;L2(S2)).

(4) In fact, the conditions ν̂ ≈ 0 and λ̂ ≈ 0 are not special to the physical spacetime
being Minkowski, but hold more generally and encode the fact that I + is shear-free and
geodetic, respectively. This will be important to us when we work on curved spacetimes
in Section 4. The condition µ̂ ≈ µ̂ partly encodes the fact that I + is a null hypersurface,
and will also hold more generally.
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Given the component Ǎ2 on I +, one can recover the component Ǎ0 on
I + using the relation (3.35). That is, we may define

Ǎ0 ≈
∫ u

−∞
2 Re ð̌Ǎ2 du ∈ Ḣ2(Ru;H−1(S2)

)
on I +, where Ḣ2(R) is the space of functions whose second derivative is
in L2(R). We are now prepared to define the Hilbert space of characteristic
data on I +.

Definition 3.8. — The Hilbert space Ḣ1(I +) is the completion of the
space (canonically isomorphic to C∞

c (I +)) of triplets(
Ǎ+

0 , Ǎ
+
1 , Ǎ

+
2

)
∈ C∞(I +)× C∞

c

(
I +)× C∞

c

(
I +)

such that Ǎ+
1 ≡ 0, and

Ǎ+
0 =

∫ u

−∞
2 Re ð̌Ǎ

+
2 du,

in the norm (3.37). This Hilbert space is the space of equivalence classes
of functions (see Remark 3.9 below) in which two triplets are said to be
equivalent if their difference has norm (3.37) equal to zero. The equality
of two instances of Ǎ+

2 in this norm identifies them up to the addition of
constant-in-u functions on S2, and the identification of two instances of
the Ǎ+

0 component of the triplet requires this function on the sphere to
be ð̌-constant. Therefore two triplets are equivalent if the Ǎ+

2 components
differ by a constant on I +. Note that, as per Remark 3.7, Ḣ1(I +) ≃
Ḣ1(Ru;L2(S2)).

Remark 3.9. — Because Ḣ1(I +) consists of equivalence classes of func-
tions, it is a Hilbert space but not a space of distributions. This is due to
the fact that Ḣ1(Rn) is defined as the completion of the space C∞

c (Rn) ∋ f

in the norm ∥∇f∥L2(Rn). Of course, constants have zero Ḣ1(Rn) norm,
but in dimension 1 they can be approached in this norm by smooth com-
pactly supported functions. In fact, this happens in dimensions 1 and 2. In
dimensions strictly greater than 2, we have Hardy’s inequality on Rn,∥∥∥∥ f|x|

∥∥∥∥
L2(Rn)

⩽ 2∥∇f∥L2(Rn) ,

and analogous Sobolev-type inequalities for other topologies such as R×S2,
that rule out constants in the completion. This is the reason why in Defi-
nition 3.10 below, the space of Coulomb gauge initial data is a genuine dis-
tribution space. In the present situation, if one wished to make the space of
scattering data a space of distributions, one could consider instead ∂uǍ

+
2 ,
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not Ǎ+
2 , as the fundamental piece of data on I +. Both descriptions con-

tain the same information and are physically equivalent, and for us the
fundamental characteristic data will be the component Ǎ+

2 itself.

On the initial surface Σ, we have already seen that in the temporal-
Coulomb gauge, the energy EΣ, as given in (3.20), is neatly expressed in
terms of the physical potential Aa as

EΣ[F ] = 1
2

∫
Σ

(
|E|2 + |B|2

)
dvΣ

= 1
2

∫
Σ

(
|Ȧ|2 + |∇A|2

)
dvΣ

=.. EΣ[A].

(3.38)

Definition 3.10. — For initial data (A, Ȧ)|Σ for the free Maxwell’s
equations, we define the Hilbert space Ḣ1

C(Σ) ⊕ L2
C(Σ) of Coulomb gauge

initial data by completion of smooth compactly supported Coulomb gauge
initial data in the semi-norm∥∥(A, Ȧ)

∥∥2
Ḣ1⊕L2 =

∫
Σ

(
|∇A|2 + |Ȧ|2

)
dvΣ .

More precisely,

Ḣ1
C(Σ) ⊕ L2

C(Σ)

=
{

(A, Ȧ) ∈ C∞
c (Σ) ⊕ C∞

c (Σ) : ∇ · A = 0 = ∇ · Ȧ
}Ḣ1⊕L2

.

3.4.2. Construction of Trace Operators

Let

D∞
c (Σ) ..=

{
(A, Ȧ) ∈ C∞

c (Σ) ⊕ C∞
c (Σ) : ∇ · A = 0 = ∇ · Ȧ

}
be the space of smooth compactly supported Coulomb gauge initial data for
the physical Maxwell’s equations in the temporal-Coulomb gauge (3.27).
An element a = (A, Ȧ) of D∞

c (Σ) defines smooth compactly supported
initial data for the rescaled Maxwell’s equations (3.29) in the temporal-
Coulomb gauge as follows. First,

â
∣∣
Σ = 0, Â

∣∣
Σ = A

∣∣
Σ.

For the time derivative part of the initial data, one computes the inverse
relation to (3.33),

∇TAb

∣∣
Σ = Ω

(
∇̂T̂ Âb + T̂ aΥaÂb + Υbâ − T̂ bΥaÂ

a
)∣∣∣

Σ
,
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so since ∂tΩ|Σ = 0,
−ĥb

a∇̂T̂ Âb

∣∣
Σ = Ω−1Ȧa

∣∣
Σ.

Note that Ȧ is supported away from i0, so that Ω−1 is smooth on its
support. Therefore we can solve (3.29) as described in Section 3.3 (The-
orem 3.4) to get a unique smooth solution Âa satisfying the gauge con-
ditions (3.28) and (3.30). Using the smoothness of Âa, one may take the
trace of this solution on I + to get a smooth restriction Âa|I + . Switching to
the checked conformal scale, one obtains (Ǎ+

0 , Ǎ
+
1 , Ǎ

+
2 ) = (Ǎ0, Ǎ1, Ǎ2)|I + ,

where Ǎ+
0 satisfies (3.35) and Ǎ+

1 ≡ 0. One therefore has the linear map

T+ : D∞
c (Σ) −→ C∞(I +)× C∞(I +)× C∞(I +),(
A, Ȧ

)
7−→

(
Ǎ+

0 , Ǎ
+
1 , Ǎ

+
2

)
,

(3.39)

where Ǎ0,1,2 are supported away from i0. The energy estimate (3.21) implies
that there exists a constant C > 0 such that for all a ∈ D∞

c (Σ)∥∥T+a
∥∥

Ḣ1(I +) ⩽ C∥a∥Ḣ1⊕L2 ,(3.40)

and

∥a∥Ḣ1⊕L2 ⩽ C
∥∥T+a

∥∥
Ḣ1(I +).(3.41)

By (3.40) and the density of D∞
c (Σ) in Ḣ1

C(Σ) ⊕ L2
C(Σ), the bounded

linear operator T+ extends uniquely to a bounded linear operator from
Ḣ1

C(Σ)⊕L2
C(Σ) into Ḣ1(I +). Moreover, the reverse estimate (3.41) ensures

that T+ is an isomorphism from Ḣ1
C(Σ)⊕L2

C(Σ) to its image, and that the
image is a closed subspace of Ḣ1(I +).

Definition 3.11. — The bounded linear operator

T+ : Ḣ1
C(Σ) ⊕ L2

C(Σ) −→ Ḣ1(I +)
that takes the initial data for (3.29) on Σ to the characteristic data on I +

is called the future trace operator for the free Maxwell’s equations in the
gauge (3.27).

Remark 3.12. — To show that T+ is surjective (and hence an isomor-
phism between Ḣ1

C(Σ)⊕L2
C(Σ) and Ḣ1(I +)), it is enough to show that its

range is dense in Ḣ1(I +), i.e. that for every b = (Ǎ+
0 , 0, Ǎ

+
2 ) ∈ C∞(I +)×

C∞
c (I +) × C∞

c (I +) there exists a unique a ∈ Ḣ1
C(Σ) ⊕ L2

C(Σ) such
that T+a = b. Indeed, then the inverse trace operator can be extended
to Ḣ1(I +) as follows. For any b ∈ Ḣ1(I +) we can find a sequence
{bn}n ⊂ C∞(I +) × C∞

c (I +) × C∞
c (I +) such that bn → b in Ḣ1(I +).
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Then for each n there exists a unique an ∈ Ḣ1
C(Σ) ⊕ L2

C(Σ) such that
bn = T+an, and

(3.42)
∥∥T+an − b

∥∥
Ḣ1(I +) −→ 0.

The above estimates easily imply that the sequence {an}n is Cauchy, since

∥an − am∥Ḣ1⊕L2 ≲
∥∥T+an − T+am

∥∥
Ḣ1(I +) ⩽ ∥bn − bm∥Ḣ1(I +).

Therefore there exists a ∈ Ḣ1
C(Σ)⊕L2

C(Σ) such that an → a in Ḣ1
C(Σ)⊕

L2
C(Σ), and by (3.42) T+a = b. Proving that for every b ∈ C∞(I +) ×

C∞
c (I +) × C∞

c (I +) there exists a unique a ∈ Ḣ1
C(Σ) ⊕ L2

C(Σ) such that
T+a = b amounts to solving the Goursat problem from I +.

3.4.3. The Goursat Problem

The underlying analytic tool that we shall use to resolve the Goursat
problem is Bär–Wafo’s formulation [13] of a theorem due to Hörmander [37].

Theorem 3.13 (Hörmander; Bär–Wafo [13, Theorem 23]). — Let M̂

be a globally hyperbolic Lorentzian manifold (of any dimension) and let
S ⊂ M̂be a characteristic partial Cauchy hypersurface. Assume that J+(S)
is past compact. Then for any f ∈ L2

loc,sc(M̂) and any u0 ∈ H1
c (S) there

exists u ∈ C0
sc(τ(M̂);H1(S◦)) ∩ C1

sc(τ(M̂);L2(S◦)) such that Pu = f on
J+(S), and u|S = u0. On J+(S), u is unique.

Remark 3.14. — Here τ(M̂) denotes a choice of a time function on M̂,
where S◦ (shorthand for {Sτ }τ ) are the leaves of the foliation corresponding
to this time function, with, say, S1 = S. In the above theorem u and f are
permitted to be quite general real or complex sections of a vector bundle
S → M̂ over M̂. In particular, the theorem applies to equations on 1-forms
and systems of coupled equations. The operator P is a linear wave operator
(a hyperbolic second order differential operator whose principal symbol
is the metric on M̂), and a partial Cauchy surface is a closed achronal
hypersurface S ⊂ M̂. In particular, S does not need to be compact, and
includes both the cases when S is a lightcone and an intersection of two
null hyperplanes. The subscript sc denotes spaces of sections which are
spatially compact. When S is smooth and spacelike, H1

c (S) is the space of
H1 sections on S which have compact support. When S is merely Lipschitz,
as in the case of a lightcone, the space H1

c (S) is the space of FE 1
sc

..=
C0

sc(τ(M̂);H1(S◦)) ∩ C1
sc(τ(M̂);L2(S◦)) sections restricted to S; the space

H1
c (S) in this case is well-defined because the space FE 1

sc does not depend
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on the choice of time function τ(M̂) ([13, Corollary 19]). The lower case
subscripts, as in H1

c , should not be confused with upper case subscripts, as
in Ḣ1

C , the space of Ḣ1 sections satisfying the Coulomb gauge ∇ · A = 0).

