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ALMOST INVARIANT CND KERNELS AND PROPER
UNIFORMLY LIPSCHITZ ACTIONS ON SUBSPACES
OF L!

by Ignacio VERGARA (*)

ABSTRACT. We define the notion of almost invariant conditionally negative
definite kernel and use it to give a characterisation of groups admitting a proper
uniformly Lipschitz affine action on a subspace of an L1 space. We show that this
condition is satisfied by groups acting properly on products of quasi-trees, weakly
amenable groups with Cowling—Haagerup constant 1, and a-TTT-menable groups.

RESUME. — Nous définissons la notion de noyau conditionnellement défini néga-
tif presque invariant et nous 'utilisons pour donner une caractérisation des groupes
admettant une action affine propre uniformément Lipschitz sur un sous-espace
d’un espace L. Nous montrons que cette condition est satisfaite par les groupes
agissant proprement sur des produits de quasi-arbres, par les groupes faiblement
moyennables avec constante de Cowling-Haagerup égale a 1 et par les groupes
a-TTT-menables.

1. Introduction

A group is said to have the Haagerup property (or that it is a-T-menable)
if it admits a (metrically) proper isometric affine action on a Hilbert space.

Every Hilbert space can be isometrically embedded into an L' space; see
for instance [7, Theorem 6.8]. On the other hand, the fact that the norm on
an L' space defines a conditionally negative definite kernel shows that every
group acting properly by isometries on a subspace of an L' space has the
Haagerup property; see for instance [7, Corollary 6.23]. As a consequence,
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2 Ignacio VERGARA

the Haagerup property can be characterised by the existence of a proper
isometric affine action on a subspace of an L' space.

In this paper, we study a weakening of this property by considering ac-
tions that are not necessarily isometric, but which are uniformly Lipschitz.

Let I be a countable group and let E be a (real) Banach space. We denote
by B(E) the algebra of bounded operators on F, and by GL(E) the subset
of B(E) consisting of invertible operators. Observe that GL(E) is a group
for the composition. A representation of I' on F is a group homomorphism
7w : ' - GL(E). An affine action I' ~° E is given by a representation
m:T = GL(E) and a map b: I' — FE satisfying

Vs, t e, b(st)=mn(s)b(t)+ b(s).

We say that b is a cocycle for the representation 7. The aforementioned
affine action is then given by

(1.1) Vsel,VveE, o(s)v=m(s)v+b(s).

We call 7 the linear part of 0. We say that the action ¢ is C-Lipschitz
(C=1)if

Vsel, VoweE, |o(s)v—o(s)w| <Cllv—wl.
This is equivalent to the fact that n is uniformly bounded by C"

sup [[m(s)|| < C.
sel

We say that o uniformly Lipschitz if it is C-Lipschitz for some C > 1.
Notice that an action is 1-Lipschitz if and only if it is isometric.

We say that an action of a group I' on a metric space (X, d) is (metrically)
proper if, for every x € X and every R > 0, the set

{seT|d(s -z,x) < R}
is finite. We usually write this condition as
d(s-z,x) — 00 as s — oo.

Observe that a uniformly Lipschitz affine action as in (1.1) is proper if and
only if the cocycle b is proper:

Ib(s)]]| — o0 as s — oc.

Our first result gives a necessary and sufficient condition for a group
to admit a proper uniformly Lipschitz affine action on a subspace of an
L' space. Let T be a countable group and let ¢ : I' x I' — [0,00) be a
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CND KERNELS AND PROPER ACTIONS ON E C L' 3

conditionally negative definite (CND) kernel. This means that there is a
Hilbert space H and a map f : I' — H such that

(1.2) U(@y) = If (@) = fWI?, Va,yel.

We say that 1 is almost invariant if there exists C' > 0 such that
W(sz,sy) < YP(x,y)+C, Vs,zyel.
In addition, we say that ¢ is proper if
P(z,e) — 00 as x — 00,
where e is the identity element of I'.

THEOREM 1.1. — Let I' be a countable group. The following are equiv-
alent:

(i) There exists a proper almost invariant CND kernel ¢ : I' x I' —
[0,0).

(ii) There exist a measure space (2, 1), a closed subspace E C L*(Q, 1),
and a proper uniformly Lipschitz affine action of I on F.

(ii") For every € > 0, there exist a measure space (2, 1), a closed sub-
space E C L(Q, 1), and a proper (1 + €)-Lipschitz affine action of
I'on E.

In the case of isometric actions, a group acts properly on a Hilbert space
if and only if it does so on a subset of an LP space with p € (0,2]; see [7,
Corollary 1.5] and [7, Corollary 6.23]. We do not know if this character-
isation can be extended to uniformly Lipschitz actions, but Theorem 1.1
allows us to conclude the following.

COROLLARY 1.2. — Let p € (0,2] and let T be a countable group admit-
ting a proper uniformly Lipschitz action on a subset of an LP space. Then
I' has a proper uniformly Lipschitz affine action on a subspace of an L'
space.

