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A DUALITY OPERATORS/BANACH SPACES

by Mikael DE LA SALLE (*)

Abstract. — To a pair (T, X) of an operator T between subspaces of Lp spaces
and a Banach space X we can associate a finite or infinite number, the norm ∥TX∥
of T between the subspaces of the X-valued Lp spaces. Given such an operator T ,
we characterize all the operators S for which the implication ∥TX∥ < ∞ ⇒ ∥SX∥ <
∞ holds.

This is a form of the bipolar theorem for a duality between the class of Banach
spaces and the class of operators between subspaces of Lp spaces, essentially in-
troduced by Pisier. The methods we introduce allow us to recover also the other
direction – characterizing the bipolar of a set of Banach spaces –, which had been
obtained by Hernandez in 1983.

Résumé. — À une paire (T, X) d’un opérateur T entre sous-espaces d’espaces Lp

et d’un espace de Banach X on peut associer un nombre, potentiellement infini: la
norm ∥TX∥ de T entre sous-espaces d’espaces Lp à valeurs dans X. Étant donné
un tel opérateur T , nous caractérisons tous les autres opérateurs S pour lesquels
l’implication ∥TX∥ < ∞ ⇒ ∥SX∥ < ∞ est vraie.

Cet énoncé est une forme du théorème du bipolaire pour une dualité entre classes
d’espaces de Banach et classes de sous-espaces d’espaces Lp, essentiellement intro-
duite par Gilles Pisier. Nos méthodes permettent également de retrouver l’autre
direction – caractériser le bipolaire d’une classe d’espaces de Banach –, qui a été
obtenue par Hernandez en 1983.

1. Introduction

All the Banach spaces appearing in this paper will be assumed to be
separable, and will be over the field K of real or complex numbers.

The local theory of Banach spaces studies infinite dimensional Banach
spaces through their finite-dimensional subspaces. For example it cannot
distinguish between the (non linearly isomorphic if p ̸= 2, see [3, Theo-
rem XII.3.8]) spaces Lp

(
[0, 1]

)
and ℓp(N), as they can both be written as the
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2 Mikael DE LA SALLE

closure of an increasing sequence of subspaces isometric to ℓp

(
{1, . . . , 2n}

)
:

the subspace of Lp

(
[0, 1]

)
made functions that are constant on the intervals(

k
2n ,

k+1
2n

]
, and the subspace of ℓp(N) of sequences that vanish oustide of

{0, . . . , 2n − 1} respectively.
The relevant notions in the local theory of Banach spaces are the proper-

ties of a Banach space that depend only on the collection of his finite dimen-
sional subspaces and not on the way they are organized. Said differently,
the properties that are inherited by finite representability. Such properties
are called super-properties. The central question is to understand whether
one super-property implies another, see Section 2 for terminology, details
and examples.

Given a real number p ⩾ 1 and a linear map T between subspaces dom(T )
and ran(T ) of Lp spaces Lp(Ω1,m1) and Lp(Ω2,m2), we can define a super-
property P (T ) as follows: a Banach spaceX has P (T ) if and only ∥TX∥ ⩽ 1.
Here ∥TX∥ denotes the (possibly infinite) norm of T⊗ idX between the sub-
spaces dom(T )⊗X and ran(T )⊗X of Lp(Ωi,mi;X). It is the smallest real
number such that

∫
Ω2

∥∥∥∑
i

(Tfi)(ω2)xi

∥∥∥p

dm2(ω2) ⩽ ∥TX∥p

∫
Ω1

∥∥∥∑
i

fi(ω1)xi

∥∥∥p

dm1(ω1)

for every n, every f1, . . . , fn in the domain of T and every x1, . . . , xn ∈ X.
Estimating ∥TX∥ in terms of the properties of T and the geometric

properties of X is a central aspect in the geometry of Banach spaces, as
most classical super-properties are of this form P (T ) : for example being
a Hilbert space, a subspace of an Lp-space, a subquotient of an Lp space,
type, cotype, UMD property, the maximal distance to Euclidean space of
n-dimensional subspaces [15]. . . Moreover, many celebrated results can be
expressed in the form “∥TX∥ ⩽ 1 ⇒ ∥SX∥ ⩽ 1 for some concrete operators
S, T” [5, 6, 13, 22, 29, 30]. We also present in some details in Section 2
two explicit open problems from group theory and metric geometry that
can also be expressed in this way. In fact the ubiquity of super-properties
of this form is not an accident, as a result by Hernandez [11, 12] (Theo-
rem 1.3 below) asserts that a superproperty is of the form P (T ) for some
operator T between subspaces of Lp spaces if and only if it is stable by
ℓp-direct sums.

