Morse estimates for translated points on unit tangent bundles
[Inégalités de Morse pour les points translatés des fibrés tangents unitaires]
Annales de l'Institut Fourier, Online first, 20 p.

In this article, we study conjectures of Sandon on the minimal number of translated points of contactomorphisms in the special case of the unit tangent bundle of a Riemannian manifold. We restrict ourselves to contactomorphisms of a unit tangent bundle that lift diffeomorphisms of the base homotopic to the identity. We prove that there exist sequences (p n ,t n ) where p n is a translated point of time-shift t n with t n + for a large class of manifolds. In the case of Zoll–Riemannian manifolds, we also prove estimates relating the number of translated points to either the sum of the Betti numbers of the bundle under a generic assumption or its cuplength under a C 0 -closedness assumption.

Dans cet article, nous étudions des conjectures de Sandon concernant le nombre minimal de points translatés dans le cas particulier du fibré tangent unitaire d’une variété riemannienne. Nous restreignons aux contactomorphismes du fibré tangent unitaire relevant les difféomorphismes de la base homotopes à l’identité. Nous montrons qu’il existe des suites (p n ,t n )p n est un point translaté de temps de décalage t n avec t n + pour une grande classe de variétés. Dans le cas des variétés riemanniennes–Zoll, nous montrons aussi des inégalités entre le nombre de points translatés et la somme des nombres de Betti du fibré sous une hypothèse générique ou la cuplength sous une hypothèse de proximité C 0 .

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3732
Classification : 53C22, 53D25, 57R17, 58E10
Keywords: Arnold conjecture, Chas–Sullivan product, geodesics, Lusternik–Schnirelmann theory, Morse theory, translated points of contactomorphisms, unit tangent bundles, Zoll metrics
Mots-clés : Conjecture d’Arnold, produit de Chas–Sullivan, géodésiques, théorie de Lusternik–Schnirelmann, théorie de Morse, points translatés de contactomorphismes, fibrés unitaires tangents, métriques de Zoll

Allais, Simon 1

1 IRMA, Université de Strasbourg, 7 rue Rene Descartes, 67084 Strasbourg (France)
@unpublished{AIF_0__0_0_A20_0,
     author = {Allais, Simon},
     title = {Morse estimates for translated points on unit tangent bundles},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3732},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Allais, Simon
TI  - Morse estimates for translated points on unit tangent bundles
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3732
LA  - en
ID  - AIF_0__0_0_A20_0
ER  - 
%0 Unpublished Work
%A Allais, Simon
%T Morse estimates for translated points on unit tangent bundles
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3732
%G en
%F AIF_0__0_0_A20_0
Allais, Simon. Morse estimates for translated points on unit tangent bundles. Annales de l'Institut Fourier, Online first, 20 p.

[1] Abbondandolo, Alberto; Benedetti, Gabriele On the local systolic optimality of Zoll contact forms, Geom. Funct. Anal., Volume 33 (2023) no. 2, pp. 299-363 | DOI | Zbl | MR

[2] Albers, Peter; Fuchs, Urs; Merry, Will J. Orderability and the Weinstein conjecture, Compos. Math., Volume 151 (2015) no. 12, pp. 2251-2272 | DOI | Zbl | MR

[3] Allais, Simon On the minimal number of translated points in contact lens spaces, Proc. Am. Math. Soc., Volume 150 (2022) no. 6, pp. 2685-2693 | DOI | Zbl | MR

[4] Bangert, Victor Non-closed isometry-invariant geodesics, Arch. Math., Volume 106 (2016) no. 6, pp. 573-580 | DOI | Zbl

[5] Bérard-Bergery, Lionel Quelques exemples de variétés Riemanniennes où toutes les géodésiques issues d’un point sont fermées et de même longueur, suivis de quelques résultats sur leur topologie, Ann. Inst. Fourier, Volume 27 (1977) no. 1, pp. 231-249 | DOI | Zbl | MR | Numdam