One nice feature of Theorem 1.1 is that almost invariant CND kernels
arise in various contexts, which allows us to construct uniformly Lipschitz
actions on E C L! for different classes of groups. We begin by focusing on
groups acting on products of quasi-trees. A quasi-tree is a graph that is
quasi-isometric to a tree. Here we view (the set of vertices of) a graph as
a metric space endowed with the edge-path distance. For a finite family of
graphs (X;,d;) (i=1,...,N), we endow the product X = X x -+ x Xy
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with the ¢!-combination of the metrics:
N

(1.3) d(z,y) = Zdz(ffmyz)
i=1

This is exactly the edge-path distance on X with its natural graph struc-
ture.

THEOREM 1.3. — Let I" be a countable group acting properly by isome-
tries on a finite product of quasi-trees. Then I admits a proper uniformly
Lipschitz affine action on a subspace of an L' space.

The class of groups admitting proper actions on products of quasi-trees
is very rich. It contains mapping class groups [2], residually finite hyper-
bolic groups [2], and some 3-manifold groups [17]; see also [25] for more
examples. Theorem 1.3 is motivated by the following conjecture; see [29,
Conjecture 35].

CONJECTURE 1.4 (Shalom). — Every hyperbolic group admits a proper
uniformly Lipschitz affine action on a Hilbert space.

This conjecture has been verified for lattices in the rank 1 Lie groups
Sp(n,1) and Fy _g0; see [27, Theorem A] and [37, Corollary 1.7]. These
are very interesting classes of groups because they satisfy Property (T),
meaning that every isometric action on a Hilbert space has a fixed point,
which implies in particular that such actions cannot be proper. As a mat-
ter of fact, “most” hyperbolic groups have Property (T); see [21, 40] for
precise statements and proofs. However, for uniformly Lipschitz actions,
the situation is not so well understood, and Conjecture 1.4 remains open
in general.

In light of the results in [2], Theorem 1.3 gives a solution to a variation
of Conjecture 1.4 for residually finite hyperbolic groups, by replacing L?
by a subspace of L'. Furthermore, the residual finiteness hypothesis can be
removed. More precisely, every hyperbolic group admits a proper uniformly
Lipschitz affine action on £ C L!; see [36, Theorem 1.2] or Theorem 1.7
below for a more general statement. The proof of this result also consists
in constructing a proper almost invariant CND kernel.

We will give two different proofs of Theorem 1.3. Our original proof is
inspired by [6], and it consists in showing that a certain approximation
of the edge-path distance on a quasi-tree is a CND kernel. Afterwards,
we realised that the main result of [19] can be used to give a much shorter
proof by simply considering the pull-back of the metric on a tree. We believe
that both proofs are interesting, and that they provide different insights
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on the existence of such kernels. Hence we decided to present them both in
Section 3.

Let us mention some more recent progress in this direction. Using diffe-
rent methods, Drutu and Mackay [11] showed that mapping class groups
and residually finite hyperbolic groups admit proper (2 + ¢)-Lipschitz
actions on ¢! and on L'([0,1]). As observed in [11, Remark 1.12], for
groups with Property (T), this cannot be improved in order to obtain
(1 + ¢)-Lipschitz actions as in Theorem 1.1, which shows that the class of
subspaces of L' provides a much less rigid framework than the space L'
itself.

Next, we apply Theorem 1.1 to weakly amenable groups. A countable
group I is said to be weakly amenable if there exists a sequence of finitely
supported functions ¢,, : I' = C converging pointwise to 1, and a constant
C > 1 such that sup,,||¢nllB,r) < C. Here By(I") stands for the space of
Herz—Schur multipliers on T'; see [5, Appendix D] for details. The Cowling—
Haagerup constant A(T') is the infimum of all C' > 1 such that the condition
above holds. Our second result is also motivated by an open conjecture.

CONJECTURE 1.5 (Cowling). — Every weakly amenable group with
Cowling—Haagerup constant 1 has the Haagerup property.

This conjecture was originally formulated as an equivalence; see [8, Sec-
tion 1.3.1]. Later, the results in [9, 31, 32] provided many examples of
groups with the Haagerup property that are not weakly amenable. One such
group is the wreath product (Z/2Z) 1 Fo. Conjecture 1.5 has been verified
for every known example of group with A(T') = 1, which includes groups
acting properly on finite-dimensional CAT(0) cube complexes [15, 24, 26]
and Baumslag—Solitar groups [12]. However, it remains open in general.
We prove the following variation of Conjecture 1.5. Its proof is based on
Knudby’s work on semigroups of Herz—Schur multipliers [20].

THEOREM 1.6. — Every weakly amenable group with Cowling—Haage-
rup constant 1 admits a proper uniformly Lipschitz affine action on a sub-
space of an L' space.

Our last application of Theorem 1.1 concerns a-TTT-menable groups, as
defined in [30]. Let H be a (complex) Hilbert space and let U(H) denote
its unitary group. A map b : I' — H is called a wq-cocycle if there is a map
(not necessarily a representation) 7 : I' = U(H) such that

Ssglel)FHb(st) — m(s)b(t) — b(s)|| < oo.