Our main result, Theorem 1.6, characterizes, for two operators S and
T between subspaces of Lp spaces, when ∥TX∥ ⩽ 1 implies ∥SX∥ ⩽ 1.
So it provides a theoretical characterization when a super-property that

ANNALES DE L’INSTITUT FOURIER



A DUALITY OPERATORS/BANACH SPACES 3

is stable by ℓp-direct sums implies another. We leave for future investiga-
tions whether this theoretical characterization can be applied in concrete
situations.

This is a form of the bipolar theorem for a duality between the set X of
separable Banach spaces up to isometry and the set T of linear operators
between subspaces of Lp spaces defined by the assignement (T,X) 7→ ∥TX∥.
Indeed, adapting the standard terminology for locally convex topological
vector spaces (see [4, II Section 6]), we define:

Definition 1.1. — If A ⊂ X is a class of Banach spaces, then its po-
lar A◦ is the class of operators T ∈ T such that ∥TX∥ ⩽ 1 for every X

in A.

Definition 1.2. — If B ⊂ T , then its polar ◦B is the class of Banach
spaces X ∈ X such that ∥TX∥ ⩽ 1 for every T in B.

This duality is a variant of the one considered in [30], where Pisier re-
stricts to operators between Lp spaces (and not subspaces of Lp spaces). If
one is interested in the bipolar of a class of Banach spaces, the two duali-
ties are very different. On the other hand, a description of the bipolar for a
class of operators for Pisier’s duality can be obtained from our result, see
Section 5 for details.

In a locally convex topological space, the bipolar theorem ([4, II Sec-
tion 6]) states that the bipolar of a set C is equal to the closed convex
hull of C ∪ {0}. The inclusion of the closed convex hull of C ∪ {0} in the
bipolar of C is obvious; the content of the theorem is the other inclusion,
which follows from the Hahn–Banach theorem. The aim of this paper is
to state and prove a version of the bipolar theorem in this setting, for the
correct definition of “closed convex hull”. For the bipolar of a class of Ba-
nach spaces, this is due to Hernandez. The methods we introduce allow us
to give a new proof of it (see Section 5 for the duality involving operators
between Lp spaces).

Theorem 1.3 ([11]). — The bipolar ◦(A◦) of a class of Banach spaces
A ⊂ X is the class of Banach spaces finitely representable in the class of
all finite ℓp-direct sums of elements in A.

There is also an isomorphic version of the previous result.

Theorem 1.4 ([11]). — Let A ⊂ X and X ∈ X . The following are
equivalent:

• ∥TX∥ < ∞ for every T ∈ A◦;

TOME 0 (0), FASCICULE 0



4 Mikael DE LA SALLE

• X is isomorphic to a space finitely representable in the class of finite
ℓp direct sums of spaces in A, i.e. to a space in ◦A◦.

In that case, the Banach–Mazur distance from X to a space in ◦A◦ is
equal to supT ∈A◦∥TX∥.

Our main result is the bipolar theorem for sets of operators. To state it
we have to introduce some definition.

Definition 1.5. — A spatial isometry between finite dimensional sub-
spaces of Lp spaces is a composition of isometries of the form:

• (change of density) restriction to a subspace of Lp(Ω,m) of the
multiplication by a nonvanishing measurable function h : Ω → K∗,
i.e. f ∈ Lp(Ω,m) 7→ hf ∈ Lp

(
Ω, |h|−pm

)
;

• (equidistribution outside of 0) maps of the form T : dom(T ) ⊂
Lp(Ω,m) → Lp(Ω′,m′) such that for every finite family f1, . . . , fn ∈
dom(T ) and every Borel subset E ⊂ Kn \ {0},

m
({
x |
(
f1(x), . . . , fn(x)

)
∈ E

})
= m′

({
x |
(
Tf1(x), . . . , T fn(x)

)
∈ E

})
.

It is not hard to prove (see Lemma 4.11 and Remark 4.12) that every
spatial isometry is of the form C1EC2 for C1, C2 changes of density and E
an equidistribution outside of 0.

It is important that we require 0 /∈ E, as we want for example that
f ∈ Lp

(
[0, 1]

)
7→ fχ[0,1] ∈ Lp

(
[0, 2]

)
is a spatial isometry.

