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MORSE ESTIMATES FOR TRANSLATED POINTS ON
UNIT TANGENT BUNDLES

by Simon ALLAIS (*)

ABSTRACT. — In this article, we study conjectures of Sandon on the minimal
number of translated points of contactomorphisms in the special case of the unit
tangent bundle of a Riemannian manifold. We restrict ourselves to contactomor-
phisms of a unit tangent bundle that lift diffeomorphisms of the base homotopic to
the identity. We prove that there exist sequences (pn,tn) where p, is a translated
point of time-shift ¢, with t, — 400 for a large class of manifolds. In the case of
Zoll-Riemannian manifolds, we also prove estimates relating the number of trans-
lated points to either the sum of the Betti numbers of the bundle under a generic
assumption or its cuplength under a C%-closedness assumption.

RESUME. — Dans cet article, nous étudions des conjectures de Sandon concer-
nant le nombre minimal de points translatés dans le cas particulier du fibré tangent
unitaire d’une variété riemannienne. Nous restreignons aux contactomorphismes du
fibré tangent unitaire relevant les difféomorphismes de la base homotopes a I’iden-
tité. Nous montrons qu’il existe des suites (pn,tn) ol pn est un point translaté
de temps de décalage t,, avec t, — +o0o pour une grande classe de variétés. Dans
le cas des variétés riemanniennes—Zoll, nous montrons aussi des inégalités entre le
nombre de points translatés et la somme des nombres de Betti du fibré sous une
hypothése générique ou la cuplength sous une hypothése de proximité C©.

1. Introduction

In this article, we study conjectures essentially due to Sandon on the
minimal number of translated points in the special case of the unit tangent
bundle of a Riemannian manifold. Let us recall the definition of trans-
lated points. Let (V2"~! a) be a cooriented contact manifold with a fixed
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mann theory, Morse theory, translated points of contactomorphisms, unit tangent bun-
dles, Zoll metrics.
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2 Simon ALLAIS

contact form a (i.e. a A (da)”~! does not vanish). A contactomorphism
¢ € Cont(V,a) is a diffcomorphism of V' such that ¢*a = e« for some
g:V — R. A point p € V is a discriminant point of ¢ if and only if it
is fixed by ¢ and g(p) = 0 (this definition does not depend on the choice
of the contact form associated with ker a). Let (¢¢) be the Reeb flow of
a. A point p € V is a translated point of ¢ if and only if it is a discrimi-
nant point of ¢%, o ¢ for some ¢t € R called a time-shift of p. Similarly to
the Hamiltonian case, using a Weinstein neighborhood of the graph of the
identity, one can prove that for every contactomorphism of a closed contact
manifold ¢ € Cont(V, «) which is C'-close to the identity,

1.1 eVipisat lated point of = i Crit(f),
(1.1)  #{p | p is a translated point of ¢} feg‘lxl’r(l\/,R)# rit(f)

where Crit(f) denotes the set of critical points of f [24]. Moreover, if the
Reeb flow is periodic, this inequality is sharp (see e.g. the introduction
of [3]). In [24], Sandon proved that this inequality still holds without the
“Cl-close” assumption, as long as ¢ is isotopic to the identity in the case
of the real projective spaces RP?"~! = §?"~1/(z» ~ —2) endowed with
the contact form induced by ap = 3(zdy — ydz) € Q}(S*"~1). Therefore,
Sandon asked the following question, where Contq(V, «) denotes the set of
contactomorphisms isotopic to the identity.

QUESTION 1.1. — Given a closed contact manifold endowed with a con-
tact form (V, «), does every ¢ € Conto(V, o) satisfy (1.1)7

Similarly to the Arnol’d conjecture on fixed points of Hamiltonian sym-
plectomorphisms, one can ask weaker estimates on the number of translated
points, using the cup-length estimate or the category estimate of Lusternik—
Schnirelmann theory. Another variation of Question 1.1 can be asked for the
non-degenerate contactomorphisms (see below), replacing the estimate on
the minimal number of critical points of any f : M — R by an estimate on
the minimal number of critical points a Morse map can have. As mentioned
earlier, Sandon proved that Question 1.1 is true for (RP?"~1 ag) [24]. We
proved that this is also the case for every quotient L2" ! (w) of (S*"~1, ay)
by free Z/kZ-actions of the form (z;) — (e2™%i/kz;) (with k > 2) in [3],
improving an estimate of Granja—Karshon—Pabiniak—Sandon [12]. A Morse
estimate for generic contactomorphisms was also given by Albers—Fuchs—
Merry [2] completed by Meiwes—Naef [19] in the case of hypertight contact
manifolds (i.e. such that all Reeb orbits are non-contractible for some con-
tact form supporting the contact structure).

This first question seems better suited for contact manifolds all of whose
Reeb orbits are closed: the so-called Besse contact manifolds. A result of

ANNALES DE L’INSTITUT FOURIER



TRANSLATED POINTS ON UNIT TANGENT BUNDLES 3

Granja—Karshon—Pabiniak-Sandon suggests a second question that could
cover a greater class of contact manifolds.