In this section we prove the following.

Theorem 3.15. — For every (Ǎ+
0 , 0, Ǎ

+
2 ) ∈ C∞(I +) × C∞

c (I +) ×
C∞

c (I +) there exists a unique solution

Ǎa ∈ C0(Rt;H1(Σt)
)

∩ C1(Rt;L2(Σt)
)

to (3.31), for which the corresponding physical potential satisfies(
A, Ȧ

)∣∣
Σ ∈ Ḣ1

C(Σ) ⊕ L2
C(Σ).

Moreover, the corresponding physical potential Aa satisfies the temporal-
Coulomb gauge throughout M.

i+

I + I +

O+

O−

Σt′

supp Â+
2

H

Figure 3.3. The solution in the region O+ near i+ is pure gauge.

Proof. — We wish to solve the system (3.31) from characteristic data in
(a dense subspace of) Ḣ1(I +) (cf. (3.39)). We first construct a solution in
a small neighbourhood of I + ∪ i+, which can then be easily extended to
the rest of the spacetime. Given(

Ǎ+
0 =

∫ u

−∞
2 Re ð̌Ǎ

+
2 du, Ǎ+

1 ≡ 0, Ǎ+
2

)
∈ C∞(I +)× C∞

c

(
I +)× C∞

c

(
I +) ⊂ Ḣ1(I +),

we observe that in the future of the support of Ǎ+
2 , the component Ǎ+

0
is constant on I +. The fact that Â+

0 cannot be supported away from
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i+ means that we must proceed carefully. Introduce a short outgoing null
hypersurface H which intersects I + in the future of the support of Ǎ+

2 , as
depicted in Figure 3.3, by first choosing a spacelike hypersurface Σt′ for t′
sufficiently large, and then choosing H to be the future lightcone of a point
on Σt′ .

Denote the future of H (i.e. a neighbourhood of i+) by O+, and the past
of H in the future of Σt′ by O−. In the region O+ near i+, the data for
the potential is trivial in the following sense: Ǎ+

1 = 0 = Ǎ+
2 , and Ǎ+

0 = C0,
where C0 is a constant. The rescaled field F̌ab therefore has identically zero
data on I + ∩ J+(H). Changing to the hatted conformal scale in O+ (so
that i+ is at a finite distance), the data for the field F̂ ab remains identically
zero, so we may solve a wave equation for F̂ ab, which, by the uniqueness
part of Theorem 3.13, must be identically zero in O+, F̂ ab ≡ 0. Return
now to the checked conformal scale, where we have deduced that F̌ab ≡ 0
in O+. By the Poincaré Lemma, there exists a function ξ ∈ H2

loc(O+) such
that Aa = Ǎa = ∂aξ, i.e. Ǎa is pure gauge. The gauge function ξ is a priori
not unique, but recalling that our solution should satisfy the gauge (3.27),
we have □ξ = 0 in the physical spacetime, or equivalently in the checked
conformal scale

q□ξ̌ = 0,

where ξ̌ = R−1ξ (as the Ricci scalar vanishes in the checked scale, Ř = 0).
To get uniqueness of ξ̌, it is therefore enough to fix ξ̌|I + . But since the
condition Ǎ0 ≈ C0 in O+ is equivalent to ξ̌ ≈ −C0 (this follows simply
from the fact that Ǎ0 = ľa∂aξ = ľa∂a(Rξ̌) ≈ (ľa∂aR)ξ̌ ≈ −ξ̌), this fixes
ξ̌ and therefore ξ in O+. As a note, the temporal gauge further implies
∂uξ = 0.

Remark 3.16. — It is worth noting that, although in O+ the solution is
pure gauge, at the level of the potential the data on I + is divergent in a
conformal scale in which i+ is at a finite distance (e.g. our hatted conformal
scale). Indeed, Ǎ+

0 is constant near i+, and Â+
0 = χ−2Ǎ+

0 = (1 + u2)Ǎ+
0 →

∞ as u → ∞. The Lp(I +) norm of Â+
0 diverges for p ⩾ 1, the p = 1 norm

being conformally invariant.

We now compute þ̌ξ and ð̌ξ in O+, and restrict these to H to obtain
H1

c data for Ǎ0 and Ǎ2 on H. The data for (Ǎ0, Ǎ2) is now in H1
c (H ∪

(I + ∩ O−)). By contracting the system (3.31) with ľa and m̌a and using
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the temporal gauge condition (3.30) to eliminate all instances of the com-
ponent Ǎ1, one derives a system of the form

(3.43)
{

q□Ǎ0 + Ľ
(11)
1 Ǎ0 + Ľ

(12)
1 Ǎ2 = 0,

q□Ǎ2 + Ľ
(21)
1 Ǎ0 + Ľ

(22)
1 Ǎ2 = 0,

where Ľ(ij)
1 , i, j ∈ {1, 2} are linear first order differential operators with

coefficients depending on the spin coefficients and curvature components
of M̌ (note that, by (3.17), the only non-vanishing spin coefficients are α̌,
β̌, and γ̌, and the only non-vanishing curvature component is Φ̌11 = 1

2 ).
Choosing the time function to be the standard physical coordinate t with
corresponding leaves Σt, we may therefore apply Theorem 3.13 from H ∪
(I + ∩ O−) to solve the system (3.43) in the region O−; we obtain in a
neighbourhood of I + the components

Ǎ0, Ǎ2 ∈ C0(Rt;H1(Σt)
)

∩ C1(Rt;L2(Σt)
)
,

and reconstruct the remaining component by setting

Ǎ1 ..= −1
2R

2Ǎ0,

which, of course, in O+ is equivalent to ∂uξ = 0.

i−

i+

I + I +

i0 i0

Σt′

support of Â+
2

Σ

Figure 3.4. We solve the Goursat problem from I + backwards in time.

TOME 0 (0), FASCICULE 0



34 Jean-Philippe NICOLAS & Grigalius TAUJANSKAS

To extend the solution to the rest of the spacetime, we pick a sufficiently
large t′ < ∞ as in Figure 3.4, and on Σt′ reconstruct the physical field
Fab|Σt′ ∈ L2(Σt′) from Ǎa = Aa. We then propagate Fab backwards in time
to Σ, as shown in Figure 3.4, using standard theory [43]. As the solution Fab
is spatially compact, it is straightforward to check, by performing an energy
estimate as in Theorem 3.2, that EΣ = EI + , and therefore the restriction
of the solution to Σ satisfies

EΣ = 1
2

∫
Σ

(
|E|2 + |B|2

)
dvΣ < ∞.

To see that the corresponding physical potential (A, Ȧ) is in the
desired function space Ḣ1

C(Σ) ⊕ L2
C(Σ), it remains to check that the com-

plete gauge (3.27) is propagated off I +. To do this, note that the temporal
gauge holds in a neighbourhood of I + by construction of the compo-
nent Ǎ0. Further, we show that the physical Lorenz gauge ∇aA

a = 0 is
propagated off I +. The two will then imply the physical Coulomb gauge
∇ · A = 0. Recall that our solution Ǎa to (3.43) solves (3.31), which is in
turn equivalent to

□Aa = 0

in M. We commute ∇a into this equation and define ψ ..= ∇aA
a to get

□ψ = 0

in M. As R = 0 on M, this is the conformally invariant scalar wave equa-
tion, so is equivalent to (in the hatted conformal scale with i+ finite)

□̂ψ̂ + 1
6R̂ψ̂ = 0

on M̂, where ψ̂ = Ω−1ψ. By the uniqueness part of Theorem 3.13, we will
have ψ̂ ≡ 0 in M̂ if we can demonstrate that ψ̂+ ..= ψ̂|I + = 0. But now

ψ̂ = Ω−1∇aA
a

= Ω
(
∇̂aÂ

a − 2ΥaÂ
a
)

= −2
(
∇̂aΩ

)
Âa + O(Ω)

= −2fÂ1 + O(Ω),

and we have Â1 ≈ 0, which implies ψ̂+ = 0. □
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3.4.4. The Scattering Operator

Corollary 3.17. — The forward trace operator

T+ : Ḣ1
C(Σ) ⊕ L2

C(Σ) −→ Ḣ1(I +)
is invertible and hence a linear isomorphism.

Proof. — This follows from Theorem 3.15 and Remark 3.12. □

An analogous construction can be performed to the past of the initial
surface Σ to construct the past trace operator

T− : Ḣ1
C(Σ) ⊕ L2

C(Σ) −→ Ḣ1(I −),

which is an isomorphism by the same token. We are therefore now in a
position to define the scattering operator S .

Definition 3.18 (Scattering operator on Minkowski space). — We call
the linear isomorphism of Hilbert spaces

S ..= T+ ◦ (T−)−1 : Ḣ1(I −) −→ Ḣ1(I +)
taking finite energy characteristic data for the Maxwell potential on I − to
finite energy characteristic data on I + the conformal scattering operator
for Maxwell potentials in temporal-Coulomb gauge on Minkowski space.

3.4.5. Alternative Formulations

The preceding construction of the scattering operator S is predicated
on the usage of the multiplier Killing vector field

Ka = ∂u,

which, via natural energy estimates (cf. Section 3.2), defines the semi-norms
on I ±

EK
I + ≃

∫
I +

|F̂ 2|2 d̂vI +

≃
∫

I +

∣∣∂u(χÂ2)
∣∣2χ−2 d̂vI + =

∫
I +

∣∣∂uǍ2
∣∣2 du ∧ dvS2 ,

EK
I − ≃

∫
I −

|F̂ 0|2 d̂vI −

≃
∫

I −

∣∣∂v(χÂ2)
∣∣2χ−2 d̂vI − =

∫
I −

∣∣∂vǍ2
∣∣2 dv ∧ dvS2 .

However, one has many alternative choices for Ka on Minkowski space.
Indeed, inspecting the proof of Theorem 3.2, one sees that any uniformly

TOME 0 (0), FASCICULE 0



36 Jean-Philippe NICOLAS & Grigalius TAUJANSKAS

timelike conformally(5) Killing vector field on M will do. One particular
choice which is tied to the conformal structure of Minkowski space is the
Morawetz vector field

(3.44) Ka
0 = u2∂u + 2r(u+ r)∂r,

discovered by Cathleen Morawetz in 1961 in her study of the decay of
solutions to the wave equation in the exterior of an obstacle [49]. The
vector field Ka

0 is conformally Killing on (M, η),

£K0ηab = 4(u+ r)ηab,

and in fact exactly Killing with respect to R2ηab,

£K0(R2ηab) = 0.

If one uses Ka
0 instead of Ka in the energy estimates, one arrives at the

following energies on Σ and I ±,

EK0
Σ ≃

∫
Σ
r2(|F0|2 + |F1|2 + |F2|2

)
dvΣ

≃
∫

Σ
r2(|E|2 + |B|2

)
dvΣ

=
∫

Σ

(
r2|Ȧ|2 + r2|∇A|2 − 2|A|2

)
dvΣ,

(3.45)

and
EK0

I + ≃
∫

I +

(
u2|F̂ 2|2 + χ2|F̂ 1|2

)
d̂vI + ,

which may be written, in the checked conformal scale on I +, as

(3.46) EK0
I + ≃

∫
I +

(
u2|∂uǍ2|2 + |ð̌Ǎ2|2

)
du ∧ dvS2 .