When p is not an even integer, it is known that every isometry between
separable subspaces of Lp spaces is a spatial isometry [9]. The idea devel-
opped in this article allows to recover this result, and to generalize it to
arbitrary p: a linear map T is a spatial isometry if and only if it is a regular
isometry, i.e. ∥T∥r = ∥T−1∥r = 1, where ∥T∥r = supX∥TX∥ is the regular
norm of T (see Remark A.2 and Corollary A.3).

We can now state the version of the bipolar theorem for sets of operators.

Theorem 1.6. — Let T : dom(T ) ⊂ Lp(Ω1,m1) → Lp(Ω2,m2) be a lin-
ear map, B ⊂ T , and f1, f2, . . . , be a sequence generating a dense subspace
of dom(T ). The following are equivalent:

• For every X ∈ Banach, supS∈B∥SX∥ ⩽ 1 ⇒ ∥TX∥ ⩽ 1.
• For every n and ε > 0, there exist:

– an operator S = S0 ⊕ S1 ⊕ · · · ⊕ Sk with S0 of regular norm 1
and S1, . . . , Sk ∈ B;

ANNALES DE L’INSTITUT FOURIER
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– spatial isometries

U : dom(U) ⊂ Lp

(
Ω1 × [0, 1]

)
⊕p Lp

(
[0, 1]

)
→ dom(S),

V : dom(V ) = S(ranU) → Lp

(
Ω2 × [0, 1]

)
⊕p Lp

(
[0, 1]

)
;

– for every i = 1, . . . , n there are gi ∈ Lp

(
Ω1 × [0, 1]

)
, g′

i ∈
Lp

(
Ω2 × [0, 1]

)
and hi ∈ Lp

(
[0, 1]

)
;

such that (gi, hi) ∈ dom(U), V ◦ S ◦ U(gi, hi) = (g′
i, hi) and(∫

Ω1×[0,1]

∣∣fi(ω) − gi(ω, s)
∣∣p dm1(ω) ds

) 1
p

⩽ ε,

(∫
Ω2×[0,1]

∣∣(Tfi)(ω) − g′
i(ω, s)

∣∣p dm2(ω) ds
) 1

p

⩽ ε.

It is instructing to work out explicitly a very simple case of this theorem,
namely for the obvious implication max

(
∥SX∥, ∥TX∥

)
⩽ 1 ⇒

∥∥(T ◦S)X

∥∥ ⩽
1. See Example 3.6.

In particular, we obtain the following characterization of the bipolar of
a set of operators.

Corollary 1.7. — The bipolar (◦B)◦ of a class B ⊂ T is the smallest
class B′ ⊂ T containing B and satisfying the following properties:

(1) B′ contains
{
T ∈ T , supX∈X ∥TX∥ ⩽ 1

}
.

(2) B′ is stable under finite ℓp-direct sums.
(3) If T ∈ B′ and U, V are spatial isometries then U ◦ T ◦ V ∈ B′.
(4) Let T ∈ B′ such that T : dom(T ) ⊂ Lp(Ω1,m1) ⊕ Lp(Ω,m) →

Lp(Ω1,m1) ⊕ Lp(Ω,m) is of the form (f, g) 7→ (Sf, g) for some
S ∈ T with domain equal to the image of dom(T ) by the first
coordinate projection. Then S ∈ B′.

(5) If T ∈ T is an operator between respectively subspaces of Lp(Ω,m)
and Lp(Ω′,m′) and if, for every finite family f1, . . . , fn in the do-
main of T and every ε > 0, there is S ∈ B′ with domain con-
tained in Lp(Ω,m) and range contained in Lp(Ω′,m′) and elements
g1, . . . , gn ∈ dom(S) such that ∥fi − gi∥ ⩽ ε and ∥Tfi − Sgi∥ ⩽ ε,
then T ∈ B′.