QUESTION 1.2. — Given a closed contact manifold endowed with a con-
tact form (V, «), does every ¢ € Conto(V, «) possess a sequence of couples
(Pn,tn) € V X R with t,, — +o0o such that p,, is a translated point of ¢
with time-shift t,, 7

Let us remark that the Weinstein conjecture is satisfied by the (V, a)’s
satisfying the conclusion of Question 1.2 (by taking ¢ = id). Let us further
remark that a Besse contact manifold answering Question 1.1 positively
also answers Question 1.2 positively. Granja—Karshon—Pabiniak—Sandon
answered positively Question 1.2 for (L7~ '(w),a), a being any contact
form supporting the same contact structure as the quotient of ayg.

In this paper, we want to give motivations that Question 1.1 should be
answered positively for unit tangent bundles of Riemannian manifolds all of
whose geodesics are closed and of same prime length whereas Question 1.2
should be answered positively for every unit tangent bundle. In order to do
so, we will prove that this is indeed the case in a weak sense for a subclass of
contactomorphisms of SM: the contactomorphic lift of the diffeomorphisms
of M.

Let M be a Riemannian manifold, its unit tangent bundle SM is a contact
manifold for the contact form «:

Azpy - &= (v,dm - &), V(z,v) € SM, V& T(,,)SM,

where 7w : SM — M is the bundle map and (-,-) is the Riemannian met-
ric. Given a diffeomorphism f : M — M, we denote f : SM — SM the
associated contactomorphism

- dfﬂ-v)
flz,v):=| f(x), —=— |, V (x,v) € SM,
(@) (“deﬂ'vﬂ (@)

where df~7T denotes the inverse of the adjoint df”. We will study the min-
imal number of translated points of ffor f homotopic to the identity. The
notion of translated points of fwith time-shift ¢ can be naturally general-
ized to smooth maps f : M — M (and not only diffeomorphisms) in such a
way that, in particular, a translated point of a diffeomorphism f : M — M
with time-shift ¢ is exactly a translated point of the contactomorphism f
with time-shift ¢.

TOME 0 (0), FASCICULE 0



4 Simon ALLAIS

DEFINITION 1.3. — A point (z,v) € SM is a translated point of f :
M — M with time-shift t # 0 if there exists a geodesic 7 : [0,1] — R of
length |t| such that

{V(O) =v[l5(0)| and df7-4(1) =+4(0) whent>0,

A1) =vllF(W] and dff-4(0) =4(1) whent <O0;

it is a translated point with time-shift t = 0 if df] - v = v (in particular,
flz) =z).

The correspondence between translated points of fand translated points
of f is due to the fact that the Reeb flow of SM is the geodesic flow
(see e.g. [22, Section 1.3.3]). We give the following partial answer to Ques-
tion 1.2.

THEOREM 1.4. — Let M be a closed Riemannian manifold that has a
finite cover M , the singular homology group H, (AM ) of the free loop space
of which is not finitely generated. Every smooth map f : M — M homo-
topic to the identity admits a sequence of couples (pp,t,) € SM x (0, +0c0)
with t, — 400 such that p,, is a translated point of f with time-shift t,,.

The assumption on M that H, (AM ) is not finitely generated is satisfied
by a large class of closed Riemannian manifolds (in fact, the author does not
know if there are counter-examples). On the one hand, when the number
of conjugacy classes of m (M) is infinite, the group Ho(AM) is already
not finitely generated. On the other hand, when (M) is finite, Vigué-
Poirrier and Sullivan proved that H *(AM ) is not finitely generated for the
universal cover M [25]. Therefore, the only possible counter-examples are
among the closed manifolds that have an infinite fundamental group with
a finite number of conjugacy classes.

Our most satisfying answer to Question 1.1 concerns the non-degenerate
case. Let us first discuss the notion of non-degenerate translated points. Let
(Gt) be the geodesic flow of TM and, for a diffeomorphism f : M — M,
let f: TM — TM be its symplectic lift f(a: v) = (f(x),df; T -v). In our
particular case, a translated point p € SM of a contactomorphic lift fof a
diffeomorphism f : M — M is non-degenerate for its time-shift ¢t € R if and
only if d(G_; 0 f) (p) does not have 1 as an eigenvalue. One can check that
this definition coincides with the definition given by Sandon in the general
setting [24]. Similarly to the definition of translated points, one can extend
this notion to any smooth map M — M (for simplicity, we only give the
definition for positive time-shifts).