An analogous expression exists on I −. While the energies EK0
I ± on I ±

define weighted Sobolev semi-norms on Â2 (and in this case also control
the angular derivatives of Â2), the energy EK0

Σ on Σ no longer defines a
(weighted) Sobolev semi-norm in terms of (Ȧ,A) due to the presence of
the negative-definite term −2|A|2. This means that the space of data on
Σ has to be defined slightly differently in this context. As before, we have
the trace operators

T±
K0

: D∞
c (Σ) −→ C∞(I ±)× C∞(I ±)× C∞(I ±),(
A, Ȧ

)
7−→

(
Ǎ±

0 , Ǎ
±
1 , Ǎ

±
2

)
(5) The multiplier vector field is allowed to be merely conformally Killing on M because
the Maxwell stress-energy tensor is traceless.
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from smooth initial data to smooth characteristic data, but instead of com-
pleting D∞

c (Σ) in the semi-norm Ḣ1 ⊕ L2, we shall show that the pairs
(A, Ȧ) are in 1-to-1 correspondence with finite energy Maxwell fields on Σ
in the natural energy space (3.45). Indeed, in Coulomb gauge on Σ one has

E = Ȧ, B = 1
2∇ × A.

The time derivative component is therefore recovered trivially, whereas to
recover A from B on Σ we take the curl,

(3.47) ∇ × B = 1
2(∇(∇ · A) − ∆A) = −1

2∆A.

For B ∈ L2(Σ) there exists a unique solution A ∈ Ḣ1(Σ) to (3.47), which
we write as A = ∆−1(−2∇ × B). Indeed, note that C∞

c (Σ) is dense in
Ḣ1(Σ); multiplying (3.47) by a test vector field X ∈ C∞

c (Σ) and inte-
grating by parts, we obtain a continuous and strictly coercive bilinear
form on Ḣ1(Σ). It therefore follows from the Lax–Milgram lemma that
∆ : Ḣ1(Σ) → Ḣ−1(Σ) is an isomorphism, where Ḣ−1(Σ) is the dual space
of Ḣ1(Σ) [1]. It therefore remains to see that for B ∈ L2(Σ) we have
∇ × B ∈ Ḣ−1(Σ). This is true: for a test vector field X ∈ C∞

c (Σ),

⟨∇ × B, X⟩D′(Σ), C∞
c (Σ) =

∫
Σ

(∇ × B) · X dvΣ

=
∫

Σ
(∇ × X) · B dvΣ ⩽ ∥X∥Ḣ1(Σ)∥B∥L2(Σ).

If rE ∈ L2(Σ), it is obvious that rȦ ∈ L2(Σ), and we write Ȧ ∈
r−1L2(Σ) ⊂ L2(Σ). Also, rB ∈ L2(Σ) =⇒ B ∈ L2(Σ) =⇒ ∇ × B ∈
Ḣ−1(Σ), and so A ∈ Ḣ1(Σ). We define

r−1Ḣ1
C(Σ)curl ..=

{
A ∈ Ḣ1(Σ) : ∇ · A = 0, r(∇ × A) ∈ L2(Σ)

}
and

r−1L2
C(Σ) ..=

{
Ȧ ∈ L2(Σ) : ∇ · Ȧ = 0, rȦ ∈ L2(Σ)

}
.

Then the operator T+
K0

extends as an isomorphism

T+
K0

: r−1Ḣ1
C(Σ)curl ⊕ r−1L2

C(Σ) −→ u−1Ḣ1(I +),
where u−1Ḣ1(I +) is the space defined analogously to Definition 3.8, but
with respect to the semi-norm (EK0

I +)1/2, and similarly for T−
K0

. We then
define the scattering operator associated to K0 by

SK0
..= T+

K0
◦
(
T−

K0

)−1 : v−1Ḣ1(I −) −→ u−1Ḣ1(I +),
which is again an isomorphism of Hilbert spaces.
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Remark 3.19. — Notice that the space r−1Ḣ1
C(Σ)curl ⊕ r−1L2

C(Σ) is a
subspace of Ḣ1

C(Σ)⊕L2
C(Σ), and that u−1Ḣ1(I +) is a subspace of Ḣ1(I +).

In other words, the vector field Ka defines a weaker (more general) scatter-
ing theory between I − and I + than the vector field Ka

0 . The construction
for Ka

0 shows that the faster-decaying characteristic data on I − scatters
to the correspondingly faster-decaying characteristic data on I +. Indeed,
in the checked conformal scale on I +, the scattering operator S maps
data that is F̌−

0 = O(|v|−1) on I −, through data that is F0,1,2 = O(r−2)
on Σ, to data that is F̌+

2 = O(|u|−1) on I +,

S : F̌−
0 = O

(
|v|−1) (T−)−1

F0,1,2 = O
(
r−2) T+

F̌+
2 = O

(
|u|−1).

Equivalently, in terms of the potential

S : Ǎ−
2 = O(log |v|) (T−)−1

A = O(r−1),

Ȧ = O
(
r−2) T+

Ǎ+
2 = O(log |u|).

On the other hand,

SK0 : F̌−
0 = O

(
|v|−2) (T−

K0

)−1

F0,1,2 = O
(
r−3) T+

K0 F̌+
2 = O

(
|u|−2),

i.e.

SK0 : Ǎ−
2 = O

(
|v|−1) (T−

K0

)−1

A = O
(
r−2),

Ȧ = O
(
r−3) T+

K0 Ǎ+
2 = O

(
|u|−1).

4. Curved Spacetimes

4.1. Asymptotically Simple and
Corvino–Schoen–Chruściel–Delay Spacetimes

In this second part of the paper we work on spacetimes constructed by
Chruściel–Delay [16, 17], Corvino [18], and Corvino–Schoen [19]. These are
asymptotically flat, asymptotically simple spacetimes with null and time-
like infinities of specifiable regularity, which are in addition diffeomorphic
to the Schwarzschild or Kerr solution in a neighbourhood of spacelike in-
finity. These spacetimes are generically non-stationary and contain mat-
ter(6) , and therefore the scattering processes on such spacetimes may be

(6) We will impose a mild assumption on the decay of the matter fields towards null
infinity, see Definition 4.7.
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quite complex. As a consequence of their structure near spatial infinity,
their conformal compactifications are also necessarily singular at i0. Away
from i0, the constructions of Chruściel–Delay [16, 17] permit spacetimes
with a Ck conformal compactification for any finite k (but not C∞), and
in what follows we shall simply assume that a sufficiently large order of
differentiability k has been chosen. We will refer to such Ck differentiability
as smoothness.

We first recall the definition of asymptotically simple spacetimes [5, 6,
53, 54, 55].

Definition 4.1 (Asymptotically simple spacetimes). — Let (M, g) be a
smooth globally hyperbolic spacetime. We say that (M, g) is asymptotically
simple if there exists another globally hyperbolic spacetime (M̂, ĝ) such that

(1) the spacetime M̂ is a manifold with boundary ∂M̂= I , and M̂\I

is diffeomorphic to M,
(2) there exists a smooth function Ω on M̂ such that ĝab = Ω2gab and

Ω > 0 in M, Ω = 0 on I , and dΩ ̸= 0 on I , and
(3) every inextendible null geodesic in M acquires two distinct end-

points on I .

The condition dΩ ̸= 0 on I ensures that Ω can be used as a coordinate
on M̂ (at least in the neighbourhood of I ), e.g. to perform Taylor expan-
sions to capture the decay of fields near I . If M happens to be vacuum (in
fact it is enough that the trace of the matter stress-energy tensor vanishes
near I ) and the cosmological constant is zero, then as a hypersurface of
the unphysical spacetime M̂, I is null.

Remark 4.2. — The definition above is the original definition of Pen-
rose (see for instance Penrose and Rindler, [55, Vol. 2], p. 351), in which
the main point of interest was the construction of null infinity, or I , i.e.
the set of end-points of inextendible null geodesics. That is, Penrose did
not consider the endpoints of inextendible timelike or spacelike geodesics
as part of I . For Corvino–Schoen–Chruściel–Delay spacetimes, we can
assume enough conformal regularity so that null infinity refocuses to a
point in the future and a point in the past. These two points, referred to as
future and past timelike infinities, can naturally be included in the boun-
dary of the spacetime provided we choose a conformal factor with enough
decay.

Definition 4.3 (Corvino–Schoen–Chruściel–Delay spacetimes). — The
spacetimes of Corvino–Schoen–Chruściel–Delay are asymptotically simple,
and in addition to the conditions of Definition 4.1 satisfy the following:
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(4) the physical spacetime (M, gab) satisfies Einstein’s equations,

Rab − 1
2Rgab = −8πγTab,

where Ω−2Tab has a smooth limit on I ,
(5) the boundary of M̂ is the union of two null hypersurfaces I + and

I −, referred to as future and past null infinities, and two points
i+ and i−, referred to as future and past timelike infinities, such
that the hypersurface I + is the past lightcone of i+, and I − is
the future lightcone of i−,

(6) the metric ĝab is smooth at i± and I ±, and
(7) the physical spacetime M is diffeomorphic to the Schwarzschild or

Kerr solution outside the domain of influence of a given compact
subset of a Cauchy surface Σ.

Note that the point i0 (spacelike infinity, the endpoint of all inextendible
spacelike geodesics) is not part of the boundary of M̂when the ADM mass
is non-zero, as it is a singularity of the conformal structure. Condition 4 in
the above (called the asymptotically vacuum condition) ensures that the
matter fields in the physical spacetime M decay sufficiently fast at infinity
to allow a sensible analysis of the geometry of I . The above definition
abstracts the compactification procedure performed in Section 3.1.

Remark 4.4. — Note that the above definition implies that for two smo-
oth (say Ck for k ⩾ 3) scalar fields α and β, the equality α ≈ β implies
that there exists a Ck−1 scalar field γ such that α = β + Ωγ.

4.2. The Schwarzschildean Neighbourhood of Spacelike Infinity

The spacetimes of Corvino–Schoen–Chruściel–Delay are diffeomorphic to
the Schwarzschild or Kerr spacetime in a neighbourhood of i0. For simplic-
ity(7) , we consider the case of Schwarzschild. The metric near i0 is then
given by

(4.1) gab dxa dxb = F (r) dt2 − F (r)−1dr2 − r2gS2 ,

where F (r) = 1 − 2mr−1, with inverse metric

gab∂a ⊙ ∂b = F (r)−1∂2
t − F (r) ∂2

r − r−2g−1
S2 .

(7) Although the Kerr case is more cumbersome, the crucial fact that ∂t is Killing near i0

remains true (see the estimates in Appendix A). Therefore our scattering construction
should in principle be extendible to the case of CSCD spacetimes diffeomorphic to Kerr
near i0.
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The lapse N here is therefore given by N =
√

1 − 2mr−1, and it can be
checked that the extrinsic curvature of the {t = 0} slice is zero, κab ≡ 0
(indeed, the Schwarzschild spacetime is static). We define the Eddington–
Finkelstein coordinates

u ..= t− r∗, r∗ ..= r + 2m log
( r

2m − 1
)
,

and the inverted radial coordinate

R ..= 1
r
.