Note however that Theorem 1.6 is in a sense more precise than Corol-
lary 1.7, as it almost says that to obtain the bipolar of B from B, it is
enough to apply the operations (1)–(5) only once, and in that order. Al-
most because we obtain in this way all operators of the form T ⊗ idLp([0,1])
with domain

{
(ω, s) 7→ f(ω) | f ∈ dom(T )

}
for T ∈ (◦B)◦, so one needs

TOME 0 (0), FASCICULE 0
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to apply one last time (3) to obtain all of (◦B)◦. This improvement is not
formal. For a long time, the author was only able to prove Corollary 1.7,
and actually expected that to construct (◦B)◦ out of B, it was necessary to
iterate these operations (and in particular (4) and (5)) a large number of
times (even an arbitrarily large countable ordinal of times), and this ordi-
nal number was a measurement of the difficulty of computing the bipolar
of a B. This is closely related to the classical fact, essentially due to Ba-
nach, that, to obtain the weak-* closure of a convex subset in the dual of
a separable Banach space, the number of times one needs to take limits of
weak-* convergent sequences can be an arbitrary countable ordinal. That
this is not the case will rely on a particularly strong form of the bipolar
theorem (in the linear setting) for the weak-* topology that we prove in
Proposition 3.3. See the discussion in subsection 3.1.

As for the usual bipolar theorem, the main content of the theorem is the
inclusion ◦B◦ ⊂ B′. The reverse inclusion is rather obvious because it is
rather clear that ◦B◦ contains B and satisfies all the properties (1)–(5).

So one can reformulate the nontrivial part of Corollary 1.7 as follows: if
T /∈ B′, then there is a Banach space X such that X ∈ ◦B but ∥TX∥ > 1.
Constructing Banach spaces with prescribed properties is a notoriously dif-
ficult problem in general. What saves us here is that we do not construct X
explicitly, but we let the Hahn–Banach theorem construct it for us. This is
achieved by suitably encoding the class of Banach spaces in a locally convex
topological vector space H and the class of operators between subspaces of
Lp spaces in its dual H∗, in such a way that the polarity between X and T
corresponds to the usual polarity in topological vector spaces. So, once
these two encodings are well understood, both Theorems 1.3 and 1.6 are
just an application of the bipolar theorem in H and H∗. When X is a Ba-
nach space of dimension n, X will be encoded inside the real Banach space
C(KPn−1) of real-valued continuous functions on the projective space of
dimension n − 1. Similarly an operator T with a domain of dimension n

will be encoded inside the dual of C(KPn−1). The space H evoked would
then be the projective limit of a suitable system of the spaces C(KPn−1).
But since the study of the polarity between X and T readily reduces to
finite dimensional Banach spaces and operators with finite dimensional do-
mains, we prefer to work directly with C(KPn−1) and never even formally
introduce H.

ANNALES DE L’INSTITUT FOURIER
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Organization of the paper

The first section presents some necessary background and some moti-
vation for studying this polarity. Section 3 contains various preliminaries,
including basic reminders on measure theory and on the linear bipolar the-
orem, as well as one result on which the rest will rely: Proposition 3.3.
Section 4 contains the proof of the main theorem. It starts by defining the
encoding of spaces and operators in a linear duality, and then studies this
encoding. Section 5 contains a discussion of variants of the duality pre-
sented in the introduction. In an appendix we present a new proof and a
generalization, in the context of Section 4, of Hardin’s theorem [9]. Hardin’s
theorem appears as a direct corollary of the study of the invariant subspaces
for some families of representations of GLn(K) on C(KPn−1).

Some of the results have been announced in the Oberwolfach report
Group actions on Banach spaces and a duality spaces/operators (see [31,
pp. 2304–2307]).

Acknowledgments

The author thanks Jean-Christophe Mourrat for interesting discussions
that lead to the proof of PropositionA.4, and Alexandros Eskenazis, Mikhail
Ostrovskii and Ignacio Vergara for useful comments, suggestions and cor-
rections. Special thanks are due to Gilles Pisier for all that, and also for
encouraging the author to think about the content of Section 5. Finally,
the author thanks the referee for their numerous and wise suggestions,
including for the presentation of the proof of Proposition 3.3.

2. Background and motivation

2.1. Measure spaces and operators

To avoid any set-theoretical problem (of T not being a set), all the
measure spaces appearing here will be standard measure spaces taken in
some fixed set containing [0, 1] with the Lebesgue measure and that is sta-
ble by taking equivalent measures, measurable subsets with restriction of
the measure, and finite direct sums. By direct sum of a finite sequence
(Ω1,m1), . . . , (Ωn,mn) we mean the space (Ω1 ∪ · · · ∪ Ωn,m1 ⊕ · · · ⊕ mn)

TOME 0 (0), FASCICULE 0



8 Mikael DE LA SALLE

where Ω1 ∪· · ·∪Ωn is the disjoint union and the measure is A 7→
∑

i mi(A∩
Ωi). None of the results depend on the choice.