ANNALES DE L’INSTITUT FOURIER



TRANSLATED POINTS ON UNIT TANGENT BUNDLES 5

DEFINITION 1.5. — A translated point (x,v) of f : M — M is non-
degenerate for the time-shift t > 0 if the subspace of the Jacobi fields J
along the associated geodesic v satisfying

{ J(1) = df - J(0),
(@2f - 7(0))" - 4(1) = J(0) — dfT - J(1),

is reduced to 0 (the linear morphism d?f - J(0) denotes u +— d?f[J(0), u],
see Section 2.4).

The equivalence of both definitions in the case of diffeomorphisms is
proven in Proposition 2.8. We give the following partial answer to Ques-
tion 1.1 in the non-degenerate case. Let us recall that a Riemannian man-
ifold M is called Zoll (of length ¢) if all its geodesics are closed and of the
same prime length (equal to ¢).

THEOREM 1.6. — Let M be a closed Zoll-Riemannian manifold and let
R :=Z if M is orientable and R := 7. /27 otherwise. For every smooth map
f: M — M homotopic to the identity with finitely many translated points
in SM all of which are non-degenerate, the number of translated points is
not less than ), B;(SM; R), where ;(SM; R) = rank H;(SM; R) denotes
the j" Betti number of SM.

In the degenerate case, our result is less satisfying as it requires a C°-
closeness assumption. Let us recall that the cup-length CL(X;R) € N of
a space X is the maximal k£ such that u; — --- — ug # 0 for some non-
zero u; € H*(X; R) of positive degree. By a H'-homotopy (fs) of maps
M — M, we will mean that t — f;(z) is in the Sobolev space H*([0,1], M)
for all z € M. The set of time-shifts of f : M — M will denote the set of
t € R that are time-shifts of a translated point; when M is Zoll of length ¢,
this set is ¢Z-invariant so it can be seen as a subset of R/(Z.

THEOREM 1.7. — Let M be a closed Zoll-Riemannian manifold of len-
gth ¢ and let R :=Z if M is orientable and R := Z /27 otherwise. Let (fs)
be a H'-homotopy of maps M — M such that fy = id and

1 g 2
/||8tft(a:)H2dt< <2> . VazeM.
0

If the number of time-shifts of fi seen in R/¢Z is less than 1+ CL(SM; R),
then f1 has infinitely many translated points. In particular, the number of
translated points of fi is not less than 1 + CL(SM; R).

The only closed Zoll-Riemannian manifolds known by the author are dif-
feomorphic to the compact rank-one symmetric spaces: S*, RP™, CP™ HP™

TOME 0 (0), FASCICULE 0



6 Simon ALLAIS

and CaP? (see however [5] for examples of manifolds with exotic structures
all of whose geodesics starting from a special point go back to this point at
the same length). According to a result of Bott and Samelson, every Zoll-
Riemannian manifold has a cohomology ring isomorphic to the cohomology
ring of one of these spaces [7, 23|. Let us refer to [6] for a comprehensive
introduction to the theory of Zoll and Besse Riemannian manifolds. Let
us also point out that the study of Besse Riemannian manifolds and more
generally of Besse contact forms from the variational viewpoint has recently
known significant advances [1, 10, 18].

The proofs of this article are based on a rather classical variational prin-
ciple that goes back to Grove [13]. Indeed, we remark in Section 2.1 that
geodesics corresponding to translated points of positive time-shift are ex-
actly the critical points of the restriction of the energy functional to paths
v :[0,1] = M such that f(v(0)) = v(1). This variational principle was ini-
tially applied in the specific case where f is an isometry in order to study
isometry-invariant geodesics [4, 13, 14, 15, 16, 17].

Theorem 1.4 is a direct application of Morse theory. Theorems 1.6 and 1.7
are more subtle consequences of Morse and Lusternik—Schnirelmann the-
ories. In order to translate the symmetry (p,t) — (p,t + £) of the set
of couples (translated point, associated time-shift), we make use of the
Chas-Sullivan product [9]. More precisely, we apply the results of Goresky-
Hingston concerning the product-structure of the homology groups of the
free loop space of Zoll-Riemannian manifolds [11].

Organization of the paper

In Section 2, we study the variational principle satisfied by translated
points of positive time-shifts and prove Theorem 1.4. In Section 3, we study
the special case of Zoll-Riemannian manifolds and prove Theorems 1.6
and 1.7.
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TRANSLATED POINTS ON UNIT TANGENT BUNDLES 7
2. The variational principle
2.1. The variational principle

Let M be a closed Riemannian manifold. We will denote PM:= H(]0, 1],
M) the path space of M endowed with its usual structure of Hilbert
manifold (here H' denotes the Sobolev space also denoted W12). Given
f:M— M, let

A(f) = {v € PM | 4(1) = f(7(0))};

in particular A(id) = AM is the free loop space of M. We will also use the
notation Ay for A(f) and A for AM. This space was already introduced
in [13] as Ag(p) M, we refer to this article for details about the properties
recalled here. The space A(f) is a Hilbert-submanifold of PM as v —
(7(0),7(1)) is a submersion. Given v € A(f), a vector U € T, A(f) isa H'-
vector field along « satisfying df - U(0) = U(1). Let us denote E : PM — R
the energy functional,

1
E(y) = / 142t

and E; : A(f) — R the restriction to A(f) for f : M — M. According
to [13, Theorem 2.4], the functional E satisfies the Palais-Smale condition.