The metric (4.1) in the coordinates (u, r, θ, ϕ) becomes

gabdxadxb = F (r)du2 + 2dudr − r2gS2 ,

with the inverse metric

gab∂a ⊙ ∂b = 2 ∂u ⊙ ∂r − F (r)∂2
r − r−2g−1

S2 .

The conformally rescaled metric is given by ĝab = Ω2gab, where we will
wish to choose Ω carefully (in particular, we will need surfaces of Ω =
const. to be null near I +). Our conformal scale is described in detail in
Section 4.4, though an explicit expression for the conformal factor even
in the Schwarzschildean sector is not readily available (and will not be
needed).

4.3. Newman–Penrose Tetrads

On the physical spacetime M we define an NP tetrad (la,ma,ma, na)
by aligning la and na with outgoing and incoming null congruences re-
spectively such that wherever the metric gab agrees with the Schwarzschild
metric, the tetrad (la,ma,ma, na) takes the concrete form

na = ∂u − 1
2F (r)∂r, na = 1

2F (r) du+ dr,(4.2)

la = ∂r, la = du,(4.3)

ma = 1√
2r

(
∂θ + i

sin θ∂ϕ

)
, ma = − r√

2
(dθ + i sin θ dϕ),(4.4)

ma = 1√
2r

(
∂θ − i

sin θ∂ϕ

)
, ma = − r√

2
(dθ − i sin θ dϕ),(4.5)

and extending sin θma as a Ck-smooth (to avoid the singularity on the
sphere) complex null vector everywhere orthogonal to la and na. We as-
sume that the vector fields la and na are Ck-smooth and real. We obtain a
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rescaled NP tetrad on M̂ by the rescaling (3.8)–(3.11). We assume that n̂a

restricted to I + is a generator of I + and that ∇̂aΩ is proportional to n̂a

on I +. We also assume that the vector fields (and their corresponding 1-
forms) (l̂a, m̂a, m̂

a
, n̂a) are all Ck-smooth throughout M̂ (modulo the usual

singularity on the spheres). We use l̂a to define a 3-volume form on I +:

d̂vI + ..= l̂♭ ∧
(
im̂♭ ∧ m̂

♭
)
.

Finally, we assume that the future-oriented unit normal T a to the hyper-
surfaces Σt of constant time coordinate t which approach I + as t → ∞ is
independent of the angular vector fields (which is an assumption on the null
tetrad being adapted to the foliation). Then the normalisation gabT

aT b = 1
implies that T a is given by

(4.6) T a = ana + 1
2al

a

for some positive function a on Mwhich extends smoothly to I + and does
not vanish there. Since T a should be invariant under rescalings of the NP
tetrad, the function a is a {1, 1}-scalar. In terms of the rescaled tetrad T a

is then given by

T a = an̂a + Ω2

2a l̂
a,

and becomes proportional to the generator n̂a of I + on I +. In the
Schwarzschild sector we explicitly have that the unit normal to surfaces
Σt of constant t is T a = F (r)−1/2∂t, which in terms of the physical NP
tetrad is given by

T a = F (r)−1/2na + 1
2F (r)1/2la.

Therefore here a = F (r)−1/2 ≈ 1.

4.4. Structure of I

The topological structure of null infinity of all asymptotically flat asymp-
totically simple spacetimes is the same, and essentially identical to the
topology of null infinity of Minkowski space [53, 55]. Indeed, one has the
following theorem.

Theorem 4.5 (Penrose, 1965). — In any asymptotically simple space-
time M for which I is everywhere null, the topology of each of I ± is
given by

I + ≃ I − ≃ R × S2,
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and the rays generating I ± can be taken to be the R factors.

For these spacetimes future (or past) null infinity I + is therefore a null
3-dimensional manifold ruled by the integral curves of n̂a ∝ ∇̂aΩ. The pull-
back q̂ab to I + of the metric ĝab gives a degenerate metric on I + which
has signature (0,−,−). Moreover, there is still considerable conformal free-
dom(8) on I + once Ω has been chosen to bring I + to a finite distance:
if the physical metric gab was related to the rescaled metric by ĝab = Ω2gab,
then for any ω which is smooth and nowhere vanishing on I + the rescaling
Ω⇝ ωΩ is still permissible, giving ǧab = ω2ĝab. Here, by conformally sca-
ling the 2-spheres so that their metric is that of a geometric unit 2-sphere,
we may choose the conformal scale so that (minus) the induced metric on
I + becomes

(4.7) dl2 = 0 · du2 + gS2

for a coordinate u with range u ∈ R satisfying −∇̂aΩ∇̂au ≈ 1 and ð̂u ≈ 0.
In this scale the generators of I + therefore map its cross-sections to one
another isometrically, making u a Bondi retarded time coordinate on I +

(cf. [55, (9.8.31)]). In this scale i+ (and i0) are at infinity.

4.4.1. Spin and curvature coefficients on I +

Further information about the structure of I + is provided by the fact
that the physical spacetime M is assumed to be asymptotically vacuum in
the sense of Definition 4.3(4). The trace-free part of the Ricci tensor

Φab ..= −1
2

(
Rab − 1

4Rgab

)
transforms under a conformal rescaling as

Φab = Φ̂ab + ∇̂aΥb − 1
4 ĝab∇̂cΥc + ΥaΥb − 1

4 ĝabĝ
cdΥcΥd

= Φ̂ab + Ω−1∇̂a∇̂bΩ − 1
4Ω−1ĝab∇̂c∇̂cΩ.

One has, according to Definition 4.1, that Ω−2Rab has a continuous limit
on I +, so multiplying the above by Ω and taking the limit Ω → 0 ensures
that ΩΦab ≈ 0, and gives the asymptotic Einstein condition

(4.8) ∇̂a∇̂bΩ ≈ 1
4 ĝab∇̂c∇̂cΩ.

(8) If this conformal freedom is employed to choose a scale in which ∇̌aňa = 0, the
equivalence classes of pairs (q̌ab, ňa) related by the remaining conformal freedom (that
is, the conformal rescalings of the 2-spheres) forms the so-called universal structure of
I + [5].
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The normal ∇̂bΩ to I + is proportional to n̂a, ∇̂bΩ ≈ fn̂b for some non-
vanishing scalar function f , so the condition (4.8) reads

(4.9) f∇̂an̂b + n̂b∇̂af ≈ 1
4 ĝab

(
f∇̂cn̂

c + ∆̂f
)
.

Multiplying by n̂c and antisymmetrizing shows that (see [55, (7.1.58)])

(4.10) n̂[a∇̂bn̂c] ≈ 0 ⇐⇒
(
ν̂ ≈ 0, µ̂ ≈ µ̂

)
,

where the conditions on the spin coefficients ν̂ and µ̂ may be rapidly ob-
tained from the hypersurface orthogonal condition by contracting with
n̂am̂b and m̂[am̂

b] respectively. The vanishing of the spin coefficient ν̂ on
I + tells us that I + is generated by null geodesics, whereas the condition
µ̂ ≈ µ̂ says that the vectors n̂a are twist-free on I +. Contracting (4.9)
with m̂am̂b, we also get

(4.11) λ̂ ≈ 0,

which is the statement that the vectors n̂a are shear-free on I +. We say
the hypersurface I + is geodetic, twist-free and shear-free. Since the vectors
n̂a are geodetic on I +, they are parallely propagated, ∆̂n̂a = ∇̂n̂n̂

a ≈ sn̂a

for some function s, which vanishes identically if the geodesics are affinely
parametrized. Contracting with l̂a, one sees that the function s is given
by s = l̂a∆̂n̂a. This is in fact the real part of another spin coefficient,
−(γ̂ + γ̂) = l̂a∆̂n̂a, so the condition for the geodesics generated by n̂a on
I + to be affinely parametrized is γ̂ + γ̂ ≈ 0. It is always possible to
reparametrize a geodesic affinely, and here we will assume that the original
parametrization has been made to that effect. The condition for the imagi-
nary part of γ̂ to vanish, γ̂− γ̂ = 0, can be translated as the statement that
the spinor field ι̂A has parallelly propagated flag planes, where n̂a = ι̂Aι̂A

′ .
If I + is affinely parametrized with parallelly propagated flag planes, then
γ̂ ≈ 0.

We next make a further specialization of our choice of Ω so that near
I + surfaces of Ω = const . are null, i.e. ∇̂aΩ = fn̂a near I +, not just on
I + (cf. [55, (9.8.29)]). Then ∆̂Ω = 0 = δ̂Ω near I +, and the remaining
components of (4.9) imply that

(4.12) µ̂ ≈ 0 ≈ π̂

and

þ̂f ≈ 0.
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In fact, λ̂ ≈ 0 ≈ µ̂ may have been deduced directly from the form of the
metric (4.7). With these conditions (4.9) further implies

(4.13) þ̂′f ≈ 0 ≈ ð̂f,

and, as in (4.10), we now have

ν̂ = 0 and µ̂ = µ̂

near I +, not just on I +. Now the condition −∇̂aΩ∇̂au ≈ 1 may be
rewritten as þ̂′u ≈ −f−1; recalling that ð̂u = 0 and commuting þ̂′ into this
equation, one finally derives

τ̂ ≈ 0.
This is the condition for the choice of parameter u and the scaling near
I + to be a so-called Bondi system. We therefore have the following.

Proposition 4.6. — On any given Corvino–Schoen–Chruściel–Delay
spacetime M there exists a conformal scale, a choice of NP tetrad
(l̂a, m̂a, m̂

a
, n̂a), and a choice of Bondi time coordinate u such that the

metric on I + is given by (4.7),

λ̂ ≈ π̂ ≈ µ̂ ≈ τ̂ ≈ γ̂ ≈ 0,

and
ν̂ = 0 and µ̂ = µ̂

in a neighbourhood of Ω = 0.

In addition to the asymptotic Einstein condition (4.8), we further as-
sume that our spacetime satisfies the so-called strong asymptotic Einstein
condition.

Definition 4.7 (Strong asymptotic Einstein condition). — A Corvino–
Schoen–Chruściel–Delay spacetime M is said to satisfy the strong asymp-
totic Einstein condition if it satisfies (4.8), and

(4.14) Ψ̂0 ≈ Ψ̂1 ≈ Ψ̂2 ≈ Ψ̂3 ≈ Ψ̂4 ≈ 0,

the Ψ̂i’s being the components of the (rescaled) Weyl tensor.

Remark 4.8. — The strong asymptotic Einstein condition holds if the
physical spacetime satisfies Rab ∝ gab near I + ([55, (9.6.32)]). In particu-
lar, all vacuum CSCD spacetimes satisfy the condition, of which there are
an infinite-dimensional family [16].