Throughout the text, p ∈ [1,∞) will be a fixed number. The ℓp-direct
sum of a finite family T1, . . . , Tn of operators from dom(Ti) ⊂ Lp(Ωi,mi)
to ran(Ti) ⊂ Lp(Ω′

i,m
′
i) is the operator T1 ⊕ · · · ⊕Tn from dom(T1) ⊕ · · · ⊕

dom(Tn) ⊂ Lp(Ω1 ∪ · · · ∪ Ωn,m1 ⊕ · · · ⊕mn) to ran(T1) ⊕ · · · ⊕ ran(Tn) ⊂
Lp(Ω′

1 ∪ · · · ∪ Ω′
n,m

′
1 ⊕ · · · ⊕m′

n).
An operator T ∈ T is called regular if ∥TX∥ < ∞ for every Banach

space X, or equivalently if ∥Tℓ∞∥ < ∞. In that case the quantity ∥Tℓ∞∥ =
supX∥TX∥ is called the regular norm of T and denoted ∥T∥r. We will denote
by REG the set of operators T ∈ T such that ∥T∥r ⩽ 1.

2.2. Banach space geometry

If n is an integer, the set Q(n) of all n-dimensional normed space up to
isometry, equipped with the Banach–Mazur distance

d(E,F ) = inf
{

∥u∥∥u−1∥ | u : E → F linear invertible
}
,

becomes a compact metric space, the Banach–Mazur compactum. Beware
that it is not d but log d which is a distance in the usual way (d is sub-
multiplicative d(E,G) ⩽ d(E,F )d(F,G) rather than subadditive, and two
isometric spaces are at Banach–Mazur distance 1), but following the tradi-
tion we still call d the Banach–Mazur distance.

We say that a Banach space X is finitely representable in another Banach
space Y if for every finite-dimensional space E ⊂ X and every ε > 0 there
is a subspace F ⊂ Y of same dimension as E such that d(E,F ) ⩽ 1 + ε. In
other words, if for every n, the closure in Q(n) of the space of n-dimensional
subspaces of X is contained in the same closure but for Y . This is equivalent
to X being isometrically a subspace of an ultraproduct of Y [10].

More generally, we say that a Banach space X is finitely representable in
a class B of Banach spaces if for every finite-dimensional space E ⊂ X and
every ε > 0 there is a subspace F of a space in B of same dimension as E
such that d(E,F ) ⩽ 1 + ε. We can therefore view a class of Banach spaces
up to finite representability as a collection An of closed subsets of Q(n)
such that for every n > m, every m-dimensional subspace of every E ∈ An

belongs to Am. In this representation, finite representability corresponds
to inclusion.

The ℓp-direct sum of a finite family X1, . . . , Xn of Banach spaces is the
space X1 ⊕ X2 ⊕ · · · ⊕ Xn for the norm

∥∥(x1, . . . , xn)
∥∥ =

(
∥x1∥p + · · · +

∥xn∥p
) 1

p .

ANNALES DE L’INSTITUT FOURIER
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The next two subsections contain some very concrete questions of the
form “does one operator belong to the bipolar of another?”, that played an
essential rôle motivating the author’s investigations. We leave it to further
research whether Theorem 1.6 and Corollary 1.7 can be applied to answer
these questions.

2.3. Group representations on Banach spaces

The author’s first main motivation comes from the study of representa-
tions of groups on Banach spaces. Let G be a locally compact topological
group with a fixed left Haar measure. We recall that every strong-operator-
topology (SOT) continuous representation π of G on a Banach space X
extends to a representation of the convolution algebra Cc(G) of compactly
supported continuous functions on G by setting π(f)x =

∫
f(g)π(g)x dg

for every x ∈ X.
For example, if λp denotes the left-regular representation on Lp(G):

λp(g)f = f(g−1· ),

then λp(f) is the convolution operator ξ 7→ f ∗ ξ.
When A is a class of Banach spaces, denote by CA(G) the completion of

Cc(G) for the norm

∥f∥CA(G) = sup
∥∥π(f)

∥∥
B(X),

where the supremum is over all SOT-continuous continuous isometric rep-
resentations π of G on a space X in A.