Let us denote V the Levi-Civita covariant derivative of M. Taken along
a curve t — c(t), the covariant derivative of the vector field X will be
either denoted V.X, % or X (this last notation is reserved to the time
variable t). By convention, a geodesic will always mean a geodesic with
constant speed: v € PM is a geodesic if and only if

Viyy=4=0.

PROPOSITION 2.1. — Given f: M — M, v € A(f) is a critical point of

Ey if and only if 7y is a geodesic and df) o - %(1) = #(0).

Proof. — Let v € A(f), let U € T, A(f) and let (y,) be a smooth family
in A(f) such that U = 0,7, (the derivative being taken at u = 0). Then

1 /D . Lo . L
As df-U(0) =U(1), one has

1 : .
The identity dE¢(y)-U = 0 for the vector fields along « such that U(0) = 0
implies that 4 = 0, i.e. v is a geodesic. The identity dE;(y) - U = 0 for

TOME 0 (0), FASCICULE 0



8 Simon ALLAIS

every U € T, A(f) then implies that dfT - 4(1) = 4(0) (although we will
often write df7 without mention of the base point of M at which we take
the adjoint, we point out that this notation can be ambiguous as df7 is
defined on f* TM rather than TM). O

COROLLARY 2.2. — For every diffeomorphism f : M — M, critical
points of Ey with energy value e > 0 are in bijection with translated points
(z,v) of f with time-shift \/e.

As the correspondence suggests, we will rather be interested in the values
of the functional Py := \/E} (which is C* away from {E; = 0}) as they
correspond to time-shifts at critical points with positive critical values. For
every A > 0, let AJfA and AJ§>‘ be respectively the subsets {P; < A} and
{Py < A} of A(f); when A? is not a critical value of Ey, these subsets are
submanifolds (with boundary in the second case).

2.2. The topology of A(f)

Let us first extend the join of loops defined in [11, Section 2.3] to the
spaces A(f), for f: M — M smooth, in the obvious way. Let us define the
submanifold

PM x 3, PM := {(a, 8) € PM x PM | a(1) = 3(0)}

as well as A(f)xpmA(g) := (A(f)xA(g))N(PM x py PM). The concatenation
¢ : PM x 3y PM — PM will denote the continuous map defined as follows.
Given (a, ) € PM x 3 PM, if E(a) = E(8) = 0, both paths « and /3 are
constant = p and we set ¢(a, ) = p, otherwise
a(t), t €10, 9] E(a)
oo, B)(t) == . , where s= .
(=), tels VE@) + VE()

This map satisfies
(2.1) VE(@(o, 8)) = VE(e) + VE(B).

The concatenation ¢ is associative: for every «, 3, € PM such that a(1) =

A(0) and B(1) = ¥(0),
(2.2) o(o(a, B),7) = (e, ¢(5,7))-

By restriction, one gets a continuous map ¢ : A(f) xa A(g) = A(go f)
satisfying Pyos(¢(a, B)) = Ps(a) + Py(B), for every f,g: M — M.

ANNALES DE L’INSTITUT FOURIER



TRANSLATED POINTS ON UNIT TANGENT BUNDLES 9

Let (fs)seo,1) be a H'-homotopy of smooth maps M — M, i.e. such
that s — fs(z) is in PM for all z € M. It induces the following map

7(fs) : A(fo) = A(f1),
T(fs)(@) = ¢(a,t = fe(a(0))).

Let

6(fs) == sup VE(t = fi(x)),

zeM

then 7(fs) : A?OA — Ai)‘%(ﬂ) according to (2.1). Following the same lines
as [13, Lemma 3.6] for the more usual concatenation of continuous paths,

one proves the following counterpart for ¢.

LEMMA 2.3 ([13, Lemma 3.6]). — Let (fs)se0,1] be a homotopy of smo-
oth maps M — M such that s — fs(x) is in PM for all x € M. Then 7(fs)
and 7(f1_s) are homotopy inverses.

In particular, when f : M — M is homotopic to identity, A(f) is homo-
topy equivalent to the free loop space AM whereas when f: M — M is
homotopic to a constant, A(f) is homotopy equivalent to a point.

COROLLARY 2.4. — Under the hypothesis of Lemma 2.3, the maps 7(fs)
and 7(f1_s) induce a d(fs)-interleaving between the persistence modules
t— H*(A]fjt), j €{0,1}, i.e. denoting, for all t > 0,

e () L (A?Ot) S H. (A;m(fs)),
e (i) s (Aff) S H, (A;Om(fs)),

the respective morphisms 7¢+9(fs) o 7t and 7¢t9(fs) o 7t coincide with the
morphisms induced by the inclusions A]fjt — AE_H%(f‘*) forj=0andj=1
respectively (the same is true for t — H*(Ait))

2.3. Proof of Theorem 1.4

The following fact is well-known to the experts when f = id (and this
case will be enough for us).