Proposition 4.9. — In the setting of Proposition 4.6, the strong
asymptotic Einstein condition (4.14) further implies

Φ̂22 ≈ 0 ≈ Φ̂21.
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Proof. — This follows straightforwardly from the curvature equations

þ̂′µ̂− ð̂ν̂ = −µ̂2 − |λ̂|2 + ν̂π̂ − ν̂τ̂ − Φ̂22

and

ð̂µ̂− ð̂λ̂ = π̂
(
−µ̂+ µ̂

)
+ ν̂
(
ρ̂− ρ̂

)
+ Ψ̂3 − Φ̂21. □

The conformal factor Ω that we have specified in this and the previous
section is the analogue, for the spacetimes of Corvino–Schoen–Chruściel–
Delay, of 1/r on the Minkowski spacetime.

4.5. Construction of Gauge

In order to recover the main aspects of the scattering construction on
curved spacetimes, we must choose an appropriate gauge in which Â1 ≈ 0.
In the case of Minkowski space, this was achieved by the temporal gauge,
and then there turned out to exist a suitable second-order reduction of
the Coulomb gauge which allowed us to recover Â0 on I +, and which
made the equations non-singular up to I +. This construction cannot be
carried over, however, as in a generic curved spacetime of Corvino–Schoen–
Chruściel–Delay type if one imposes the Coulomb gauge ∇ · A = 0 on the
slices (Σt, hab) with normal T a = ana + 1

2a l
a, the component a = T aAa

no longer satisfies an unsourced elliptic equation. Instead, a satisfies an
equation of the form

∆a = κ · f0 + (∇κ) · f1

for sources f0 and f1. The presence of the extrinsic curvature κ of Σt

therefore generically prevents a from being zero, making the Coulomb and
temporal gauges incompatible.

Choosing an appropriate gauge is therefore a non-trivial problem. At the
outset, one has two distinct classes of gauge conditions to consider: those
defined in the physical spacetime M, and those defined in the rescaled
spacetime M̂. On the rescaled spacetime, of the common gauge fixing con-
ditions (temporal, Coulomb and Lorenz), none give any useful information
on I +: the temporal gauge only relates two components of Âa in M̂ but
is otherwise severely incomplete (the rescaled field equations for Âa are
not hyperbolic), the Coulomb gauge with respect to any foliation which
intersects I + transversely is clearly not adapted to the problem, and the
Lorenz gauge produces a PDE on I + which involves transverse derivatives,
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and is therefore not intrinsically solvable at finite energy regularity(9) . One
is therefore naturally led to consider imposing a gauge condition in the
physical spacetime M. It turns out that the physical Lorenz gauge and the
physical temporal gauge both reduce to Â1 ≈ 0 on I +, whereas the phys-
ical Coulomb gauge reduces to the slightly weaker condition þ̂′(aÂ1) ≈ 0.
Of course, the temporal gauge still suffers from the fact that it is an in-
complete gauge fixing condition. The Coulomb gauge with respect to the
asymptotically null foliation Σt turns out to have a potentially useful (but
messy) expansion in powers of Ω near I +, but at second order (where we
would expect to find the equation for Â0) happens to contain a transversal
derivative of Â1 which is problematic to deal with. It turns out that a cer-
tain combination of the three is needed. We will impose the physical Lorenz
gauge throughout M, and subsequently use the residual gauge freedom to
fix a = 0 = ∇ · A on Σ, and impose the condition Â

[1]
1

..= Ω−1Â1 ≈ 0
on I +. Unfortunately, the residual gauge transformation needed to set
a = 0 = ∇ · A on Σ may in general be incompatible with the one needed
to set Â[1]

1 ≈ 0 on I +. Our gauge will therefore break the Lorenz gauge
condition in the interior of M, away from a neighbourhood of Σ and away
from a neighbourhood of I +. We describe the construction in detail below.

4.5.1. Condition on I +

Suppose for the moment that we have a smooth solution Âa on M̂which
extends smoothly to I +. Note that, by the smoothness of M̂, for any scalar
field q which vanishes on I +, q ≈ 0, there exists another scalar field q[1]

which extends smoothly to I + and which satisfies q = Ωq[1] (Remark 4.4).
In particular, the spin coefficients λ̂, π̂, µ̂, τ̂ , γ̂ are O(Ω) near I + (and
ν̂ ≡ 0 near I +). Using that ∇̂aΩ = fn̂a near I +, we compute

(4.15) Ω−2∇aA
a

= ∇̂aÂ
a − 2ΥaÂ

a

= −2Ω−1fÂ1 + þ̂Â1 − 2Â1 Re ρ̂+ þ̂′Â0 − 2 Re
(

ð̂Â2
)

+ O(Ω).

Imposing
∇aA

a ≡ 0

(9) While it is true that in principle transverse derivatives on I + of solutions to the
wave equation are expressible as integrals along the null generators, this requires the
data to have at least two derivatives in L2

loc(I +), which we do not assume.
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throughout M, the leading order O(Ω−1) in (4.15) implies that in the limit
Ω → 0

(4.16) Â1 ≈ 0.

Writing Â1 = ΩÂ[1]
1 , we then may rewrite (4.15) as

−fÂ[1]
1 + þ̂′Â0 − 2 Re

(
ð̂Â2

)
+ O(Ω) ≡ 0,

which becomes

(4.17) −fÂ[1]
1 + þ̂′Â0 − 2 Re

(
ð̂Â2

)
≈ 0

in the limit Ω → 0. This is nearly the second order gauge reduction that
we seek, with the exception of the term −fÂ[1]

1 . Now the residual gauge
freedom in the physical Lorenz gauge ∇aA

a = 0 is Aa ⇝ Aa + ∇aχres. for
any χres. such that

(4.18) □χres. = 0 on M.

A direct rewriting of this equation in terms of rescaled quantities gives

(4.19) □̂χ̂res. + 1
6
(
R̂ − RΩ−2)χ̂res. = 0,

where χ̂res. = Ω−1χres.. We have the following.

Lemma 4.10. — The equation (4.19) for the residual gauge transfor-
mation χres. is non-singular up to I +, and in fact in our conformal scale
(Proposition 4.6) reads

(4.20) □̂χ̂res. + 2µ̂[1]fχ̂res. = 0

near I +, where µ̂[1] = Ω−1µ̂.

Proof. — The fact that the quantity R̂ − RΩ−2 is non-singular up to
I + may be read off directly from the asymptotic Einstein condition (4.8).
More concretely, a calculation using ∇̂aΩ = fn̂a shows

1
6
(
R̂ − RΩ−2) = ∇̂aΥa − ĝabΥaΥb = 2µ̂D̂ log Ω = 2µ̂[1]f.

On I +, RΩ−2 in fact tends to zero by the asymptotic Einstein condition,
so 2Λ̂ = 1

12 R̂ ≈ µ̂[1]f . Since in our conformal scale the metric on I +

is given by (4.7), one also has Φ̂11 + Λ̂ ≈ 1
2 (this is the statement that

Φ̂11 + Λ̂ is one half of the Gaussian curvature of the unit 2-sphere on
I +, see [55, (9.8.33)]). Altogether therefore µ̂[1]f ≈ 1 − 2Φ̂11 ≈ 2Λ̂. This
also shows that generically µ̂ only vanishes to first order on I +, unless
Φ̂11 ≈ 1

2 ⇐⇒ Λ̂ ≈ 0. □
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Proposition 4.11. — In the physical Lorenz gauge we may perform a
residual gauge transformation near I + to set

Â
[1]
1 ≈ 0.

Proof. — Here we assume(10) that Âa is supported away from i0 and
that Â[1]

1 → 0 at i+ in the conformal scale of Proposition 4.6 (that is, that
the physical component A1 vanishes to second order at i+). By density, we
can therefore assume that Â[1]

1 |I + is compactly supported. Clearly there
is nothing to be done outside of the support of Â[1]

1 |I + . Now in the neigh-
bourhood of I + where ∆̂Ω = 0 = δ̂Ω, a residual gauge transformation
sets

Â1 Â1 + þ̂′(Ωχ̂res.

)
= Ω

(
Â

[1]
1 + þ̂′χ̂res.

)
,

Â0 Â0 + D̂
(
Ωχ̂res.

)
= Â0 + fχ̂res. + ΩD̂χ̂res.,

and
Â2 Â2 + Ωδ̂χ̂res..

This gives

þ̂′Â0 þ̂′Â0 + f þ̂′χ̂res. + χ̂res.þ̂′f + Ωþ̂′D̂χ̂res.,

so that, using (4.13), one sees that (4.16) and (4.17) are residual-gauge-
invariant on I +, and Â[1]

1 is transformed according to Â[1]
1 ⇝ Â

[1]
1 +þ̂′χ̂res..

In Lorenz gauge, we therefore put

(4.21) χ̂+
res.

..= −
∫ u

−∞
Â

[1]
1 du

on I +, which has the effect of setting Â[1]
1 ≈ 0 in the new gauge. It remains

to show that we can solve (4.20) for χ̂res. with this data. Introduce a short
outgoing null hypersurface H which intersects I + in the future of the
support of Â[1]

1 |I + , and prescribe constant-in-v data for χ̂res. on H (the
function on the intersection sphere chosen in such a way that it matches
the values of χ̂+

res. on H ∩ I +). Then χ̂+
res., as defined in (4.21), is H1

c on
the union of H and the part of I + in the past of H, so we may apply
Theorem 3.13 to solve (4.20) for χ̂res. in a neighbourhood of I +. □

Remark 4.12. — By the smoothness of the spacetime, the condition
Â

[1]
1 ≈ 0 implies that Â[1]

1 = O(Ω), and therefore Â1 = O(Ω2) near I +.
In this sense this residual gauge condition is reminiscent of the temporal
gauge near I +.

(10) For a solution arising from smooth compactly supported initial data on Σ, this is
always true; see e.g. [32].
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Imposing this residual gauge condition on I +, we obtain from (4.17)
the second order gauge reduction on I +

(4.22) ∂uÂ0 ≈ 2 Re
(

ð̂Â2
)
.

Finally, we show that the rescaled field equations are non-singular up to
I +. In the physical Lorenz gauge the field equations (2.4) (cf. (3.25)) on
M̂ read

(4.23) □̂Âa − ∇̂a

(
2ΥaÂ

a
)

+ R̂abÂ
b = 0,

so it suffices to show that the quantity ΥaÂ
a is regular near Ω = 0; but

in our conformal scale ΥaÂ
a = fÂ

[1]
1 near I +, which has a continuous (in

fact vanishing) limit on I +. Note also that (4.23) are a system of linear
wave equations in this gauge.

4.5.2. Condition on Σ

On the initial surface Σ, we will need the conditions a = 0 = ∇ · A in
order to define function spaces of initial data for the potential.

Proposition 4.13. — In a neighbourhood of the initial surface Σ we
may perform a residual gauge transformation in the physical Lorenz gauge
to set

a|Σ = 0 = ∇ · A|Σ.

