[Inégalités de Morse pour les points translatés des fibrés tangents unitaires]
In this article, we study conjectures of Sandon on the minimal number of translated points of contactomorphisms in the special case of the unit tangent bundle of a Riemannian manifold. We restrict ourselves to contactomorphisms of a unit tangent bundle that lift diffeomorphisms of the base homotopic to the identity. We prove that there exist sequences where is a translated point of time-shift with for a large class of manifolds. In the case of Zoll–Riemannian manifolds, we also prove estimates relating the number of translated points to either the sum of the Betti numbers of the bundle under a generic assumption or its cuplength under a -closedness assumption.
Dans cet article, nous étudions des conjectures de Sandon concernant le nombre minimal de points translatés dans le cas particulier du fibré tangent unitaire d’une variété riemannienne. Nous restreignons aux contactomorphismes du fibré tangent unitaire relevant les difféomorphismes de la base homotopes à l’identité. Nous montrons qu’il existe des suites où est un point translaté de temps de décalage avec pour une grande classe de variétés. Dans le cas des variétés riemanniennes–Zoll, nous montrons aussi des inégalités entre le nombre de points translatés et la somme des nombres de Betti du fibré sous une hypothèse générique ou la cuplength sous une hypothèse de proximité .
Révisé le :
Accepté le :
Première publication :
Keywords: Arnold conjecture, Chas–Sullivan product, geodesics, Lusternik–Schnirelmann theory, Morse theory, translated points of contactomorphisms, unit tangent bundles, Zoll metrics
Mots-clés : Conjecture d’Arnold, produit de Chas–Sullivan, géodésiques, théorie de Lusternik–Schnirelmann, théorie de Morse, points translatés de contactomorphismes, fibrés unitaires tangents, métriques de Zoll
Allais, Simon 1
@unpublished{AIF_0__0_0_A20_0, author = {Allais, Simon}, title = {Morse estimates for translated points on unit tangent bundles}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3732}, language = {en}, note = {Online first}, }
Allais, Simon. Morse estimates for translated points on unit tangent bundles. Annales de l'Institut Fourier, Online first, 20 p.
[1] On the local systolic optimality of Zoll contact forms, Geom. Funct. Anal., Volume 33 (2023) no. 2, pp. 299-363 | DOI | Zbl | MR
[2] Orderability and the Weinstein conjecture, Compos. Math., Volume 151 (2015) no. 12, pp. 2251-2272 | DOI | Zbl | MR
[3] On the minimal number of translated points in contact lens spaces, Proc. Am. Math. Soc., Volume 150 (2022) no. 6, pp. 2685-2693 | DOI | Zbl | MR
[4] Non-closed isometry-invariant geodesics, Arch. Math., Volume 106 (2016) no. 6, pp. 573-580 | DOI | Zbl
[5] Quelques exemples de variétés Riemanniennes où toutes les géodésiques issues d’un point sont fermées et de même longueur, suivis de quelques résultats sur leur topologie, Ann. Inst. Fourier, Volume 27 (1977) no. 1, pp. 231-249 | DOI | Zbl | MR | Numdam
[6] Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93, Springer, 1978 (With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan) | Zbl | DOI
[7] On manifolds all of whose geodesics are closed, Ann. Math. (2), Volume 60 (1954), pp. 375-382 | DOI | Zbl
[8] Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, 6, Birkhäuser, 1993 | Zbl | DOI | MR | Numdam
[9] Closed string operators in topology leading to Lie bialgebras and higher string algebra, The legacy of Niels Henrik Abel, Springer, 2004, pp. 771-784 | Zbl | DOI
[10] On the spectral characterization of Besse and Zoll Reeb flows, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 38 (2021) no. 3, pp. 549-576 | DOI | Zbl | Numdam
[11] Loop products and closed geodesics, Duke Math. J., Volume 150 (2009) no. 1, pp. 117-209 | DOI | Zbl | MR
[12] Givental’s non-linear Maslov index on lens spaces, Int. Math. Res. Not., Volume 2021 (2021) no. 23, pp. 18225-18299 | DOI | Zbl | MR
[13] Condition for the energy integral on certain path spaces and applications to the theory of geodesics, J. Differ. Geom., Volume 8 (1973), pp. 207-223 | DOI | Zbl | MR
[14] On the number of invariant closed geodesics, Acta Math., Volume 140 (1978) no. 1-2, pp. 33-48 | DOI | Zbl | MR
[15] Isometry-invariant geodesics and the fundamental group. II, Adv. Math., Volume 308 (2017), pp. 671-698 | DOI | Zbl
[16] On the multiplicity of isometry-invariant geodesics on product manifolds, Algebr. Geom. Topol., Volume 14 (2014) no. 1, pp. 135-156 | DOI | Zbl
[17] Isometry-invariant geodesics and the fundamental group, Math. Ann., Volume 362 (2015) no. 1-2, pp. 265-280 | DOI | Zbl
[18] A min-max characterization of Zoll Riemannian metrics, Math. Proc. Camb. Philos. Soc., Volume 172 (2022) no. 3, pp. 591-615 | DOI | Zbl
[19] Translated points on hypertight contact manifolds, J. Topol. Anal., Volume 10 (2018) no. 2, pp. 289-322 | DOI | Zbl | MR
[20] Morse theory, Annals of Mathematics Studies, 51, Princeton University Press, 1963 (based on lecture notes by M. Spivak and R. Wells) | DOI | Zbl
[21] Lectures on the -cobordism theorem. Notes by L. Siebenmann and J. Sondow, Mathematical Notes (Princeton), Princeton University Press, 1965 | Zbl | DOI | MR
[22] Geodesic flows, Progress in Mathematics, 180, Birkhäuser, 1999 | Zbl | DOI
[23] On manifolds with many closed geodesics, Port. Math., Volume 22 (1963), pp. 193-196 | Zbl | MR
[24] A Morse estimate for translated points of contactomorphisms of spheres and projective spaces, Geom. Dedicata, Volume 165 (2013), pp. 95-110 | DOI | Zbl | MR
[25] The homology theory of the closed geodesic problem, J. Differ. Geom., Volume 11 (1976) no. 4, pp. 633-644 | DOI | Zbl | MR
Cité par Sources :