LEMMA 2.5. — Given f : M — M, for every A > 0, the image of the
inclusion morphism H, (Af)‘) — H.(Ay) is finitely generated.

TOME 0 (0), FASCICULE 0



10 Simon ALLAIS

Proof. — Let f : M — M. It is enough to prove that for every A > 0,
the inclusion morphism H, (Af)‘) — H., (A?K) is finitely generated for some
K > A Let K > 0 be a regular value of Ef. Using a subspace of broken

<K

geodesics, one can retract A on a finite-dimensional submanifold N with

a deformation retraction r : A?K — N such that Ey or < Ef and the
critical points of E'y are exactly the critical points of g := Eor (see e.g. [20,
Section 16]). Therefore, the desired result boils down to proving that the
image of the homology morphism induced by {g < A} < N has a finitely
generated image for g : N — R a map on a finite-dimensional manifold
satisfying the Palais-Smale condition. As this property is C’-open, one
can assume that g is a Morse map satisfying the Palais—Smale condition
(one can adapt indeed the proof of [21, Theorem 2.7] using the fact that
the critical set of g in {g < A} is compact and the norm of dg is uniformly
bounded from below outside any neighborhood of this set). The Palais—
Smale condition then implies that {g < A} contains only a finite number
m € N of critical points (which are non-degenerate), so H.({g < A}) can
be generated by m elements. O

Proof of Theorem 1.4. — Let us first prove that one can assume M = M.
Let us assume that the theorem is true for a finite Riemannian cover ¢ :
M~ M satisfying the homological hypothesis. Let f = f; : M — M be
homotopic to the id = fy through (f;). By applying the homotopy lifting
property to (f; ogq) one gets a homotopy (ft) in M — M from the identity
to a map f 1 commuting with f. If (pn, t,) is a sequence of M xR satisfying
the conclusion of the theorem for f 1, then (q(pn), t,) is the desired sequence
for f.

Let us now assume that M = M. Let f: M — M be a smooth map
homotopic to the identity. According to Lemma 2.3, H.(A(f)) is isomorphic
to H.(AM) which is not finitely generated. Therefore, Lemma 2.5 implies
that H*(A?A) — H,(Ay) is never onto for A € [0,400). According to the
Morse deformation lemma, there exists a sequence (¢,) of positive critical
values with ¢,, — 4+00. The conclusion follows from Corollary 2.2. g

2.4. Non-degeneracy of a translated point

In this section, we show the equivalence between the non-degeneracy of
a translated point in the sense of contact geometry and the non-degeneracy
of the associated critical point of E.

Let us denote R the Riemann tensor defined by

R(X,Y) :=[Vx,Vy] = Vixy]

ANNALES DE L’INSTITUT FOURIER



TRANSLATED POINTS ON UNIT TANGENT BUNDLES 11

so that a vector field J along v is a Jacobi field if and only if
J =R, ).
Let us also recall that the second derivative d®f of a map f : M — N is
well-defined as V(df), i.e. by the tensorial expression: for all vector fields
XY,
A2 f[X,Y]:=X - (Y- f)—df-VxY.

Let us recall that the Hessian d?E(7) of the energy functional is well-

defined at a critical point «y (see e.g. [20, Section 13]).

PROPOSITION 2.6. — Let v € A(f) be a critical point of Ey, for every
U,V e T,A(f),

LB ()[U,V]

= [ IRVAVA) + 0. V))at + (01,0 U0, VO)LAD).

Proof. — Let U,V € T,A(f) and let (v,,) be a smooth family of A(f)
such that v0.0 = v, U = OuYu,0, V = Ouvy0,v (the partial derivatives being
taken at 0). Then

1 9 /D
sPE OV = [ (o Y
(') D* . . D, D, &
= /0 oo v T + A ek
1
= [ URVAVA) + @ Vat+ (90U ),
By derivating the identity f(74,,(0)) = Yu,0(1), one gets
d* £,(0)[V(0), U(0)] + d fy 0y - Vv U(0) = VyU(1),
so that, using df7 - (1) = 4(0),
[(VvUA)]p = (VvU (1) = df - Vv U(0),4(1)

= (df[U(0), V(0)],4(1)). 0
COROLLARY 2.7. — Let v € A(f) be a critical point of E, a vector
field J € T,A(f) belongs to the kernel of the quadratic form d?Ey(y) if
and only if J is a Jacobi field satisfying
T . . .
(d%f - J(0)" +4(1) = J(0) = dfT - (1),
where d®f - J(0) denotes the linear morphism T\ M — Ty M, u —
d?f[J(0), u].