Proof. — Suppose we have a smooth solution Aa in a neighbourhood
of Σ. The residual gauge freedom is (4.19), so that on Σ we may freely
prescribe χres. and ∇Tχres. = 1

N χ̇res.. Performing a residual gauge trans-
formation,

a a + 1
N
χ̇res.,

so we simply set χ̇res.|Σ = −Na|Σ. Also,

∇ · A ∇ · A + ∆χres.,

so for χres. we set
χres.|Σ = ∆−1(−∇ · A|Σ),

with the boundary condition that χres. → 0 at i0 (the existence of such a
χres. is provided by the Lax–Milgram lemma). We then propagate χres. a
short time off Σ according to (4.19) to obtain the gauge near the initial
surface. □
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Altogether, we therefore impose ∇aA
a ≡ 0 throughout M, which directly

leads to the condition Â1 ≈ 0. Using Proposition 4.13, we obtain a χ0
res.

in a neighbourhood O0 of Σ which sets a|Σ = 0 = ∇ · A|Σ, and, using
Proposition 4.11, we obtain a χ̂1

res. in a neighbourhood O1 of I + which
sets Â[1]

1 ≈ 0. In general there is no reason for χ0
res. to be equal to Ωχ̂1

res., so
we interpolate smoothly between the two in the region between O0 and O1.
This procedure will break □χres. = 0 in the interpolation region, and hence
we will no longer satisfy the Lorenz gauge there. Therefore in this region
we will work with the Maxwell field Fab. This will present no difficulties as
we will simply need to solve a regular Cauchy problem a finite time into
the future (or past) here.

i+

I + I +

i0 i0

O0 : Lorenz and a|Σ = 0 = ∇ · A|Σ

O1 : Lorenz and Â
[1]
1 ≈ 0

Σ

Figure 4.1. Construction of the gauge on a generic Corvino–Schoen–
Chruściel–Delay spacetime.

4.6. Energy Estimates and Scattering Data

Theorem 4.14. — For smooth compactly supported Maxwell data on
Σ one has the energy estimate

(4.24) EI + ≃
∫

I +
|F̂ 2|2 d̂vI + ≃

∫
Σ

(
|E|2 + |B|2

)
dvΣ ≃ EΣ.

Proof. — The full details of the proof are given in Appendix A. Recall
that the energies are defined by (3.22). For clarity, we point out that the

TOME 0 (0), FASCICULE 0



52 Jean-Philippe NICOLAS & Grigalius TAUJANSKAS

estimate is performed in three regions separately, a neighbourhood U0 of
i0, a neighbourhood U+ of i+, and an intermediate region U . In U0 we
use the Schwarzschildean Killing vector field ∂t as the multiplier, which
immediately gives the above estimate near i0. In U+ we use the multiplier
−∇̂aΩ; this decomposes into a term proportional to n̂a and a lower-order
term decaying like Ω, which depends on the remaining vectors in the tetrad.
Finally, in U we use a mutiplier which interpolates between the one in U+

and the one in U0. □

4.6.1. Space of initial data

We construct the space of initial data on Σ by working with the physical
potential Aa. We compute, in general, the expressions for the electric and
magnetic fields

Ea = −hb
a∇T Ab − ahb

a∇TTb + ∇aa − Abκ
b

a ,

Ba = ε bc
a ∇bAc,

(4.25)

where εabc is the volume form on Σ. Noting that on Σ we have a|Σ = 0,
this gives

(4.26) Ea|Σ =
(

− hb
a∇T Ab − Abκ

b
a

)∣∣∣
Σ
.

In turn, we find ∫
Σ

|E|2 dvΣ =
∫

Σ

∣∣∇T A − A · κ
∣∣2 dvΣ,

where (A · κ)a = Abκ
b

a , and the squares are with respect to the positive-
definite metric hab on Σ. Next, for A ∈ C∞

c (Σ) we have, using the Coulomb
gauge on Σ, ∫

Σ
|B|2 dvΣ =

∫
Σ

|∇A|2 − RijAiAj dvΣ,

where Rij is the Ricci curvature of (Σ, hab). If the Ricci and extrinsic
curvatures of Σ are bounded, then it is easy to see that for (A,∇T A) ∈
H1(Σ) ⊕ L2(Σ) one has the estimate ∥E∥2

L2(Σ) + ∥B∥2
L2(Σ) ≲ ∥A∥2

H1(Σ) +
∥∇T A∥2

L2(Σ).
We claim that there is a one-to-one correspondence between (E,B) ∈

L2(Σ)2 and (A,∇T A) living in a suitable Hilbert space. Suppose we have
B ∈ L2(Σ) with ∇ · B = 0 in the sense of distributions. By the Poincaré
lemma, we know that there exists A ∈ D′(Σ) such that B = ∇ × A,
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where (∇ × A)i = εi
jk∇jAk. We impose that ∇ · A = 0 in the sense of

distributions. By the above energy identity, we have

∥A∥2
Ḣ1 ⩽ ∥B∥2

L2 +
∫

Σ

∣∣RijAiAj
∣∣ dvΣ .

This may be written, using Hardy’s inequality on Σ ([21, eq. (1.1)]), as

(4.27) ∥A∥2
Ḣ1 ⩽ ∥B∥2

L2 + Cδ∥A∥2
Ḣ1 ,

where
δ ..=

∥∥r2R
∥∥

L∞(Σ).

For δ small enough this implies A ∈ Ḣ1(Σ). That is, we assume that the
Ricci curvature of Σ is sufficiently small on all of Σ,

(4.28) Cδ < 1.

Since in the Schwarzschild sector the Ricci curvature is given by

Ri
j = m

r3

−2
1

1

,
this is automatically satisfied for r ≫ 1, and amounts to a smallness as-
sumption on m if the Schwarzschild sector happens to contain a region of
small r. Now differentiating the expression for B and using the Coulomb
gauge, we find

(4.29) ∆Ak + RkjAj = −(∇ × B)k.

It is clear that ∇ × B ∈ H−1(Σ), but in fact also ∇ × B ∈ Ḣ−1(Σ), where
Ḣ−1(Σ) is the dual space of Ḣ1(Σ). This follows from the fact that C∞

c (Σ)
is dense in Ḣ1(Σ) and integration by parts, as in analysis of equation (3.47).
Similarly, if A ∈ Ḣ1(Σ), then ∆A ∈ Ḣ−1(Σ). Further, since Rk

j on the
Schwarzschild sector decays like ∼ mr−3, then by Hardy’s inequality as
before, we have RkjAj ∈ Ḣ−1(Σ). The operator (PA)k

..= −∆Ak −RkjAj

therefore maps Ḣ1(Σ) → Ḣ−1(Σ), and is continuous, elliptic, formally self-
adjoint and coercive (as a consequence of (4.28)),

D(A,A) ⩾ (1 − Cδ)∥A∥2
Ḣ1(Σ),

where
D(U,V) ..=

∫
Σ

Uk(PV)k dvΣ .

To get uniqueness of A, it remains to investigate the kernel of the curl
operator. We claim that on Ḣ1(Σ) this is equal to the kernel of P, which in
turn is trivial on Ḣ1(Σ) under the assumption (4.28). Indeed, ker P consists
of those potentials A ∈ Ḣ1(Σ) for which ∇ × B = 0, i.e. by the Poincaré
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lemma B = ∇ϕ for some ϕ ∈ Ḣ1(Σ) (precisely because B ∈ L2(Σ)). But
one also has ∇ · B = 0, which together imply ∆ϕ = 0. Since ϕ ∈ Ḣ1(Σ), it
can be approached by ϕn ∈ C∞

c (Σ) in Ḣ1(Σ), so, as ∆ϕ ∈ Ḣ−1(Σ),

0 = −
∫

Σ
ϕn∆ϕ dvΣ =

∫
Σ

∇ϕn · ∇ϕdvΣ −→ ∥ϕ∥2
Ḣ1(Σ).

Hence ∇ϕ = B = 0. Then, for B = 0, A = 0 follows from the coercivity of
P. We therefore define

(4.30) Ḣ1
C(Σ)curl

..=
{

A(0) ∈ Ḣ1(Σ) : ∇ · A(0) = 0, ε jk
i ∇jA(0)

k ∈ L2(Σ)
}
.

The equation (4.29) therefore has a unique solution in Ḣ1
C(Σ)curl, which we

write as A(0) = P−1(−∇×B). Note that, by construction, C∞
c (Σ) is dense

in Ḣ1
C(Σ)curl because C∞

c (Σ) is dense in L2(Σ), and the choice of norm on
Ḣ1

C(Σ)curl is precisely the norm on B.

Remark 4.15. — For unrestricted δ, due to the lack of positivity of the
spacelike Ricci curvature and the fact that Σ is unbounded, we expect the
precise control of the kernel of P to be a very delicate question.

Given A(0) ∈ Ḣ1
C(Σ)curl and E ∈ L2(Σ), we then reconstruct the time

derivative component of the initial data from (4.26),

A(1)
a

..= −hb
a∇T Ab = Ea +

(
A(0) · κ

)
a
.

Since E ∈ L2(Σ), A(0) ∈ L2
loc(Σ) and κ ∈ Ck(Σ), we have A(1) ∈ L2

loc(Σ).
Moreover, since κ vanishes in the Schwarzschild sector, in fact the L2 norm
of A(1) is controlled by the L2 norm of E plus a constant, i.e. A(1) ∈ L2(Σ).
We therefore have a bijection

Int : L2(Σ) ⊕ L2(Σ) −→ Ḣ1
C(Σ)curl ⊕ L2(Σ)

(B,E) 7−→
(
A(0),A(1)) =

(
P−1(−∇ × B)), E + A(0) · κ

)
.

Our space of initial data for the components (A, Ȧ) is therefore Ḣ1
C(Σ)curl⊕

L2(Σ), the elements of which, by construction, are in 1-to-1 correspondence
with pairs of fields (E,B) ∈ L2(Σ)2.

For completeness, we also observe how to prescribe data for the compo-
nent a. Our gauge implies that

(4.31) (a,∇T a)|Σ =
(
0, A(0) · ∇ logN

)
.

Certainly (a,∇T a) ∈ C∞
c (Σ) ⊕ L2

loc(Σ). In the Schwarzschild sector in fact
logN = 1

2 log(1 − 2mr−1), so A(0) · ∇ logN ∼ 1
r A(0)

r , so ∇T a decays one
order faster than A(0), i.e. ∇T a ∈ L2(Σ) by Hardy.
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4.6.2. Space of scattering data

As in Section 3.4, the condition (4.16) also implies ðÂ1 ≈ 0, and by
Proposition 4.6, the expression (2.8) for F̂ 2 on I + reduces to

F̂ 2 ≈ −∂uÂ2.

Hence

(4.32)
∫

I +
|F̂ 2|2 d̂vI + =

∫
I +

∣∣∂uÂ2
∣∣2 du ∧ dvS2 .

Suppose we have F̂ 2 ∈ C∞(I +) supported away from i0. We then put

Â+
2

..= −
∫ u

−∞
F̂ 2 du ∈ C∞(I +),

which remains supported away from i0. Using the construction in Sec-
tion 4.5.1, we then define

Â+
1 ≡ 0

and
Â+

0
..=
∫ u

−∞
2 Re

(
ð̂Â

+
2

)
du ∈ C∞(I +).

We then define the space Ḣ1(I +) ≃ Ḣ1(Ru;L2(S2)) of scattering data
by completing (Â+

0 , Â
+
1 , Â

+
2 ) ∈ C∞(I +) × C∞

c (I +) × C∞
c (I +) in the

norm (4.32), as in Definition 3.8.

