A duality operators/Banach spaces
[Une dualité entre opérateurs et espaces de Banach]
Annales de l'Institut Fourier, Online first, 43 p.

To a pair (T,X) of an operator T between subspaces of L p spaces and a Banach space X we can associate a finite or infinite number, the norm T X of T between the subspaces of the X-valued L p spaces. Given such an operator T, we characterize all the operators S for which the implication T X <S X < holds.

This is a form of the bipolar theorem for a duality between the class of Banach spaces and the class of operators between subspaces of L p spaces, essentially introduced by Pisier. The methods we introduce allow us to recover also the other direction – characterizing the bipolar of a set of Banach spaces –, which had been obtained by Hernandez in 1983.

À une paire (T,X) d’un opérateur T entre sous-espaces d’espaces L p et d’un espace de Banach X on peut associer un nombre, potentiellement infini : la norm T X de T entre sous-espaces d’espaces L p à valeurs dans X. Étant donné un tel opérateur T, nous caractérisons tous les autres opérateurs S pour lesquels l’implication T X <S X < est vraie.

Cet énoncé est une forme du théorème du bipolaire pour une dualité entre classes d’espaces de Banach et classes de sous-espaces d’espaces L p , essentiellement introduite par Gilles Pisier. Nos méthodes permettent également de retrouver l’autre direction – caractériser le bipolaire d’une classe d’espaces de Banach –, qui a été obtenue par Hernandez en 1983.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3730
Classification : 46A22, 46B20, 46B50
Keywords: duality, geometry of Banach space, bipolar theorem, $L_p$ spaces
Mots-clés : dualité, géometrie des espaces de Banach, théorème du bipolaires, espaces $L_p$

de la Salle, Mikael 1

1 Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet I CJ UMR5208 69622 Villeurbanne, France
@unpublished{AIF_0__0_0_A18_0,
     author = {de la Salle, Mikael},
     title = {A duality {operators/Banach} spaces},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3730},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - de la Salle, Mikael
TI  - A duality operators/Banach spaces
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3730
LA  - en
ID  - AIF_0__0_0_A18_0
ER  - 
%0 Unpublished Work
%A de la Salle, Mikael
%T A duality operators/Banach spaces
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3730
%G en
%F AIF_0__0_0_A18_0
de la Salle, Mikael. A duality operators/Banach spaces. Annales de l'Institut Fourier, Online first, 43 p.

[1] Arzhantseva, Goulnara; Tessera, Romain Relative expanders, Geom. Funct. Anal., Volume 25 (2015) no. 2, pp. 317-341 | DOI | MR | Zbl

[2] Bader, Uri; Furman, Alex; Gelander, Tsachik; Monod, Nicolas Property (T) and rigidity for actions on Banach spaces, Acta Math., Volume 198 (2007) no. 1, pp. 57-105 | DOI | MR | Zbl

[3] Banach, Stefan Théorie des opérations linéaires, Monografie Matematyczne, 1, Panstwowe Wydawnictwo Naukowe, 1932, vii+254 pages | MR | Zbl

[4] Bourbaki, Nicolas Espaces vectoriels topologiques. Chapitres 1 à 5, Masson, 1981, vii+368 pages | MR | Zbl

[5] Bourgain, J. Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., Volume 21 (1983) no. 2, pp. 163-168 | DOI | MR | Zbl

[6] Burkholder, D. L. A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) (The Wadsworth Mathematics Series), Wadsworth, 1983, pp. 270-286 | MR | Zbl

[7] Cheng, Qingjin Sphere equivalence, property H, and Banach expanders, Stud. Math., Volume 233 (2016) no. 1, pp. 67-83 | DOI | MR | Zbl

[8] Conway, John B. A course in functional analysis, Graduate Texts in Mathematics, 96, Springer, 1990, xvi+399 pages | MR | Zbl

[9] Hardin, Clyde D. Jr. Isometries on subspaces of L p , Indiana Univ. Math. J., Volume 30 (1981) no. 3, pp. 449-465 | DOI | MR | Zbl

[10] Heinrich, Stefan Ultraproducts in Banach space theory, J. Reine Angew. Math., Volume 313 (1980), pp. 72-104 | MR | Zbl

[11] Hernandez, Roberto Espaces L p , factorisation et produits tensoriels dans les espaces de Banach, C. R. Math., Volume 296 (1983) no. 9, pp. 385-388 | MR | Zbl

[12] Hernandez, Roberto Espaces L p , factorisations et produits tensoriels, Ph. D. Thesis, Université Pierre et Marie Curie (France) (1983)

[13] Kwapień, S. Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Stud. Math., Volume 44 (1972), pp. 583-595 | DOI | MR | Zbl