TOME 0 (0), FASCICULE 0



12 Simon ALLAIS

In particular, the kernel of dzEf(’y) has a dimension bounded by 2 dim
M —1. Indeed, the vector space of Jacobi fields of v has dimension 2 dim M,
and J € T,A(f) implies that J(1) = 0 if J(0) = 0, so, for instance, the
Jacobi field J(t) = t¥(t) does not belong to T, A(f).

Proof. — Let J € kerd?E¢(7). Applying Proposition 2.6 with U = J
and every vector field V' with V(0) = 0, one proves that J is a Jacobi
field in a classical manner. The conclusion now follows from the identity
VYV e TA(),

/1<=7»V>dt = [(J. V)], —/1<J, V)dt

= (df"-J(1) = J(0),V(0)) - /1<J,V>dt. O
0

ProposiTiON 2.8. — Let f : M — M be a diffeomorphism, a translated
point (z,v) € SM offis non-degenerate for the time-shift t > 0 if and only
if the associated geodesic v € A(f) of length t is a non-degenerate critical
point of Ey.

Proof. — We will need the following differential identity: for every dif-
feomorphism f : M — M and every vector field U of M,

(2.3) Vo(df ") =—=df " (Vydf)" -df".

This identity can be derived by taking the covariant derivative of the iden-
tity df~7 - df?T = id (id meaning the section z + idr,3s) and using
Vu(dfT) = (Vydf)T (which can be obtained by derivating the definition
of the adjoint operator).

Let f : M — M be a diffeomorphism and let f: TM — TM be its
symplectic lift,

fla,v) = (f(z),df; T ), ¥ (z,v) € TM.
The differential of f at (z,v) € TM is

d.]?(w,v) ’ (§1a§2) = (d.fl 'glvdf;T &2 +V€1 (dfiT) 'U)a v517£2 €T, M,

where the identification T, ,y TM ~ T, M xT,, M is given by the Levi-Civita
connection (see e.g. [22, Section 1.3.1]). Let (z,v) € SM be a translated
point of f for the time-shift ¢ > 0 and v € A(f) be the associated geodesic

of length t. It is non-degenerate if and only if d(f o G_¢)g,(s,s) does not
have 1 as an eigenvalue. We recall that, for ¢ > 0,

(AG_t)G,(a0) - (J(l),ij(1)> = (J(O), 1J(0)),
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for every Jacobi field .J along v (the ¢! factor being due to the reparametri-
zation, see e.g. [22, Section 1.5]). Since J +— (J(1), J(1)) is an isomorphism
and tv = 4(0), (x,v) is degenerate if and only if there exists a Jacobi field
J along ~ such that

{df - J(0) = (1),

df="J(0) + Vi) ((Af7T) - 4(0) = J(1).

The first equation of (2.4) means that J € T,A(f). Using identity (2.3)
and df =T - 4(0) = 4(1), the second equation of (2.4) becomes

AT J(0) = df T (Vawdf) 40 = T,

Finally, applying df7 to this last equation, we find the equation of Coro-
llary 2.7. 4

(2.4)

3. The Zoll case
3.1. The Chas—Sullivan product

Let us recall and extend in an obvious manner the filtered Chas—Sullivan
product defined in [11]. We refer to [11] for technical details. For now, we
do not need to assume that the closed Riemannian manifold M is Zoll. Let
fyg: M — M be smooth maps, as the space A(f) X s A(g) is a submanifold
of A(f) x A(g) of codimension n := dim M, there is a well-defined Gysin
morphism

H.(A(f) x Alg)) — Haen(A(f) xar Alg))

(see e.g. [11, Proposition B.2]). The Chas—Sullivan product
* 1 Ho(A(f)) ® Hi(A(9)) — Hen(A(g o f))

is defined by composing this morphism with the morphism in homology
induced by the concatenation map ¢. Let a,b > 0 be regular values of Py
and Py, then A?a, A?b are submanifolds with boundary and one can thus
define the Gysin morphism

H. (Af“ X Ajb) S H._, (Af“ a1 A§b).
According to (2.1), one can thus define a filtered Chas—Sullivan product

w0 H(AF) @ Ho(AS) — Hoon(A5557)

gof
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that is compatible with the morphisms induced by inclusion of sets A,fc —
Afd for h = f, gor go f and ¢ < d. A relative version of this product is
also available

<a A<a’ N <a+b  <max(a+b’,a’+b)
H (A5 AT ) @ H(AS" A ) — Hoon (A5 AS ).

<a <b A< <a+b p <a+d
H*<Af )@H*(Ag (AS >—>H*_H(Agof ST )

<a A< <b A<b <a+b A <a+bd
H*(Af ,Afa)@)H*(Ag A )—>H*,n(Agof A )

<a <b A<D <a+b p<a+b
H(AF*) @ Ho (A5 A5") — Hoon (A5 A55),
that is compatible with morphisms induced by inclusion of relative sublevel
sets.