TOME 0 (0), FASCICULE 0
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A group is said to be a-TTT-menable if it admits a proper wq-cocycle. Since
every cocycle is a wq-cocycle, every a-T-menable group is a-TTT-menable.
Moreover, all hyperbolic groups are a-TTT-menable; see [30, Section 1]. We
show that wq-cocycles naturally give rise to almost invariant CND kernels.
As a consequence, we obtain the following.

THEOREM 1.7. — Every a-TTT-menable group admits a proper uni-
formly Lipschitz affine action on a subspace of an L' space.

Since Theorem 1.1 provides a characterisation, it is natural to ask which
classes of groups do not admit proper almost invariant CND kernels. From
the definition, we see that the map f in (1.2) is a coarse embedding into H;
we refer the reader to [39, Section 1] for details on coarse embeddings.
Therefore the existence of a proper almost invariant CND kernel implies
the existence of a coarse embedding into a Hilbert space. Although this is a
very weak property, it is known that there are groups that are not coarsely
embeddable. The study of such groups was initiated in [14]. Surprisingly,
this seems to be the only known obstruction. In particular, we do not
know whether SL(3,Z) admits a proper almost invariant CND kernel; or
equivalently, whether it has a proper uniformly Lipschitz affine action on
a subspace of an L! space. This marks a sharp contrast with the case of
E C L? with 1 < p < oo, for which we know the answer is negative; see [33,
Corollary 1.3] or [22, Theorem Al.

This article is organised as follows. In Section 2, we give the definitions
and basic facts about the different kinds of kernels that we consider in
the paper. Theorem 1.1 and Corollary 1.2 are also proved in that section.
Section 3 is devoted to groups acting on products of quasi-trees and two dif-
ferent proofs of Theorem 1.3. Theorems 1.6 and 1.7 are proved in Sections 4
and 5 respectively.

Acknowledgements
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for his very valuable feedback since an early stage of this work. I also thank
the anonymous referees of a previous version of this paper, whose comments
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2. CND kernels and actions on E C LP

In this section we prove Theorem 1.1 and Corollary 1.2. We begin by
giving the definitions and main characterisations of positive definite kernels
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and conditionally negative definite kernels. For a more detailed treatment,
we refer the reader to [1, Appendix C].

2.1. Kernels

Let X be a set. A function k : X x X — C is said to be a positive definite

kernel on X if, for every finite sequence z1,...,2, € Cand x1,...,2, € X,
n
Z k(xi,25)2iZ; 2 0.
ij=1

If£: X — H is a map from X to a Hilbert space, then the kernel
r(z,y) = ((x), £(y))

is positive definite. Moreover, every positive definite kernel on X is of this
form.

A symmetric function ¢ : X x X — R is said to be a conditionally
negative definite kernel on X if it vanishes on the diagonal (¢¥(z,z) =0, V

x € X), and for every finite sequence a;,...,a, € R satisfying
n
Z Q; = 0,
i=1
and every x1,...,x, € X, we have

Z w(xi,xj)aiaj < 0.

3,j=1

If b: X — H is a map from X to a Hilbert space, then the kernel

U(@,y) = [lb(z) = b(y)||?
is CND. Moreover, every CND kernel on X is of this form. A very important
result relating these two objects is Schoenberg’s theorem [35].

THEOREM 2.1 (Schoenberg). — Let X be a set and let ¢ : X x X — R
be a symmetric function such that ¥ (x,xz) = 0 for all x € X. Then the
following are equivalent:

(i) The kernel ¢ is conditionally negative definite.
(ii) For all A > 0, the kernel e=*¥ is positive definite.

The following result is a particular case of [10, Lemma 2.4], which in
turn is a reformulation of [34, Theorem 8] in a more modern language. We
include its proof for completeness.

TOME 0 (0), FASCICULE 0
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LEMMA 2.2. — Let X be a set and let 1y : X x X — [0,00) be a CND
kernel. Then the kernel ¥ : X x X — [0,00) given by

w(zvy) :1Og(1+1/10($,y))7 V’I’,yEX
is also CND.

Proof. — For all » > 0, we can write

T o0 o0 1 _ ,—tr
log(1 4 7) =/ / et dt du :/ 17O etar
o Jo 0 t

Since 1)y is CND, by Theorem 2.1, so is 1 — e~ %0 for all ¢+ > 0. Since the
set of CND kernels on X is a convex cone, the identity above tells us that
log(1 + o) is CND. O

2.2. LP spaces

Let (9, 1) be a measure space and let p € (0,00). The space LP(Q, p) is
the vector space of (equivalence classes of) measurable functions f: Q@ — R

such that
1/p
i = ([ 1r@rane) " <.
Q

For p € [1,00), LP(Q, u) is a Banach space. For p € (0,1), this is no longer
the case, but we still get a metric space for the distance

(f,9) —IIf = gll},

so it makes sense to speak about proper actions. We say that X is an LP
space if X = LP(Q, u) for some measure space (€2, i1). We record here the
following classical result; see [28, Lemma 7] for a proof.