[14] de Laat, Tim; de la Salle, Mikael Strong property (T) for higher-rank simple Lie groups, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 4, pp. 936-966 | DOI | MR | Zbl

[15] de Laat, Tim; de la Salle, Mikael Approximation properties for noncommutative L p -spaces of high rank lattices and nonembeddability of expanders, J. Reine Angew. Math., Volume 737 (2018), pp. 49-69 | DOI | MR | Zbl

[16] de Laat, Tim; de la Salle, Mikael Banach space actions and L 2 -spectral gap, Anal. PDE, Volume 14 (2021) no. 1, pp. 45-76 | DOI | MR | Zbl

[17] de Laat, Tim; de la Salle, Mikael Actions of higher rank groups on uniformly convex Banach spaces (2023) | arXiv | Zbl

[18] Lafforgue, Vincent Un renforcement de la propriété (T), Duke Math. J., Volume 143 (2008) no. 3, pp. 559-602 | DOI | MR | Zbl

[19] Lafforgue, Vincent Propriété (T) renforcée banachique et transformation de Fourier rapide, J. Topol. Anal., Volume 1 (2009) no. 3, pp. 191-206 | DOI | MR | Zbl

[20] McGehee, O. Carruth A proof of a statement of Banach about the weak * topology, Mich. Math. J., Volume 15 (1968), pp. 135-140 | MR | Zbl

[21] Mendel, Manor; Naor, Assaf Nonlinear spectral calculus and super-expanders, Publ. Math., Inst. Hautes Étud. Sci., Volume 119 (2014), pp. 1-95 | DOI | Numdam | MR | Zbl

[22] Milman, Vitali D.; Wolfson, Haim J. Minkowski spaces with extremal distance from the Euclidean space, Isr. J. Math., Volume 29 (1978) no. 2-3, pp. 113-131 | DOI | MR | Zbl

[23] Mimura, Masato Sphere equivalence, Banach expanders, and extrapolation, Int. Math. Res. Not. (2015) no. 12, pp. 4372-4391 | DOI | MR | Zbl

[24] Naor, Assaf Comparison of metric spectral gaps, Anal. Geom. Metr. Spaces, Volume 2 (2014) no. 1, pp. 1-52 | DOI | MR | Zbl

[25] Oppenheim, Izhar Banach property (T) for SL n () and its applications, Invent. Math., Volume 234 (2023) no. 2, pp. 893-930 | DOI | MR | Zbl

[26] Ostrovskii, Mikhail I. w*-derivatives of transfinite order for subspaces of a conjugate Banach space, Dokl. Akad. Nauk Ukr. SSR, Ser. A, Volume 1987 (1987) no. 10, pp. 9-12 | MR | Zbl

[27] Ostrovskii, Mikhail I. Weak* sequential closures in Banach space theory and their applications, General topology in Banach spaces, Nova Science Publishers, 2001, pp. 21-34 | Zbl

[28] Ostrovskii, Mikhail I. Coarse embeddability into Banach spaces, Topol. Proc., Volume 33 (2009), pp. 163-183 | Zbl

[29] Pisier, Gilles Holomorphic semigroups and the geometry of Banach spaces, Ann. Math. (2), Volume 115 (1982) no. 2, pp. 375-392 | DOI | MR | Zbl

[30] Pisier, Gilles Complex interpolation between Hilbert, Banach and operator spaces, Mem. Am. Math. Soc., Volume 208 (2010) no. 978, p. vi+78 | DOI | MR | Zbl

[31] Rørdam, Mikael; Thom, Andreas; Vaes, Stefaan; Voiculescu, Dan-Virgil C*-Algebras, Oberwolfach Rep., Volume 13 (2016) no. 3, pp. 2269-2345 | DOI | MR | Zbl

[32] Rudin, Walter L p -isometries and equimeasurability, Indiana Univ. Math. J., Volume 25 (1976) no. 3, pp. 215-228 | DOI | MR | Zbl

[33] Rudin, Walter Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1991, xviii+424 pages | MR | Zbl

[34] de la Salle, Mikael Towards strong Banach property (T) for SL(3,R), Isr. J. Math., Volume 211 (2015) no. 1, pp. 105-145 | DOI | MR | Zbl

[35] Sarason, Donald On the order of a simply connected domain, Mich. Math. J., Volume 15 (1968), pp. 129-133 | MR | Zbl

[36] Sarason, Donald A remark on the weak-star topology of l , Stud. Math., Volume 30 (1968), pp. 355-359 | DOI | MR | Zbl

[37] Tessera, Romain Coarse embeddings into a Hilbert space, Haagerup property and Poincaré inequalities, J. Topol. Anal., Volume 1 (2009) no. 1, pp. 87-100 | DOI | MR | Zbl

Cité par Sources :