LEMMA 3.1. — Let g : M — M be a smooth map, let (f;) be an H'-
homotopy of smooth maps M — M, let § := §(fs) (which is = 6(fs 0 g)).
For every a € H,(A$), B € H*(Afob),

ax 7(f)B =7(fs0 9)u(ax B) € H,(AF2E"),
as long as the product * is well-defined.
Proof. — Let us consider the following diagram:

<a <b <a b ¢ <a+b
ASE X AT NS Xy AT ——— AF

lid X7(fs) J{id X7(fs) l’r(fso.g) P

< <b+6 A <h+s ¢ <a+b+s
Aga XAfl Aga xMAfl Aflog
where the unlabeled arrows are inclusion maps. By definition of 7(fs) and
7(fs o g) and by associativity of ¢ (2.2), this diagram commutes. By nat-
urality of the Gysin morphisms and by definition of the product *, the
conclusion follows. g

In the same way, one proves that x is associative.

The product structure of the homology group H,.(A) was studied by
Goresky-Hingston, especially in the case where all geodesics are closed and
of the same prime length ¢ [11, Sections 13-15]. In the sequel, M will satisfy
this assumption and the coefficient ring of the singular homology groups
will be Z if M is orientable and Z/2Z otherwise. In this case, the energy
functional Ejq is a perfect Morse—Bott functional: this implies in particular
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that the following sequences of inclusion morphisms are exact
0 — H,(AS") — H,(AS?) — H,(ASP,AS") — 0,

3.1
(31) 0 — H*(ASP,ASY) — H*(AS?) — H*(AS") — 0,

for every 0 < a < b < +o00, with AST>® := A, the same being true replacing
ASY with A<*. Moreover, the filtered product * can be defined for all values.
The critical values of Py correspond to the positive multiples of ¢ with
associated critical submanifolds diffeomorphic to SM via «y +— 4(0)/]%(0)]].
Let A1 > 0 be the Morse index of the critical submanifold ¥ associated
with the critical value ¢. The manifold ¥; can be oriented and one defines

© € Hapo14a, (AY)

to be the image of the fundamental class of ¥; under the canonical isomor-
phism

(3.2) H,(ASY) =~ H, (AS?) @ H._ 5, (%1)

resulting from the splitting of the exact sequence (3.1) for the pair (AS,
ASY) induced by ev: A — AS?, ev(y) = 7(0), and the Morse-Bott isomor-
phism H,(ASY,ASO) ~ H, (). Let us set b:= Ay +n — 1.

THEOREM 3.2 ([11, Theorem 13.4]). — Let M be an n-dimensional
closed Zoll-Riemannian manifold of length ¢. For every positive integer
r, the Chas—Sullivan product with the class ©

© %t H (AST A<™) — Ho 4y (As(r+1)€7A<(r+1)e)

induces an isomorphism.

3.2. Min-max critical values

Given f : M — M, let us define min-max critical values of P associated
with homology classes of A(f). Given o € H,(A(f)), let us define

cla, f) = inf{)\ >0 ’ a€ im(H* (A?)‘) — H*(Af)) }

By the Morse deformation lemma, if ¢(e, f) > 0 then it is a critical value
of Ps. A consequence of Theorem 3.2 and the perfectness of Eiq in the Zoll
case is the following corollary.

COROLLARY 3.3. — Let M be a Zoll-Riemannian manifold with prime
length ¢. For every oo € H,(A), one has ¢(a,id) € N¢ and if ¢(a,id) > 0,
then

¢(0" * a,id) = c(a,id) + k¢, VkeN.
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Proof. — Since the c(a,id) are either 0 or critical values of P,q, one has
c(a,id) € NC for all a € H,(A). Let a € H,(A) be such that c¢(a,id) > 0,
so ¢(a,id) = r¢ with » € N* and there exists 8 € H,(AS") the image of
which is o under the inclusion morphism. Since © % - commutes with the
inclusion morphisms, the image of % x 8 € H, 1y (ASTTRE) in H,(A) is
0% x a, so c(OF x a,id) < (r + k).

The image v of # under the inclusion morphism H,(AS™) — H,(AS™,
A<") is non-zero since c(a, id) > 7 (by looking at the long exact sequence
of the couple (AS™ A<"%)). Let us consider the commuting diagram:

H* (Ang) OF«. H*+kb (Ag(r-i-k)e)

| |

H, (ASTE A< @:’*'; Hip i (ASGHRE A0,

where the vertical arrows are inclusion morphisms. Since the bottom arrow
is an isomorphism according to Theorem 3.2, the image of v is non-zero
and so is the image of ©F x 8 under the right vertical arrow. This implies
that ©F % § is not in the image of H, ,(A<U"¥¢) under the inclusion
morphism so ¢(©F x a,id) > (r + k)L. O

ProproSITION 3.4. — Let M be a Zoll-Riemannian manifold with prime
length ¢ and let (fs) be a H'-homotopy from id to f and let us set T := 7(fs)
and § := 6(fs).