PROPOSITION 2.3. — Let p € (0,2] and let X be an LP space. Then the
map

(frg) —f —gll}
is a CND kernel on X.

2.3. Proof of Theorem 1.1

We will start by proving the implication (ii) = (i) in Theorem 1.1,
which essentially follows from Lemma 2.2 and Proposition 2.3.

ANNALES DE L’INSTITUT FOURIER
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LEMMA 2.4. — Let T' be a countable group admitting a proper uni-
formly Lipschitz affine action on a subspace of an L' space. Then there
exists a proper almost invariant CND kernel 1) : T' x I' — [0, 00).

Proof. — Let I' n7 E be the proper uniformly Lipschitz action given by
the hypothesis, and take vy € E. By Proposition 2.3, the kernel
¢0(I7y) = HU(‘I),UO 70’(y)’00”7 vxayera
is CND. Let Cy > 1 be the Lipschitz constant of o. Then, for all s, z,y € T,

1/)0(5337 sy) < COL/JO(% y)

Moreover, by Lemma 2.2, the kernel

¥ = log(1 + to)
is CND too. This kernel satisfies
Y(sz,sy) < Y(z,y)+C, Vs,z,yeT,
with C' = log Cy > 0. Moreover, the map = — ¢ (x,e) is proper because o
is proper. O
The implication (i) = (ii’) is based on a variation of the GNS construc-

tion. Our main reference for this is [1, Theorem C.2.3].

LEMMA 2.5. — Let T' be a countable group such that there exists a
proper almost invariant CND kernel ¢ : T’ x T" — [0,00). Then, for every
e > 0, there exist a measure space (S, 1), a closed subspace E C L*(Q, 1),
and a proper (1 + €)-Lipschitz affine action of T on E.

Proof. — Let € > 0. Recall that, by definition, there is C' > 0 such that
Y(sz,sy) < Y(z,y)+C, Vs,z,yel.
Since (£2/C)1 is also a proper almost invariant CND kernel, by rescaling,
we may assume that
(2.1) Y(sx,sy) < P(x,y) + €2, Vs,ayel.

Let V' be the vector space of finitely supported, real-valued functions on I"
with mean 0. In other words, for every v € V|

> w(z) =0,
zel

where only finitely many summands are non-zero. We define a scalar prod-
uct on V' as follows. For v,w € V, we set

(2:2) (v,why == Y v@wy(e,y) + Y viw)w(@).

zyecl zel

TOME 0 (0), FASCICULE 0
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Notice that this is indeed a positive definite bilinear form because v is
CND. The last term in (2.2) ensures that (v,v), > 0 for all v € V'\ {0}.
We define a Hilbert space H,, as the completion of V' for (-, -),. Now let E
be the subspace of H, of all those v such that

lolly =) [o(x)] < oo

xel
We endow E with the norm

(2:3) [0l = [lvlly + v,

for which it becomes a Banach space. Since H,, is an L? space, it embeds
linearly and isometrically into an L! space; see [4, Théoréme 2] or [7, Theo-
rem 6.8]. More precisely, there is a measure space (',p’) and a linear
isometry J : Hy — LYY, p). Now let us define a new map J:E -
LYY, 1) @1 ¢1(T) by
v— (Ju,v), VYveEE,

where @7 stands for the ¢!-direct sum. We can identify L*(Q, u) @101 (T) =
LY(Q, ), where Q = Q' UT and p is the sum of p/ and counting measure
on T. Then J is a linear isometry into L'(2, ). We define a representation
mof I' on V by

(2.4) m(s)v(z) =v(s'z), VseTL, VoeV.
Observe that

Im(s)ollf = = Y v(@)o(y)i(se,sy) + Y v(a)?

z,yel’ rzel
Thus

I (s)ollf = llollf = > v@)oy)(@(z,y) — sz, 59))-

z,yel

Moreover, we know from (2.1) that

(2, y) — P(sz,sy)| <&, Vs,a,y €T,
which implies that

I (s)ollf, = Ilollf, <& D lo(@)llo(y)] = *lvl.

z,yel

Therefore

2 2 2 1/2
Im(s)olle < (<2l0l + l1o]3 )
<ellelly + o]l

ANNALES DE L’INSTITUT FOURIER
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We conclude that
[ (s)vlle = 7 (s)vlly + [I7(s)vlla
< e+ 1) (lelly + llol)
= (e +Dljv]e.

This shows that 7 extends to a uniformly bounded representation on F
with uniform bound (1+¢). We only need to construct a proper cocycle to
conclude. Let us define b: I' — E by

b(s) =y — 6., Vsecl,

where

ba(y) = {; z;i

Observe that b(s) belongs to V for all s € T, so it is well defined as an
element of E. Moreover,

b(st) = m(s) (0t — d¢) + Js — de
= 7(8)b(t) + b(s),
for all s, € T, so b is indeed a cocycle. Finally,
[6(s)llz = 165 = delly + 1105 — dellx

> (20(s,e) +2)/2,
This shows that b is proper because 1 is proper. O
Lemmas 2.4 and 2.5 prove the implications (ii) = (i) = (i’) in Theo-
rem 1.1. Since (ii’) clearly implies (ii), we conclude that the three conditions

are equivalent. This finishes the proof of the theorem.
The proof of Corollary 1.2 uses the same ideas as that of Lemma 2.4.