4.7. Trace and Scattering Operators

4.7.1. The forward Cauchy problem

Suppose we are given (A(0),A(1)) ∈ C∞
c (Σ)2 ∩ (Ḣ1

C(Σ)curl ⊕L2(Σ)) such
that ∇ · A(0) = 0. We obtain (a,∇T a) ∈ C∞

c (Σ)2 using (4.31), and then re-
construct the initial fields on Σ using (4.25). We therefore obtain a smooth
compactly supported F̂ ab|Σ, which we propagate in M̂ as we did in Theo-
rem 3.4 (see [45, Lemma 2.4]). We thus obtain a smooth F̂ ab on I + which,
by finite speed of propagation, is supported away from i0, and which satis-
fies the estimate (4.24). On I +, we reconstruct the potential as described
in Section 4.6.2. We therefore obtain a linear operator

T+ : C∞
c (Σ)2 ∩

(
Ḣ1

C(Σ)curl ⊕ L2(Σ)
)

−→ Ḣ1(I +)(
A0,A(1)) 7−→

(
Â+

0 , Â
+
1 , Â

+
2

)
,
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where (
Â+

0 , Â
+
1 , Â

+
2

)
=
(∫ u

−∞
2 Re

(
ð̂Â

+
2

)
du, 0, Â+

2

)
.

This extends by density to a bounded linear operator

(4.33) T+ : Ḣ1
C(Σ)curl ⊕ L2(Σ) −→ Ḣ1(I +).

4.7.2. The Goursat problem

To show that the operator (4.33) is invertible, it now remains to show
that we can solve the Goursat problem from data in a dense subspace
of Ḣ1(I +), and that the solution gives rise to a unique (A(0),A(1)) ∈
Ḣ1

C(Σ)curl ⊕ L2(Σ). We have the following.

Theorem 4.16. — For every triplet(
Â+

0 , Â
+
1 , Â

+
2

)
=
(∫ u

−∞
2 Re

(
ð̂Â

+
2

)
du, 0, Â+

2

)
∈ C∞(I +)× C∞

c

(
I +)× C∞

c

(
I +)

with Â+
0 supported away from i0 there exists a unique solution

Âa ∈ C0(t(M); H1(Σt)
)

∩ C1(t(M); L2(Σt)
)

to (4.23) which in particular satisfies (A(0),A(1)) ∈ Ḣ1
C(Σ)curl ⊕ L2(Σ).

Proof. — We proceed as in Section 3.4.3. Suppose we are given data
(Â+

0 , Â
+
1 , Â

+
2 ) as above. Working first in the neighbourhood of I + in which

our gauge holds, and subsequently working with the field, we solve the
Goursat problem in two steps. Introduce a short outgoing null hypersurface
H which intersects I + in the future of the support of Â+

2 , as shown in
Figure 3.3. In the future of H, the data for Â1 and Â2 is identically zero,
whereas the data for Â0 is a constant, say Â0 ≈ C0. Therefore the field
F̂ ab there has identically zero data on I +, F̂+

0 = F̂+
1 = F̂+

2 = 0. Briefly
changing conformal scale in O+ to bring i+ to a finite distance, we may solve
a wave equation for F̂ ab in O+, the solution to which, by the uniqueness
part of Theorem 3.13, must be F̂ ab ≡ 0. Change conformal scale back to
that of Proposition 4.6. We therefore have that in O+ the potential is pure
gauge, F̂ ab ≡ 0 =⇒ Âa = ∇̂aχ, where we use the Poincaré Lemma to
obtain the existence of such a χ ∈ H2

loc(O+). A priori χ is not unique, but
we recall that our solution satisfies the gauge constructed in (4.5.1). This
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imposes the conditions □χ = 0, þ̂′(Ω−1χ) ≈ 0, and ∆S2χ ≈ 0. We have
already seen that the equation □χ = 0 is equivalent to

□̂χ̂+ 2µ̂[1]fχ̂ = 0,

where χ̂ = Ω−1χ, so to obtain uniqueness we need only fix the data for χ̂
on I + ∩ O+. We compute

þ̂(Ω−1χ) = −fΩ−1χ̂+ Ω−1þ̂χ,

which, noting that þ̂χ ≈ C0, implies that we should have

χ̂ ≈ C0

f
,

and so this fixes χ in O+.
By restriction to H of þ̂χ, þ̂′χ and ð̂χ, we therefore obtain H1

c data for
Â0, Â1 and Â2 on H. Since the full data is now H1

c (H ∪ (I + ∩ O−)),
we may apply Theorem 3.13 from H ∪ (I + ∩ O−) to solve (4.23) in the
region O−. We thus obtain a solution Âa to (4.23) in the neighbourhood
O+ ∪ O− ⊂ O1 of I + which has the regularity

Âa ∈ C0(t(M);H1(Σt)
)

∩ C1(t(M);L2(Σt)
)
.

On a slice Σt′ , t′ < ∞, contained in O+ ∪O−, we now reconstruct the phy-
sical field Fab|Σt′ ∈ L2

c(Σt′) from Âa = Aa and propagate Fab backwards in
time to Σ. We thus obtain (E,B) ∈ L2

c(Σ)2 on Σ, and, using the operator
Int constructed in Section 4.6.1, we obtain(

A(0),A(1))= Int(E,B) ∈ Ḣ1
C(Σ)curl ⊕ L2(Σ). □

Corollary 4.17. — The trace operator T+ defined in (4.33) is invert-
ible, and maps (

T+)−1 : Ḣ1(I +) −→ Ḣ1
C(Σ)curl ⊕ L2(Σ).

Proof. — This follows from Theorem 4.16 and the discussion in Re-
mark 3.12. □

We may perform the same construction towards past null infinity, and it
then follows immediately that the composition T+ ◦ (T−)−1 is an isomor-
phism. We conclude with a definition as in the case of Minkowski space.

Definition 4.18 (Scattering operator on CSCD spacetimes). — We de-
fine the scattering operator for Maxwell potentials on M to be the isomor-
phism of Hilbert spaces

S ..= T+ ◦ (T−)−1 : Ḣ1(I −) −→ Ḣ1(I +)(
Â−

0 , Â
−
1 , Â

−
2

)
7−→

(
Â+

0 , Â
+
1 , Â

+
2

)
,
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where Â+
1 ≡ 0 ≡ Â−

0 , and

Â+
0 =

∫ u

−∞
2 Re

(
ð̂Â

+
2
)

du and Â−
1 =

∫ v

−∞
2 Re

(
ð̂Â

−
2
)

dv.
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Appendix A. Proof of Energy Estimates for Maxwell
Fields

In this section we prove the energy estimate (4.24). For convenience, here
we shall use spinor notation. A real Maxwell field Fab can be decomposed
into its self-dual and anti self-dual parts that are complex conjugates of
one another,

Fab = ϕABεA′B′ + ϕA′B′εAB ,

with ϕAB = ϕ(AB); εAB and its complex conjugate εA′B′ are the Levi-Civita
symbols, the symplectic forms on the left- and right-handed spin bundles
SA and SA′ , such that gab = εABεA′B′ . Under a conformal rescaling ĝab =
Ω2gab, ϕAB transforms as ϕ̂AB = Ω−1ϕAB and the Levi-Civita symbol as
ε̂AB = ΩεAB. The Maxwell field is then invariant under conformal rescalings
and we have F̂ ab = Fab = ϕ̂ABε̂A′B′ + ε̂ABϕ̂A′B′ . In a normalized spin frame
{ôA, ι̂A} the components of ϕ̂AB correspond exactly to the components of
F̂ ab, ϕ̂i = F̂ i, i = 0, 1, 2, where

ϕ̂0 = ϕ̂AB ô
A ôB , ϕ̂1 = ϕ̂AB ô

A ι̂B , and ϕ̂2 = ϕ̂AB ι̂
A ι̂B .

Maxwell’s equations reduce to equations on the self-dual part ϕAB that are
conformally invariant. On the compactified spacetime and for the rescaled
self-dual Maxwell spinor, they have the following form

(A.1) ∇̂AA′
ϕ̂AB = 0.

The natural stress-energy tensor (2.5) has a very simple expression in terms
of the spinors ϕ̂AB and ϕ̂A′B′ , given by

(A.2) T̂ab = ϕ̂ABϕ̂A′B′ .
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The tensor T̂ab is symmetric, conserved on-shell, and conformally covariant
with weight −2. Let Σ = Σ0 be the {t = 0} slice in our asymptotically null
foliation {Σt} of M. We denote by M+ the future of Σ in M and by M̂+

its closure in M̂. Let τa be an observer (a timelike future-oriented vector
field) on M+ that aligns on I + with its null generator. Defining the energy
current

(A.3) Ĵa
..= τ bT̂ab,

we have, for ϕ̂AB a solution to (A.1), the approximate conservation law

(A.4) ∇̂aĴa = ∇̂a
(
τ bϕ̂ABϕ̂A′B′

)
= ∇̂(aτ b)ϕ̂ABϕ̂A′B′ .

The energy of the field on a given spacelike hypersurface S is simply the L2-
norm of ϕ̂AB on S, with measure induced by ĝab, and a weight associated
to our choice of observer τa. More precisely,

(A.5) ES [ϕ̂] =
∫

S
Ĵaν

a
(
v ⌟ d̂v

)
,

where d̂v is the 4-volume measure associated to ĝab, νa is a normal vector
field to S compatible with the orientation of S (i.e., future-pointing), and
va is a vector field transverse to S such that νavbĝab = 1. Since the stress-
energy tensor has conformal weight −2, τa has weight 0, νa and va can be
chosen to have weight −1 and d̂v has weight 4, it follows that the energy
flux (A.5) is conformally invariant, i.e. conformally covariant with weight 0
(see also (3.22)).

For the purpose of proving the estimate (4.24), we decompose M+ into
three distinct regions:

(1) a neighbourhood U0 of i0,

U0 = {u ⩽ u0} for a given u0 ≪ −1 ;

(2) a neighbourhood U+ of i+,

U+ = {τ ⩾ τ0} for a given τ0 ≫ 1,

where τ is the parameter of the foliation transverse to I + shown
in Figure 2.3;

(3) an intermediate region U ..= M+ \ (U0 ∪ U+).
We obtain energy estimates in each region separately. Since the energy
flux (A.5) is conformally invariant, we may work with different conformal
factors in the different regions. However, we must choose our observer τa

so that it is continuous and in fact smooth on M̂+.

TOME 0 (0), FASCICULE 0



60 Jean-Philippe NICOLAS & Grigalius TAUJANSKAS

In the region U0, we work with the conformal factor Ω = 1/r which pre-
serves the timelike Killing vector Ka∂a = ∂t = ∂u on the Schwarzschildean
neighbourhood of i0. Here we choose Ka for our observer,

τa∂a = ∂u .

This gives immediate energy identities in the region U0.
In the regions U+ and U , we make use of special features of I + and

choose a conformal factor Ω such that:
(i) i+ is a finite regular point of the compactified spacetime (M̂+, ĝab);
(ii) R̂ab = 0 at i+;
(iii) R̂ and n̂aR̂ab vanish on I +, where n̂a is the null generator of I +;
(iv) −∇̂aΩ is timelike and future-oriented in U+ \ I + and null and

future-oriented on U+ ∩ I +.
The existence of such a conformal factor was established in [45, Lemma A.1].
We work with a normalized spin frame {ôA, ι̂A} and a Newman–Penrose
tetrad

(
l̂a = ôAô

A′

, m̂a = ôAι̂
A′

, m̂
a = ô

A′

ι̂A, n̂a = ι̂Aι̂
A′)

on M+ such
that l̂a and n̂a are real and future-oriented, smooth on M+ \ i+, bounded
and non-vanishing at i+, and n̂a is the null generator of I +. We assume
in addition that the vector field l̂a + n̂a is hypersurface orthogonal. This is
not a critical assumption; it may be easily removed if desired, but it turns
out to simplify the following estimates.

