[Noyaux CND presque invariants et actions propres uniformément Lipschitz sur des sous-espaces de ]
We define the notion of almost invariant conditionally negative definite kernel and use it to give a characterisation of groups admitting a proper uniformly Lipschitz affine action on a subspace of an space. We show that this condition is satisfied by groups acting properly on products of quasi-trees, weakly amenable groups with Cowling–Haagerup constant 1, and a-TTT-menable groups.
Nous définissons la notion de noyau conditionnellement défini négatif presque invariant et nous l’utilisons pour donner une caractérisation des groupes admettant une action affine propre uniformément Lipschitz sur un sous-espace d’un espace . Nous montrons que cette condition est satisfaite par les groupes agissant proprement sur des produits de quasi-arbres, par les groupes faiblement moyennables avec constante de Cowling–Haagerup égale à et par les groupes a-TTT-menables.
Révisé le :
Accepté le :
Première publication :
Keywords: uniformly Lipschitz affine actions, subspaces of $L^1$, conditionally negative definite kernels, products of quasi-trees, weakly amenable groups, a-TTT-menable groups
Mots-clés : actions affines uniformément Lipschitz, sous-espaces de $L^1$, noyaux conditionnellement définis négatifs, produits de quasi-arbres, groupes faiblement moyennables, groupes a-TTT-menables
Vergara, Ignacio 1
@unpublished{AIF_0__0_0_A19_0, author = {Vergara, Ignacio}, title = {Almost invariant {CND} kernels and proper uniformly {Lipschitz} actions on subspaces of $L^1$}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3731}, language = {en}, note = {Online first}, }
Vergara, Ignacio. Almost invariant CND kernels and proper uniformly Lipschitz actions on subspaces of $L^1$. Annales de l'Institut Fourier, Online first, 23 p.
[1] Kazhdan’s property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008 | DOI | MR | Zbl
[2] Proper actions on finite products of quasi-trees, Ann. Henri Lebesgue, Volume 4 (2021), pp. 685-709 | DOI | Numdam | MR | Zbl
[3] Weakly amenable groups and amalgamated products, Proc. Am. Math. Soc., Volume 117 (1993) no. 4, pp. 1039-1046 | DOI | MR | Zbl
[4] Lois stables et espaces , Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. B, Volume 2 (1966), pp. 231-259 | Numdam | MR | Zbl
[5] -algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, 2008 | DOI | MR | Zbl
[6] Tangent bundles of hyperbolic spaces and proper affine actions on spaces (2019) | arXiv | Zbl
[7] Kazhdan and Haagerup properties from the median viewpoint, Adv. Math., Volume 225 (2010) no. 2, pp. 882-921 | DOI | MR | Zbl
[8] Groups with the Haagerup property. Gromov’s a-T-menability, Progress in Mathematics, 197, Birkhäuser, 2001 | DOI | MR | Zbl
[9] Proper actions of wreath products and generalizations, Trans. Am. Math. Soc., Volume 364 (2012) no. 6, pp. 3159-3184 | DOI | MR | Zbl
[10] Isometric group actions on Hilbert spaces: growth of cocycles, Geom. Funct. Anal., Volume 17 (2007) no. 3, pp. 770-792 | DOI | MR | Zbl
[11] Actions of acylindrically hyperbolic groups on (2023) | arXiv | Zbl
[12] New a-T-menable HNN-extensions, J. Lie Theory, Volume 13 (2003) no. 2, pp. 383-385 | MR | Zbl
[13] Espaces métriques hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) (Progress in Mathematics), Volume 83, Birkhäuser, 1990, pp. 27-45 | DOI | MR