Proof of Corollary 1.2. — Let p € (0,2] and let A be a subset of an LP
space such that there is a proper uniformly Lipschitz action I' ~% A. Take
vy € A and define

bo(x,y) = llo(z)vo — a(y)voll’, Va,yeT.

By Proposition 2.3, ¥y is a CND kernel. Let Cy > 1 be the Lipschitz
constant of o. Then, for all s,z,y € T,

Yo(sz,sy) < Cgrbo(w,y).
This shows that the CND kernel ¢ = log(1 + ) satisfies

TOME 0 (0), FASCICULE 0
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with C = plog Cy. The map = +— ¢ (x,e) is proper because o is proper.
By Theorem 1.1, T' has a proper uniformly Lipschitz affine action on
EC L. O

Remark 2.6. — In the case that A is a subspace (not merely a subset)
of an LP space with p € [1,2], this result was known, and it is simply a
consequence of the fact that every LP space embeds isometrically into an
L' space; see [4, Théoréme 2] or [7, Theorem 6.8]. For the other cases, we
believe it is new.

3. Groups acting on products of quasi-trees

This section is devoted to the proof of Theorem 1.3. We shall give two
proofs of this result. The first one is based on Kerr’s characterisation of
quasi-trees in terms of (1,C)-quasi-isometries [19]. The second one is in-
spired by Bozejko and Picardello’s work on Schur multipliers on trees [3],
and its subsequent generalisations.

3.1. Quasi-isometries and the first proof

We begin by defining quasi-isometries and quasi-trees. For a more de-
tailed treatment, we refer the reader to [19, 23].

Let (X,dx) and (Y, dy) be two metric spaces and let L > 1, C' > 0. We
say that f: X — Y is an (L, C)-quasi-isometry if

(1) For all z1, 29 € X,
%dx(xl,.’bg) - C < dy(f($1)7 f({L'Q)) < de(wl,.%'z) + C.

(2) For all y € Y, there is z € X such that dy (f(x),y) < C.
If such a map exists, we say that (X,dx) and (Y,dy) are (L,C)-quasi-
isometric. We say that they are quasi-isometric if they are (L,C)-quasi-
isometric for some L > 1, C > 0.

We will view a connected graph as a metric space (X,d). This means
that X is the set of vertices of the graph, and d is the edge-path distance
on it. A connected graph is called a tree if every two vertices are connected
by exactly one simple path. It is a quasi-tree if it is quasi-isometric to a
tree. The following was proved in [19, Theorem 1.3].

THEOREM 3.1 (Kerr). — If X is a quasi-tree, then there exists C > 0
such that X is (1, C)-quasi-isometric to a tree.

ANNALES DE L’INSTITUT FOURIER



CND KERNELS AND PROPER ACTIONS ON E C L* 13

The following result was first proved by Haagerup for free groups; see [16,
Lemma 1.2]. It is the reason why we speak of the Haagerup property. It
was extended to trees in [38]; see also [18, Lemma 2.3].

THEOREM 3.2 (Haagerup, Watatani). — The edge-path distance on a
tree is a CND kernel.

Now we can give our first proof of Theorem 1.3.

First proof of Theorem 1.3. — Let (X1,d1),...,(Xn,dn) be N quasi-
trees. By Theorem 3.1, for each i € {1,..., N}, there is a (1, C;)-quasi-
isometry g; : X; — T;, where T; isa treeand C; > 0. Let X = Xy x---x Xy
and let dx be the ¢!-combination of the metrics di,...dy as in (1.3). We
define (7, dr) similarly. Let g : X — T be given by

g(x1,...,zn) = (g1(z1),...,gn(zN)), Y (z1,...,2N8) € X.

We define ¢ : X x X — [0,00) by

Y(x,y) = dr(g(z),9(y), Va,yeX

By Theorem 3.2, ¥ is the sum of CND kernels, and therefore it is CND
too. Now let I' be a group acting properly by isometries on (X, dx), and fix
xo € X. By restricting ¢ to the orbit I'-zg, we can view it as a CND kernel
on I'. We claim that it is almost invariant and proper. Indeed, defining
C=C;+---+Cn, we have

3.1  dx(z,y) - C<dr(g(z),9(y) <dx(z,y)+C, Va,yeX
In particular,
P(s-a,s-y) < Pla,y) + 20,
for all z,y € I' - ¢ and s € T". Finally, the inequality
Y(s - xo,70) = dx(s - w0, 70) — C

shows that ) is proper. By Theorem 1.1, we conclude that I'" has a proper
uniformly Lipschitz affine action on a subspace of an L' space. a

Remark 3.3. — The previous proof does not make use of the graph struc-
ture on X, only that it is (1, C')-quasi-isometric to a tree. Although we only
deal with graphs here, quasi-trees can be defined more generally as geodesic
metric spaces that are quasi-isometric to trees. Since the results in [19] still
hold in that level of generality, the previous proof works in that context too.
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3.2. The kernel d, and the second proof

For the second proof of Theorem 1.3, we will use a construction that
makes sense for any connected graph, but which becomes particularly in-
teresting for quasi-trees. As before, the main goal is to construct an almost
invariant CND kernel on a product of quasi-trees.