A.1. Energy estimates in U+

In this region we put τa ..= −∇̂aΩ. This has the following decomposition
along our null tetrad,

−∇̂aΩ = c1n̂
a + Ω

(
c0 l̂

a + c2m̂
a + c2m̂

a
)
,

where c0 c1 and c2 are smooth on M+, c0 and c1 are real and positive on
M̂+ \ i+ and c0 vanishes at i+. Here one might be tempted to work with
the foliation by the level hypersurfaces of Ω. The energy density on these
slices is given by the quadratic form

T̂ab∇̂aΩ∇̂bΩ = c2
1|ϕ̂2|2 + O(Ω) .

This is a natural foliation to choose as in the limit Ω → 0 it accumulates
on I +; indeed, this is the foliation that was used in [45]. However, this also
means that the energy on the slices degenerates as Ω → 0, and therefore in
order to estimate the error term by the energy one needs to split the bulk
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integral of the error term and extract additional decay near I + from the
3+1 splitting of the 4-volume form. It is much simpler to choose a foliation
transverse to I + whose normal vector field is given by

νa = 1√
2
(
l̂a + n̂a

)
.

For this choice, the energy density becomes

(A.6) T̂abτ
aνb = 1√

2

(
c1|ϕ̂2|2 + c1|ϕ̂1|2

)
+ O(Ω) .

The advantage of such a foliation is that it does not degenerate near I +,
and the associated 3 + 1 splitting of the 4-volume form does not induce
any additional decay. It is therefore enough to show directly that the bulk
error term is controlled by (A.6).

The Killing form of τa is

∇̂(aτb) = −∇̂(a∇̂b)Ω = −∇̂a∇̂bΩ,

and its behaviour can be understood using the conformal transformation
law of the trace-free part of the Ricci tensor Φab, and the asymptotic Ein-
stein condition (4.8). We first note that it splits into two parts,

∇̂aτb = ∇̂(aτb) = −∇̂[A′|[A∇̂B]|B′]Ω − ∇̂(A′|(A∇̂B)|B′)Ω

= −1
4(□̂Ω)ĝab − ∇̂A′(A∇̂B)B′Ω .

The first part will not appear in the divergence of the energy current.
Indeed, due to the symmetry of ϕ̂AB, (A.4), we have

ĝabϕ̂ABϕ̂A′B′ = εABϕ̂ABε
A′B′

ϕ̂A′B′ = 0 .

Therefore (A.4) becomes

∇̂aĴa = −
(

∇̂A′(A∇̂B)B′
Ω
)
ϕ̂ABϕ̂A′B′ .

The conformal transformation law for Φab is given by

Φab = Φ̂ab + Ω−1∇̂A′(A∇̂B)B′Ω,

so, recalling the assumptions that Φab = O(Ω2) and that Φ̂ab is smooth
at I + ∪ i+, we infer that the asymptotic Einstein condition (4.8) may be
rewritten as

(A.7) −∇̂A′(A∇̂B)B′Ω = ΩΦ̂ab − ΩΦab = ΩΦ̂ab + O
(
Ω3) .
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Decomposing Φ̂ab and ϕ̂AB along the spin frame {ôA, ι̂A}, we can express
the leading order part of the error term as follows (omitting the factor of Ω
for the moment),

Φ̂abT̂ab = Φ̂abϕ̂ABϕ̂A′B′

= Φ̂00|ϕ̂0|2 + 4Φ̂11|ϕ̂1|2 + Φ̂22|ϕ̂2|2 − 4 Re
(

Φ̂01ϕ̂0ϕ̂1

)
− 4 Re

(
Φ̂12ϕ̂1ϕ̂2

)
+ 2 Re

(
Φ̂02ϕ̂0ϕ̂2

)
.

We now recall that our conformal factor Ω was such that (i) Φ̂ab and R̂
vanish at i+, and (ii) n̂aΦ̂ab and R̂ vanish on I +. We have

n̂aΦ̂ab = Φ̂11n̂b − Φ̂21m̂b − Φ̂21m̂b + Φ̂22 l̂b ,

so Φ̂11, Φ̂21 and Φ̂22 vanish on I + and are therefore such that

Φ̂[1]
11

..= Ω−1Φ̂11, Φ̂[1]
21

..= Ω−1Φ̂21 and Φ̂[1]
22

..= Ω−1Φ̂22

are smooth at I +. Hence, we can decompose the divergence of the energy
current into terms that are of order O(Ω), O(Ω2), and higher:

∇̂aĴa = Ω
(

Φ̂00|ϕ̂0|2 − 4 Re
(
Φ̂01ϕ̂0ϕ̂1

)
+ 2 Re

(
Φ̂02ϕ̂0ϕ̂2

))
+ Ω2

(
4Φ̂[1]

11 |ϕ̂1|2 + Φ̂[1]
22 |ϕ̂2|2 − 4 Re

(
Φ̂[1]

12 ϕ̂1ϕ̂2
))

+ O
(
Ω3).

This error term is easily controlled by the energy density (A.6). We can
therefore obtain energy estimates in both directions on U+ using Grönwall’s
Lemma. This is done as follows. We start from the energy identity

(A.8) EI +
τ0

− EΣτ0
=
∫

U+
∇̂aĴa d̂v,

where I +
τ0

is the part of I + in the future of Στ0
.

Forward-in-time estimate

Assuming that the parameter τ of the foliation {Στ }τ of M+ ranges from
0 to T , we introduce the hypersurfaces Sτ , τ0 ⩽ τ ⩽ T , in M+ that are the
union of Στ and the part of I + in the past of Στ and in the future of Στ0

.
Then (A.8) can be rewritten as follows,

EST
= ESτ0

+
∫

U+
∇̂aĴa d̂v
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from which we infer an estimate using the control of the error terms by the
energy density obtained above:

EST
⩽ ESτ0

+
∫ T

τ0

ESτ dτ

We also have the intermediate inequalities

ESτ
− ESτ0

⩽
∫ τ

τ0

ESσ
dσ .

Hence by Grönwall’s inequality, we obtain,

EI +
τ0
≲ EΣτ0

.

Converse estimate

In this direction, we simply use the foliation {Στ }τ . From (A.8) and the
control of the error terms, we have∣∣∣EI +

τ0
− EΣτ0

∣∣∣ ⩽ ∫ T

τ0

EΣτ
dτ ,

whence
EΣτ0

⩽ EI +
τ0

+
∫ T

τ0

EΣτ
dτ .

We also have the intermediate estimates for τ0 ⩽ τ ⩽ T

EΣτ ⩽ EI +
τ0

+
∫ T

τ

EΣσ dσ .

Grönwall’s estimate therefore gives

EΣτ0
≲ EI +

τ0
.

A.2. Energy estimates in U

On U , we choose our observer τa to be

τa = d1n̂
a + Ω

(
d0 l̂

a + d2m̂
a + d2 m̂

a
)

where d0, d1 and d2 are smooth functions on U that agree with c0, c1 and
c2 at the intersection with U+, are such that τa∂a = ∂u on U ∩ U0 and d0
and d1 are positive on U . As we did on U+, we choose a foliation transverse
to I + whose normal vector field is given by

νa = 1√
2
(
l̂a + n̂a

)
.
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The associated energy density on the slices is then

(A.9) Ĵaν
a = T̂abτ

aνb = 1√
2
(
d1|ϕ̂2|2 + d1|ϕ̂1|2

)
+ O(Ω).

The error term has the form

∇̂(aτ b)T̂ab = ∇̂(a
(

Ω
(
d0 l̂

b) + d2m̂
b) + d2 m̂

b))+ d1n̂
b)
)

T̂ab

= Ω∇̂a
(
d0 l̂

b + d2m̂
b + d2 m̂

b
)

T̂ab︸ ︷︷ ︸
I

+
(

∇̂aΩ
)(
d0 l̂

b + d2m̂
b + d2 m̂

b
)

T̂ab︸ ︷︷ ︸
II

+
(

∇̂(ad1)n̂b)T̂ab︸ ︷︷ ︸
III

+ d1∇̂(an̂b)
)

T̂ab︸ ︷︷ ︸
IV

.

In order to establish that the error terms are controlled by the energy
density on the slices, it is enough to simply show that no error term without
a factor Ω involves either ϕ̂0 or ϕ̂0. The term I is a quadratic form with
bounded coefficients and an overall factor of Ω, so it is controlled by the
energy density (A.9). To estimate II, we decompose the gradient of Ω along
our Newman–Penrose tetrad,

∇̂aΩ = e1n̂
a + Ω

(
e1 l̂

a + e2m̂
a + e2m̂

a
)
.

Since the only term in ∇̂aΩ that does not have a factor of Ω involves
the tetrad vector n̂a, the terms from II without a factor Ω also do not
contain ϕ̂0. Therefore, II is controlled by the energy density. The term III
involves only |ϕ̂1|2 and |ϕ̂2|2 with bounded coefficients and is therefore also
controlled by (A.9). The fourth term requires the most care. We decompose
∇̂an̂b along our NP tetrad,

(A.10) ∇̂an̂b = l̂a∆̂n̂b + n̂aD̂n̂b − m̂aδ̂n̂b − m̂
a
δ̂n̂b,

and note the following transport equations along the NP tetrad for n̂a ([54,
(4.5.28)]):

D̂n̂b = −(ε̂+ ε̂)n̂b + π̂m̂b + π̂ m̂
b
,(A.11)

δ̂n̂b = −(β̂ + α̂)n̂b + µ̂m̂b + λ̂ m̂
b
,(A.12)

δ̂n̂b = −(α̂+ β̂)n̂b + λ̂m̂b + µ̂ m̂
b
,(A.13)

∆̂n̂b = −(γ̂ + γ̂)n̂b + ν̂m̂b + ν̂ m̂
b
.(A.14)
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The right-hand side of (A.10) therefore involves no l̂a l̂b term, so |ϕ̂0|2 does
not appear in term IV. However, any term involving l̂am̂b or l̂am̂b will
produce a product involving either ϕ̂0 or ϕ̂0, and these terms must contain
a factor of Ω in order to be controlled by the energy density. We therefore
need to take a closer look at the contributions of the first, third and fourth
terms in (A.10). The potentially dangerous terms are those involving λ̂

in (A.12), λ̂ in (A.13), and ν̂ and ν̂ in (A.14). But both λ̂ and ν̂ vanish on
I +, λ̂ ≈ 0 ≈ ν̂, as a consequence of the asymptotic Einstein condition (4.8)
(see (4.10), (4.11)); indeed, the vanishing of the spin coefficients ν̂ and λ̂ on
I + simply restates the fact that I + is geodetic and shear-free. Therefore
these spin coefficients decay like O(Ω) towards I +, and it follows that the
error term is controlled by the energy density on the slices. Then energy
estimates on U can be obtained by means of Grönwall’s estimates in much
the same way as on U+.
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