[14] Random walk in random groups, Geom. Funct. Anal., Volume 13 (2003) no. 1, pp. 73-146 | DOI | MR | Zbl
[15] Weak amenability of -cubical groups, Geom. Dedicata, Volume 148 (2010), pp. 137-156 | DOI | MR | Zbl
[16] An example of a nonnuclear -algebra, which has the metric approximation property, Invent. Math., Volume 50 (1978/79) no. 3, pp. 279-293 | DOI | MR | Zbl
[17] Property for 3-manifold groups, Algebr. Geom. Topol., Volume 25 (2025) no. 1, pp. 107-159 | DOI | MR | Zbl
[18] -theoretic amenability for , and the action on the associated tree, J. Funct. Anal., Volume 58 (1984) no. 2, pp. 194-215 | DOI | MR | Zbl
[19] Tree approximation in quasi-trees, Groups Geom. Dyn., Volume 17 (2023) no. 4, pp. 1193-1233 | DOI | MR | Zbl
[20] Semigroups of Herz-Schur multipliers, J. Funct. Anal., Volume 266 (2014) no. 3, pp. 1565-1610 | DOI | MR | Zbl
[21] Random groups and property : Żuk’s theorem revisited, J. Lond. Math. Soc. (2), Volume 88 (2013) no. 2, pp. 396-416 | DOI | MR | Zbl
[22] Actions of higher rank groups on uniformly convex Banach spaces (2023) | arXiv | Zbl
[23] Quasi-actions on trees and property (QFA), J. Lond. Math. Soc. (2), Volume 73 (2006) no. 1, pp. 84-108 | DOI | MR | Zbl
[24] A Bożejko–Picardello type inequality for finite-dimensional cube complexes, J. Funct. Anal., Volume 254 (2008) no. 3, pp. 760-772 | DOI | MR | Zbl
[25] Croke–Kleiner admissible groups: property (QT) and quasiconvexity, Mich. Math. J., Volume 73 (2023) no. 5, pp. 971-1019 | DOI | MR | Zbl
[26] Groups acting on cube complexes, Geom. Topol., Volume 1 (1997), pp. 1-7 | DOI | MR | Zbl
[27] Sp(n,1) admits a proper 1-cocycle for a uniformly bounded representation (2022) | arXiv
[28] Group actions on Banach spaces and a geometric characterization of a-T-menability, Topology Appl., Volume 153 (2006) no. 18, pp. 3409-3412 | DOI | MR | Zbl
[29] Group actions on Banach spaces, Handbook of group actions. Vol. II (Advanced Lectures in Mathematics), Volume 32, International Press, 2015, pp. 121-149 | MR
[30] Quasi-homomorphism rigidity with non-commutative targets, J. Reine Angew. Math., Volume 655 (2011), pp. 89-104 | DOI | MR | Zbl
[31] Examples of groups which are not weakly amenable, Kyoto J. Math., Volume 52 (2012) no. 2, pp. 333-344 | DOI | MR | Zbl
[32] On a class of factors with at most one Cartan subalgebra, Ann. Math. (2), Volume 172 (2010) no. 1, pp. 713-749 | DOI | MR | Zbl
[33] Towards strong Banach property (T) for , Isr. J. Math., Volume 211 (2016) no. 1, pp. 105-145 | DOI | MR | Zbl
[34] Metric spaces and completely monotone functions, Ann. Math. (2), Volume 39 (1938) no. 4, pp. 811-841 | DOI | MR | Zbl
[35] Metric spaces and positive definite functions, Trans. Am. Math. Soc., Volume 44 (1938) no. 3, pp. 522-536 | DOI | MR | Zbl
[36] Hyperbolicity and uniformly Lipschitz affine actions on subspaces of , Bull. Lond. Math. Soc., Volume 55 (2023) no. 5, pp. 2446-2455 | DOI | MR | Zbl
[37] Property (T) for uniformly bounded representations and weak*-continuity of invariant means (2023) | arXiv
[38] Property T of Kazhdan implies property FA of Serre, Math. Jap., Volume 27 (1982) no. 1, pp. 97-103 | MR | Zbl
[39] Some notes on property A, Limits of graphs in group theory and computer science (Fundamental Sciences. Mathematics), EPFL Press, 2009, pp. 191-281 | MR | Zbl
[40] Property (T) and Kazhdan constants for discrete groups, Geom. Funct. Anal., Volume 13 (2003) no. 3, pp. 643-670 | DOI | MR | Zbl
Cité par Sources :