Let (X, d) be a connected graph. For a € X and k € N, let

B(a, k) ={x € X |d(a,z) < k}.

The following definition was given in (an earlier version of) [6]. For every
x,y € X, we set

(3.2) Ru(z,y) = min{k; >0

There is no connected component of }

X \ B(a, k) containing both z and y.
Since z does not belong to X \ B(a,d(a,z)), we always have
Ra (xv y) < min{d(av x)v d(a’v y)}

The following result is known as the bottleneck property. It can be
thought of as a stronger form of hyperbolicity for quasi-trees; see [23,
Lemma 2.16].

LEMMA 3.4 (Manning). — Let (X, d) be a quasi-tree. There exists A > 0
such that X satisfies the following: let x,y € X, and let p be a point lying
in a geodesic between x and y. Then every path joining x to y must pass
within A of p. In particular, X is A-hyperbolic.

Here, by d-hyperbolic space, we mean a geodesic metric space such that
all the geodesic triangles are §-thin; see [23, Definition 2.6].
For a,z,y € X, the Gromov product (z,y), is defined as

(&:9)a = 3 (d(a,2) + d(ay) — d(z.p)).

We will need the following lemma. For a proof, see for instance [13, Lem-
me 17].

LEMMA 3.5. — Let (X,d) be a d-hyperbolic space. Let a,z,y € X and
let [z,y] be a geodesic path between x and y. Then

(2. 9)a < d(a, [2.3]) < (.9)a +5.

The following lemma shows that, on a quasi-tree, R, (z,y) coincides with
the Gromov product (x,y), up to bounded error.
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LEMMA 3.6. — Let (X, d) be a quasi-tree and let A > 0 be the constant
given by Lemma 3.4. Then, for all a,z,y € X,

d(xvy) —4A < d<aa (E) + d(avy) - ZRa(‘T?y) < d(xvy)

Proof. — We begin with the second inequality, which is independent of
the geometry of the graph. Let v be a geodesic path joining x to y, and let
u be the vertex in v closest to a. Observe that d(a, u) < Rq(x,y). Therefore

d(a,z) + d(a,y) < d(a,u) + d(u,z) + d(a,u) + d(u,y)
< 2R, (x,y) + d(z,y).
Now we turn to the first inequality. Let u be as above and let v/ be any
path joining x to y. By Lemma 3.4, there is a vertex w in 7’ such that
d(u,w) < A. This shows that v’ is not contained in X \ B(a,d(a,u) + A).
Hence
R.(x,y) < d(a,u) + A.
On the other hand, by Lemma 3.5,
d(a,u) < (z,y)q + A.
Hence
2d(a,u) + 2A
d(a,x) +d(aa y) - d(l’,y) +4A O
Given a connected graph (X, d) and a € X, we define d,: X x X —N by
(3.3) do(z,y) = d(a,z) + d(a,y) — 2R, (x,y), Vz,yeX.

2R, (z,y) <
<

Observe that d, is a symmetric kernel because R, is symmetric. Moreover,
it vanishes on the diagonal because R,(z,z) = d(a,x) for all z. For quasi-
trees, the inequality given by Lemma 3.6 can be written as

(3.4) d(z,y) —4A < do(z,y) < d(z,y), Va,z,yec X.

This inequality should be compared with (3.1) in the first proof of Theo-
rem 1.3. The kernel d, will play the role of the pull-back of the metric
on a tree. Therefore, our next task is proving that d, is a CND kernel.
We will see that this is true for any connected graph, and we will achieve
it by showing that the kernel (z,y) — rda(®
r € (0,1).

LEMMA 3.7. — Let (X,d) be a connected graph. For all a,x € X, we
have the following equality of sets:

{Ro(z,y) |y e X} ={0,...,d(a,x)},
where R, (x,y) is defined as in (3.2).

) is positive definite for all

TOME 0 (0), FASCICULE 0



16 Ignacio VERGARA

Proof. — Let v : {0,...,d(a,x)} — X be a geodesic path joining a to x.
Then
Ra(y(k),z) =
for all k € {0,...,d(a,z)}. Since Ry(z,y) < d(a,x) for every y € X, these
are the only possible values. O
For all a,xz € X, k € N, let us define the set
(3.5) Vo(z, k) ={y € X | Ra(x,y) = k}.

This may be viewed as the ball of center x and radius e~* for the metric

<, given by
eiRa(z’y)’ y # x’
La(z,y) = {
0, Y=
It was proven in (the first version of) [6] that <, satisfies the ultrametric
inequality. We reproduce the proof here for completeness.
LEMMA 3.8. — Let (X,d) be a connected graph. For all a,z,y,z € X,
Ra(z,y) > min{Rq(z, 2), Ra(z, )}
In particular,
(3.6) Lo (z,y) < max{<t,(z,2), << (z,9)}.