[6] Besse, Arthur L. Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93, Springer, 1978 (With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan) | Zbl | DOI

[7] Bott, Raoul On manifolds all of whose geodesics are closed, Ann. Math. (2), Volume 60 (1954), pp. 375-382 | DOI | Zbl

[8] Chang, Kung-Ching Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, 6, Birkhäuser, 1993 | Zbl | DOI | MR | Numdam

[9] Chas, Moira; Sullivan, Dennis Closed string operators in topology leading to Lie bialgebras and higher string algebra, The legacy of Niels Henrik Abel, Springer, 2004, pp. 771-784 | Zbl | DOI

[10] Ginzburg, Viktor L.; Gürel, Başak Z.; Mazzucchelli, Marco On the spectral characterization of Besse and Zoll Reeb flows, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 38 (2021) no. 3, pp. 549-576 | DOI | Zbl | Numdam

[11] Goresky, Mark; Hingston, Nancy Loop products and closed geodesics, Duke Math. J., Volume 150 (2009) no. 1, pp. 117-209 | DOI | Zbl | MR

[12] Granja, Gustavo; Karshon, Yael; Pabiniak, Milena; Sandon, Sheila Givental’s non-linear Maslov index on lens spaces, Int. Math. Res. Not., Volume 2021 (2021) no. 23, pp. 18225-18299 | DOI | Zbl | MR

[13] Grove, Karsten Condition (C) for the energy integral on certain path spaces and applications to the theory of geodesics, J. Differ. Geom., Volume 8 (1973), pp. 207-223 | DOI | Zbl | MR

[14] Grove, Karsten; Tanaka, Minoru On the number of invariant closed geodesics, Acta Math., Volume 140 (1978) no. 1-2, pp. 33-48 | DOI | Zbl | MR

[15] Macarini, Leonardo; Mazzucchelli, Marco Isometry-invariant geodesics and the fundamental group. II, Adv. Math., Volume 308 (2017), pp. 671-698 | DOI | Zbl

[16] Mazzucchelli, Marco On the multiplicity of isometry-invariant geodesics on product manifolds, Algebr. Geom. Topol., Volume 14 (2014) no. 1, pp. 135-156 | DOI | Zbl

[17] Mazzucchelli, Marco Isometry-invariant geodesics and the fundamental group, Math. Ann., Volume 362 (2015) no. 1-2, pp. 265-280 | DOI | Zbl

[18] Mazzucchelli, Marco; Suhr, Stefan A min-max characterization of Zoll Riemannian metrics, Math. Proc. Camb. Philos. Soc., Volume 172 (2022) no. 3, pp. 591-615 | DOI | Zbl

[19] Meiwes, Matthias; Naef, Kathrin Translated points on hypertight contact manifolds, J. Topol. Anal., Volume 10 (2018) no. 2, pp. 289-322 | DOI | Zbl | MR

[20] Milnor, John Morse theory, Annals of Mathematics Studies, 51, Princeton University Press, 1963 (based on lecture notes by M. Spivak and R. Wells) | DOI | Zbl

[21] Milnor, John Lectures on the h-cobordism theorem. Notes by L. Siebenmann and J. Sondow, Mathematical Notes (Princeton), Princeton University Press, 1965 | Zbl | DOI | MR

[22] Paternain, Gabriel P. Geodesic flows, Progress in Mathematics, 180, Birkhäuser, 1999 | Zbl | DOI

[23] Samelson, Hans On manifolds with many closed geodesics, Port. Math., Volume 22 (1963), pp. 193-196 | Zbl | MR

[24] Sandon, Sheila A Morse estimate for translated points of contactomorphisms of spheres and projective spaces, Geom. Dedicata, Volume 165 (2013), pp. 95-110 | DOI | Zbl | MR

[25] Vigué-Poirrier, Micheline; Sullivan, Dennis The homology theory of the closed geodesic problem, J. Differ. Geom., Volume 11 (1976) no. 4, pp. 633-644 | DOI | Zbl | MR

Cité par Sources :