The following result, which generalizes the classical fact that the full
and reduced C∗-algebras of an amenable group coincide, reduces the un-
derstanding the representation theory of G on a Banach space X to the
understanding of ∥TX∥ for convolution operators T . This known fact has
already appeared in several unpublished texts (for example in the author’s
habilitation thesis), but seems to be missing from the published literature.

Proposition 2.1. — If G is amenable and π is an isometric represen-
tation of G on a Banach space X, then for every f ∈ Cc(G),∥∥π(f)

∥∥
B(X) ⩽

∥∥λp(f)X

∥∥.
In particular, if a class of Banach spacesA has the property that Lp(G;X) ∈
A for every X ∈ A, then

∥f∥CA(G) = sup
X∈A

∥∥λp(f)X

∥∥.
TOME 0 (0), FASCICULE 0



10 Mikael DE LA SALLE

Proof. — Fix a norm 1 element ξ ∈ Lp(G) and define an isometric linear
map α : X → Lp(G;X) by α(x)(g) = ξ(g)π(g−1)x.

Then for h ∈ G,
(
α
(
π(h)x

)
−λ(h)α(x)

)
(g) =

(
ξ(g)− ξ(h−1g)

)
π(g−1h)x,

and ∥∥α(π(h)x
)

− λ(h)α(x)
∥∥ = ∥x∥

∥∥ξ − λ(h)ξ
∥∥

Lp(G).

By the triangle inequality∥∥α(π(f)x) − λ(f)α(x)
∥∥ ⩽ ∥f∥L1(G)∥x∥ sup

h∈supp(f)

∥∥ξ − λ(h)ξ
∥∥

Lp(G),

and using that α is isometric we obtain∥∥π(f)x
∥∥ ⩽

∥∥λ(f)X

∥∥∥x∥ + ∥f∥L1(G)∥x∥ sup
h∈supp(f)

∥∥ξ − λ(h)ξ
∥∥

Lp(G).

We deduce∥∥π(f)
∥∥ ⩽

∥∥λ(f)X

∥∥+ ∥f∥L1(G) sup
h∈supp(f)

∥∥ξ − λ(h)ξ
∥∥

Lp(G).

When G is amenable, the last term can be made arbitrarily small, which
proves the proposition. □

In the particular case of a compact group, this result lies at the heart
of the proofs of Lafforgue’s strong property (T) for higher-rank algebraic
groups. For example, thanks to the techniques of strong property (T)
and in particular Proposition 2.1, the conjecture(1) [2] that any action
by isometries of a lattice in a connected higher-rank simple Lie group on
a super-reflexive Banach space has been reduced to the following conjec-
ture, see [14, 18, 19], see also [34]. Denote, for any δ ∈ [−1, 1], by Tδ the
operator on L2(S2) mapping f to the fonction (Tδf)(x) = the average of f
on the circle

{
y ∈ S2 | ⟨x, y⟩ = δ

}
. For any θ ∈ R/2πZ, denote by Sθ the

operator on L2(S3) mapping f to the fonction (Sθf)(z) = the average of f
on the circle

{ 1√
2 (eiθ + eiφj)z | φ ∈ R/2πZ

}
(where we identify S3 with

the norm 1 quaternions in the usual way). The conjecture is that for every
super-reflexive Banach space, there exist α > 0 and C ∈ R+ such that for
every δ ∈ [−1, 1] and θ ∈ R,∥∥(Tδ − T0)X

∥∥ ⩽ C|δ|α and
∥∥(Sθ − Sπ/2)X

∥∥ ⩽ C|θ − π/2|α.

It is even conjectured that the same holds for every space with nontrivial
type. If U is any operator on L2 quantifying the fact that a Banach space

(1) (Added in January 2024) This conjecture for superreflexive space has been recently
settled by de Laat and the author [17], following a breakthrough by Oppenheim [25], and
with different methods than the ones suggested here. The question raised here remains
however interesting, as it implies strong Banach property, a stronger property than the
fixed point property and for a wider class of Banach spaces.
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has nontrivial type (for example a multiple of the orthogonal projection on
the space spanned by a sequence of iid Rademacher random variables [29]),
this conjecture is equivalent to saying{

1
C|δ|α

(Tδ − T0)
∣∣∣ δ ∈ (−1, 1)

}⋃{ 1
C|θ − π/2|α

(Sθ − Sπ/2)
∣∣∣ θ ∈ R

}
is contained in the bipolar of {U} for some C and α > 0.