Proof. — Let a,x,y, z€ X. We will assume that min{R,(z, z), R.(z,9)}
> 0 since otherwise there is nothing to prove. Take k = min{R,(z, z),
R.(z,y)} — 1. By definition, 2 and z belong to the same connected com-
ponent of X \ B(a, k). The same holds for z and y, and therefore x and y
belong to the same connected component of X \ B(a, k). This implies that
Ry (z,y) > k. Equivalently

Ro(z,y) 2 min{R,(z, 2), Ra(z,9)}.
t

The second inequality follows from the fact that the function ¢t — e™* is
decreasing. O

LEMMA 3.9. — Let (X,d) be a connected graph. For all z,y € X and
all k € {0,...,d(a,2)}, j €{0,...,d(a,y)},
Va(1'7]€) = Va(ya.]) — k :.] and Ra(x,y) 2 kv
where V, is defined as in (3.5).
Proof. — Recall that the ultrametric inequality (3.6) implies that every
element of a ball is its centre. If we assume that k = j and R,(x,y) > k,

then z belongs to V,(y, k), which implies that V,(x, k) = V,(y, k). Con-
versely, assume that V,(x, k) = V,(y, ). Without loss of generality, we may
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suppose that k < j. Since y belongs to V,(x, k), the ultrametric inequality
tells us that

Va(yv k) = Va(xa k) = Va(yvj)~
By Lemma 3.7, k£ = j. This finishes the proof. O

Now we are ready to prove that (z,y) — r(®¥) is positive definite.
The proof is inspired by [3, Proposition 2.1], where the authors estimate
the norms of certain Schur multipliers on trees. The idea is to fix a point
at infinity, and then, for each vertex, follow a geodesic ray towards that
fixed point. This idea has been extremely fruitful in the study of Schur
multipliers and weak amenability, and it has been adapted to several more
general contexts. In our case, we seek to construct a positive definite kernel,
which is a particular case of Schur multiplier; see [3, Section 2]. Intuitively,
what we will do is fix a vertex a and attach to it an infinite geodesic ray.
This will play the role of the point at infinity.

PROPOSITION 3.10. — Let (X, d) be a connected graph and a € X. Let
d, : X x X — N be the kernel defined in (3.3). For all v € (0,1), the kernel

(z,y) € X2 — pda(®y)

is positive definite.

Proof. — Let a € X and r € (0,1). For each x € X and k € {0,...,
d(a,x)}, define

N, k) = Volz,d(z,a) — k),

where V, is defined as in (3.5). In the case of a tree, if we denote by
xr = Zo,...,Tn, = a the unique geodesic path joining = to a, Q(x,k) is
the half-space containing xj, but not xx41. Hence we recover the idea of
following a geodesic path towards a fixed point. Let P(X) denote the power

set of X. Recall that, for any set Y, the Hilbert space ¢2(Y) has a canonical
orthonormal basis (d,), ey defined by

1 =
5y ) = {0 e

Define ¢ : X — (2(P(X)) @ £*(N) by

N d(a,z)—1
Ea)=0=r)% > Foawr, Y. ™0k-daa |
k=0 k> d(a,x)
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for all x € X. Here /2(N) can be viewed as the ¢2 space of an infinite
geodesic ray attached to a. We have, for all z,y € X,

d(a,z)—1 d(a,y)—1

(@) &) = (1= Z Z T o Saya)
+(1-r7) Z > M da) Si-daw)-
k> d(a,x) j=d(a,y)
By Lemma 3.9, Q(x, k) = Q(y, j) if and only if
dla,z) — k=d(a,y) —j and Ry(z,y) > d(a,z)— k.

Therefore
d(a,z)—1 d(a,y)—1 d(a,x)—1
Z Z 5Q($ ks 5Q(y _])> Z r2k7d(a,z)+d(a,y)
k=0 k=d(a,x)—Ra(x,y)
Ra(z,y)—1
_ Td,l(x,y) Z 72k
k=0

On the other hand,

Z Z k+j 5k—d(a,x)75j—d(a,y)>: Z p2k—d(a,z)+d(a,y)

k>d(a,x) j=d(a,y) k>d(a,z)

— pda(@y) E 2k

k> Ra(z,y)

This shows that

(€(z),&(y)) = (1 — r2)rda(fyy) Z 2k

k>0
— pda(@y)

We conclude that (x,y) — 7% (*¥) is a positive definite kernel. O

COROLLARY 3.11. — Let X be a connected graph. For all a € X, the
kernel

(z,y) € X? r— du(2,y)
is conditionally negative definite.

