[Une dualité entre opérateurs et espaces de Banach]
To a pair of an operator between subspaces of spaces and a Banach space we can associate a finite or infinite number, the norm of between the subspaces of the -valued spaces. Given such an operator , we characterize all the operators for which the implication holds.
This is a form of the bipolar theorem for a duality between the class of Banach spaces and the class of operators between subspaces of spaces, essentially introduced by Pisier. The methods we introduce allow us to recover also the other direction – characterizing the bipolar of a set of Banach spaces –, which had been obtained by Hernandez in 1983.
À une paire d’un opérateur entre sous-espaces d’espaces et d’un espace de Banach on peut associer un nombre, potentiellement infini : la norm de entre sous-espaces d’espaces à valeurs dans . Étant donné un tel opérateur , nous caractérisons tous les autres opérateurs pour lesquels l’implication est vraie.
Cet énoncé est une forme du théorème du bipolaire pour une dualité entre classes d’espaces de Banach et classes de sous-espaces d’espaces , essentiellement introduite par Gilles Pisier. Nos méthodes permettent également de retrouver l’autre direction – caractériser le bipolaire d’une classe d’espaces de Banach –, qui a été obtenue par Hernandez en 1983.
Révisé le :
Accepté le :
Première publication :
Keywords: duality, geometry of Banach space, bipolar theorem, $L_p$ spaces
Mots-clés : dualité, géometrie des espaces de Banach, théorème du bipolaires, espaces $L_p$
de la Salle, Mikael 1
@unpublished{AIF_0__0_0_A18_0, author = {de la Salle, Mikael}, title = {A duality {operators/Banach} spaces}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3730}, language = {en}, note = {Online first}, }
de la Salle, Mikael. A duality operators/Banach spaces. Annales de l'Institut Fourier, Online first, 43 p.
[1] Relative expanders, Geom. Funct. Anal., Volume 25 (2015) no. 2, pp. 317-341 | DOI | MR | Zbl
[2] Property (T) and rigidity for actions on Banach spaces, Acta Math., Volume 198 (2007) no. 1, pp. 57-105 | DOI | MR | Zbl
[3] Théorie des opérations linéaires, Monografie Matematyczne, 1, Panstwowe Wydawnictwo Naukowe, 1932, vii+254 pages | MR | Zbl
[4] Espaces vectoriels topologiques. Chapitres 1 à 5, Masson, 1981, vii+368 pages | MR | Zbl
[5] Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., Volume 21 (1983) no. 2, pp. 163-168 | DOI | MR | Zbl
[6] A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) (The Wadsworth Mathematics Series), Wadsworth, 1983, pp. 270-286 | MR | Zbl
[7] Sphere equivalence, property H, and Banach expanders, Stud. Math., Volume 233 (2016) no. 1, pp. 67-83 | DOI | MR | Zbl
[8] A course in functional analysis, Graduate Texts in Mathematics, 96, Springer, 1990, xvi+399 pages | MR | Zbl
[9] Isometries on subspaces of , Indiana Univ. Math. J., Volume 30 (1981) no. 3, pp. 449-465 | DOI | MR | Zbl
[10] Ultraproducts in Banach space theory, J. Reine Angew. Math., Volume 313 (1980), pp. 72-104 | MR | Zbl
[11] Espaces , factorisation et produits tensoriels dans les espaces de Banach, C. R. Math., Volume 296 (1983) no. 9, pp. 385-388 | MR | Zbl
[12] Espaces , factorisations et produits tensoriels, Ph. D. Thesis, Université Pierre et Marie Curie (France) (1983)
[13] Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Stud. Math., Volume 44 (1972), pp. 583-595 | DOI | MR | Zbl
[14] Strong property (T) for higher-rank simple Lie groups, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 4, pp. 936-966 | DOI | MR | Zbl
[15] Approximation properties for noncommutative -spaces of high rank lattices and nonembeddability of expanders, J. Reine Angew. Math., Volume 737 (2018), pp. 49-69 | DOI | MR | Zbl
[16] Banach space actions and -spectral gap, Anal. PDE, Volume 14 (2021) no. 1, pp. 45-76 | DOI | MR | Zbl
[17] Actions of higher rank groups on uniformly convex Banach spaces (2023) | arXiv | Zbl
[18] Un renforcement de la propriété (T), Duke Math. J., Volume 143 (2008) no. 3, pp. 559-602 | DOI | MR | Zbl
[19] Propriété (T) renforcée banachique et transformation de Fourier rapide, J. Topol. Anal., Volume 1 (2009) no. 3, pp. 191-206 | DOI | MR | Zbl
[20] A proof of a statement of Banach about the weak topology, Mich. Math. J., Volume 15 (1968), pp. 135-140 | MR | Zbl
[21] Nonlinear spectral calculus and super-expanders, Publ. Math., Inst. Hautes Étud. Sci., Volume 119 (2014), pp. 1-95 | DOI | Numdam | MR | Zbl
[22] Minkowski spaces with extremal distance from the Euclidean space, Isr. J. Math., Volume 29 (1978) no. 2-3, pp. 113-131 | DOI | MR | Zbl
[23] Sphere equivalence, Banach expanders, and extrapolation, Int. Math. Res. Not. (2015) no. 12, pp. 4372-4391 | DOI | MR | Zbl
[24] Comparison of metric spectral gaps, Anal. Geom. Metr. Spaces, Volume 2 (2014) no. 1, pp. 1-52 | DOI | MR | Zbl
[25] Banach property (T) for and its applications, Invent. Math., Volume 234 (2023) no. 2, pp. 893-930 | DOI | MR | Zbl
[26] w*-derivatives of transfinite order for subspaces of a conjugate Banach space, Dokl. Akad. Nauk Ukr. SSR, Ser. A, Volume 1987 (1987) no. 10, pp. 9-12 | MR | Zbl
[27] Weak* sequential closures in Banach space theory and their applications, General topology in Banach spaces, Nova Science Publishers, 2001, pp. 21-34 | Zbl
[28] Coarse embeddability into Banach spaces, Topol. Proc., Volume 33 (2009), pp. 163-183 | Zbl
[29] Holomorphic semigroups and the geometry of Banach spaces, Ann. Math. (2), Volume 115 (1982) no. 2, pp. 375-392 | DOI | MR | Zbl
[30] Complex interpolation between Hilbert, Banach and operator spaces, Mem. Am. Math. Soc., Volume 208 (2010) no. 978, p. vi+78 | DOI | MR | Zbl
[31] C*-Algebras, Oberwolfach Rep., Volume 13 (2016) no. 3, pp. 2269-2345 | DOI | MR | Zbl
[32] -isometries and equimeasurability, Indiana Univ. Math. J., Volume 25 (1976) no. 3, pp. 215-228 | DOI | MR | Zbl
[33] Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1991, xviii+424 pages | MR | Zbl
[34] Towards strong Banach property (T) for , Isr. J. Math., Volume 211 (2015) no. 1, pp. 105-145 | DOI | MR | Zbl
[35] On the order of a simply connected domain, Mich. Math. J., Volume 15 (1968), pp. 129-133 | MR | Zbl
[36] A remark on the weak-star topology of , Stud. Math., Volume 30 (1968), pp. 355-359 | DOI | MR | Zbl
[37] Coarse embeddings into a Hilbert space, Haagerup property and Poincaré inequalities, J. Topol. Anal., Volume 1 (2009) no. 1, pp. 87-100 | DOI | MR | Zbl
Cité par Sources :