(1) For every o € H.(A), |c(ev,id) — (e, f)| < 6.
(2) For every o € H,(A),

(0" w7, f) = e(OF x e, f) + L —ex(), VREN,

where (e, (o)) is a sequence of non-negative reals that converges to
0 when c(a,id) > 0.

Proof. — The first statement is a direct consequence of the fact that
7(fs) and 7(f1_s) induce a d-interleaving in the sense of Corollary 2.4. Let
us consider the commuting diagram

Ox-
Ho (A5Y) =25 Hoy (457

|

Ho(Ag) —2"— H. oy (Ay),
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where the vertical arrows are inclusion morphisms and A > 0. It implies that
if c(a, f) < X then ¢(© * a, f) < A+ £. In particular, for every o € H,(A),

(O s ra ) = o(6F 70 f) +L—eila), VEEN.

for some non-negative sequence (ex(a)). According to the first statement
of this proposition, for every k € N,

k-1
> cila) = e(rua, f) = (6" 7.a f)
=0
+ Kkt < 26 + c(a,id) — ¢(O0F x a,id) + k¢,

where we have used that ©F x 1,a = 7.(0F x ) (Lemma 3.1). There-
fore, Corollary 3.3 implies that the series ) . €;(«) is bounded by 2§ when
¢(a,id) > 0, bringing the conclusion. O

3.3. Proof of Theorems 1.6 and 1.7

Proof of Theorem 1.6. — Let N := Y. (3;(SM) and let ai,...,ay €
H,(A) be an independent family satisfying c¢(«;,id) = ¢ for all i. Such
a family can be obtained as follows: one takes the image in H,(ASY)
of an independent family of 0 & H.(¥X;) ~ H,.(SM) under the isomor-
phism (3.2), then takes the image of this family under the inclusion mor-
phism H,(ASY) — H,(A) (this last morphism is injective by exactness
of (3.1)). The exactness of (3.1) together with Theorem 3.2 implies that
the family (0% x ;) 4, K € N, 1 <i < N, is independent in H,(A).

Let (fs) be a H'-homotopy from id to f : M — M and let 7 := 7(f,).
Applying the isomorphism 7, : H,(A) — H.(A(f)), the family (©F 7, ;)5 ;
is independent in H,(A(f)) (we have used Lemma 3.1). Let us assume that
f has finitely many translated points in SM. Since M is a Zoll-Riemannian
manifold, the set of positive time-shifts of a translated point of f is ¢t + N/
for some ¢t € (0,¢]. Therefore, the set of (positive) critical values of Py
is invariant by ¢t — t + £, discrete and such that any interval (a,a + £,
a > 0, contains a fixed finite number of them. Let us study the sequences
(ch) == (c(OF x vy, f)) for 1 < i < N, the image of which is contained in
this discrete set. Since ¢}, = ¢, + ¢ — ¢}, with €, — 0 (Proposition 3.4),
by discreteness of the N/-invariant set of critical values, ¢}, = 0 for large
k’s. We deduce that for A > 0 large, for each i, there exists a unique
k; such that c,’,c € (A, A + {]. By non-degeneracy of the critical points of
Py, the Morse inequalities in the window of values (A, A + ¢] imply that
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the number of critical points in P, L(A, A+ 1] is not less than the cardinal
of (6% x 7,a;);, which is N. For each translated point, only one time-shift
belongs to (A, A + ¢], which brings the conclusion. O

Proof of Theorem 1.7. — Let N := CL(SM) and let uy,...,uny € H*(A)
be non-zero classes of positive degree such that

c(® ~ (ug — - — uy),id) = L.

Such a family can be obtained as follows: let vq,...,o5y € H*(SM) be
non-zero classes of positive degree such that v; — --- — vy # 0 (which
exist by definition of CL(SM)), then [SM] ~ (v; — --- — vy) # 0 and
we apply (3.2) together with the exactness of (3.1) to send [SM] to © (by
definition of ©) and the v;’s to the u;’s.

Let ag,...,any € Hy(A) be the subordinated classes a; := © —~ (u3 —

- — u;) such that ¢(a;,id) = £ for all ¢ (as by subordination, ¢(a;t1,1d) <
c(a;,id) and ¢(0,id) = £). Let (fs) be a H'-homotopy as in the statement
of Theorem 1.7, so that §(fs) < £/2, and let 7 := 7(fs). By subordination,
¢(Ty @, ) is non-increasing with ¢ and by the first point of Proposition 3.4,

g <c(ran, f) S e(rean—1, f) <+ < e(Teap, f) < 3;

According to the Lusternik—Schnirelmann theorem (see e.g. [8, Section
I1.3.2]), if Py has a finite number of critical points in the window (¢/2,3¢/2)
then c(7.a, f) is decreasing. Since the ¢(7.cy, f)’s are critical values of Py,
the conclusion follows by Corollary 2.2. 0
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