Proof. — This follows directly from Proposition 3.10 and Theorem 2.1.
O

Now we are ready to give our second proof of Theorem 1.3.
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Second proof of Theorem 1.3. — Let (X1,d1),...,(Xn,dn) be N quasi-
trees, and fix a = (a1,...,any) € X. Foralli € {1,...,N},let d,, : X; = N
be the kernel defined as in (3.3). By Corollary 3.11, d,, is a CND kernel.
Let X = X; x--- x Xy, and define ¢ : X x X — N by

N
Y(@,y) =Y da,(xiyi), Va,yeX.
=1

This kernel is CND because it is a sum of CND kernels. Moreover, by
Lemma 3.6, there is a constant C' > 0 such that

d(z,y)—0§¢(x,y)§d(x,y), vxvyeXa

where
N

d(z,y) = Z di(xi,yi)-

In particular, if ' is a group acting properly by isometries on X, then
(s -x,s-y) <Y(z,y)+C, Vsel, Va,ye X.

Restricting ¥ to the orbit I' - a, we get a proper almost invariant CND
kernel on I'. By Theorem 1.1, we obtain a proper uniformly Lipschitz affine
action on E C L1, O

4. Weakly amenable groups

Now we focus on weakly amenable groups and the proof of Theorem 1.6.
For this purpose, we shall look at a weaker property introduced by Knu-
dby [20]. We say that a countable group I' has the weak Haagerup property
if there exists a sequence of functions ¢,, : I' — C vanishing at infinity and
converging pointwise to 1 such that sup,,||¢n ||, < co. We will only be
interested in the weak Haagerup property with constant 1, meaning that
the condition above holds with sup,,[[¢n || g,y < 1. We will not recall the
precise definition of the norm ||-||g,r) because we will not use it in our
argument. Instead, we refer the interested reader to [5, Appendix D].

Since every finitely supported function vanishes at infinity, every weakly
amenable group I' with A(T') = 1 has the weak Haagerup property with
constant 1. The following is a consequence of [20, Theorem 1.2] and [20,
Proposition 4.3].
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THEOREM 4.1 (Knudby). — Let I be a group with the weak Haagerup
property with constant 1. Then there exist a proper function p : I' = R, a
Hilbert space ‘H, and maps R, S : T' — H such that

o(y~'z) = [IR(z) = R)|* + [IS(z) + S)II*, Ya,yel.
In particular, ¢(e) = 4S(z)||* for all x € T.

This theorem allows us to prove the following result, which implies Theo-
rem 1.6.

THEOREM 4.2. — Let I' be a group with the weak Haagerup property
with constant 1. Then I' has a proper uniformly Lipschitz affine action on
a subspace of an L' space.

Proof. — Let R,S : I' — H be the maps given by Theorem 4.1, and
define a CND kernel ¢ : T' x I' — [0, 00) by
U(a,y) = |R(z) - R(y)|I*, Ya,yel.
For all s,z,y €T,
U(sz, sy) = || R(sz) — R(sy)|?
= p(y~'z) = [|S(s2) + S(sy)lI?
= |R(z) — R(y)|I” + S(z) + S(y)II* — [|S(sz) + S(sy)|*
< P(@,y) + ¢(e),
where ¢ is the function given by Theorem 4.1. Moreover,
U(@,e) = p(z) — [|S(z) + S(e)* = p(z) — ¢(e),
which tends to infinity as x — oo because ¢ is proper. We conclude that

is a proper almost invariant CND kernel. By Theorem 1.1, T" has a proper
uniformly Lipschitz affine action on a subspace of an L! space. 0

5. A-TTT-menable groups

Recall that a countable group I' is a-TTT-menable if it admits a proper
wq-cocycle. A map b: ' — H is called a wq-cocycle if there exists 7 : ' —
U(H) such that

sup |[b(st) — w(s)b(t) — b(s)]| < oo.

s,;tel’
The reason behind this terminology lies in the fact that a-TTT-menability
is a strong negation of Property (TTT), as defined [30]; in the same way
as a-T-menability is a strong negation of Property (T).
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The proof of Theorem 1.7 consists essentially in noticing that wq-cocycles
give rise to almost invariant CND kernels.

Proof of Theorem 1.7. — Let I" be an a-TTT-menable group, and let
b: T — H be a proper wg-cocycle associated to m : ' — U(H). Then there
exists a constant C' > 0 such that

llb(st) —m(s)b(t) —b(s)|[| < C, Vs, tel.
Let us define ¢ : T' x ' — [0, 00) by

We claim that v is a proper almost invariant CND kernel. Indeed, it is
CND because 12 is CND; see [28, Lemma 6]. Now, for all s,x,y € T,

Y(sz, sy) = [|b(sz) — b(sy)||
< [[b(sz) — w(s)b(x) — b(s)|| + [|lm(s)b(x) — w(s)b(y)|l
+ [1b(s) + 7 (s)b(y) — b(sy)]|
< 2C +[|b(z) — b(y)|l
=(z,y) + 2C.

Finally, ¥ (z, e) tends to infinity as x — oo because b is proper. By Theo-
rem 1.1, we conclude that I" has a proper uniformly Lipschitz affine action
on a subspace of an L' space. O

As pointed out in [30], hyperbolic groups are a-TTT-menable. Hence,
by Theorem 1.7, every hyperbolic group has a proper uniformly Lipschitz
affine action on a subspace of an L' space. This is essentially what was
done in [36, Theorem 1.2], although a-TTT-menability is not explicitly
mentioned in that paper.
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