2.4. Super-expanders and embeddability of graphs in Banach
spaces

Another motivation for studying the quantity ∥TX∥ is its well-known
connection with Poincaré inequalities and embeddability of expanders in X.
If G = (V,E) is a finite connected graph, we may define(2) its X-valued
p-Poincaré constant πp,G(X) as the smallest constant π such that for every
f : V → X satisfying

∑
v∈V deg(v)f(v) = 0,(∑

v∈V

deg(v)∥f(v)∥p

) 1
p

⩽ π

( ∑
(v,w)∈E

∥∥f(v) − f(w)
∥∥p

) 1
p

.

Note that πp,G(X) = ∥TX∥ for T the inverse of the linear map f ∈
ℓ0

p(V,deg) 7→
(
f(v) − f(w)

)
(v,w)∈E

∈ ℓp(E).
A sequence Gn = (Vn, En) of bounded degree graphs is called a sequence

of expanders with respect to X if limn|Vn| = ∞ and supn πp,Gn
(X) < ∞.

This does not depend on p [7, 23, 24], see also [16, Proposition 3.9].
For example, if p = 2 and X = K (or a Hilbert space), then πp,2(K) is

equal to (2 − 2λ2)− 1
2 , for λ2 the second largest eigenvalue of the random

walk operator on G. So being a sequence of expanders with respect to K,
or to an Lp space for some p < ∞, is the same as the usual definition of
expander graphs.

According to [21], a sequence Gn is called a sequence of super-expanders
if they are expanders with respect to all uniformly convex Banach spaces.
The existence of super-expanders is a difficult result. Essentially two classes
of examples have been obtained, by Lafforgue [19] and by Mendel and
Naor [21]. Lafforgue’s examples are even expanders with respect to all Ba-
nach spaces of type > 1. All these results are therefore results of the form
“T belongs to be bipolar of S”, where S is any of the operators quantifying

(2) There are many small variants of the definition. But they do not matter for the
discussion here, though they do matter for other issues, see for example [16].
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12 Mikael DE LA SALLE

the fact that a Banach space has nontrivial type or is super-reflexive, and T
are correctly scaled operators in the definition of the p-Poincaré constant.
Many intriguing questions remain open, which can all be formulated in the
same way. For example,

Question 2.2 ([21]). — Are all expander sequences super-expanders?
Expanders with respect to all spaces of nontrivial type?

Question 2.3 ([19, 21]). — Do super-expanders of girth going to in-
finity exist? And of logarithmic girth in the number of vertices? Are the
expanders coming from higher-rank simple Lie groups super-expanders?

Question 2.4 ([19, 21]). — Does there exist a sequence of expanders
with respect to all Banach spaces of nontrivial cotype?

A positive answer to this question is conjectured in [21], and Lafforgue
even suggests that the super-expanders coming from lattices in SL3(Qp)
(or other higher-rank simple algebraic groups over non-archimedean local
fields) as in [19] are such examples. But this is wide open, as is the following.

Question 2.5 ([30]). — Are all expander sequences expanders with re-
spect to all spaces of nontrivial cotype?

One of the reasons for the interest in expanders with respect to Banach
spaces is the well-known fact, which essentially goes back to Gromov, that
a sequence of expanders with respect to X does not coarsely embed into X.
See for example [30, Section 3]. Being an expander with respect to X is
much stronger than non coarse embeddability (a striking example is given
in [1]), but by [37] (see also [28] for L1 spaces) there is equivalence between
non-coarse embeddability into families of Banach spaces under closed fi-
nite representability and ℓp direct sums and some other forms of Poincaré
inequalities.

3. Preliminaries

3.1. On the bipolar in a dual Banach space

In the whole paper, for a subset C of a real Banach space E with dual
E∗, we denote its polar

C◦ =
{
x∗ ∈ E∗, ⟨x∗, x⟩ ⩾ −1 for all x ∈ C

}
.
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When C ⊂ E is a cone (that is x ∈ C implies
{
tx | t ∈ [0,∞)

}
⊂ C), then

its polar C◦ coincides with
{
x∗ ∈ E∗, ⟨x∗, x⟩ ⩾ 0 for all x ∈ C

}
. It is also

a cone.
Similarily, when C ⊂ E∗ we denote its polar for the weak-* topology by

◦C =
{
x ∈ E, ⟨x∗, x⟩ ⩾ −1 for all x∗ ∈ C

}
.

Again, if C is a cone, ◦C coincides with
{
x ∈ E, ⟨x∗, x⟩ ⩾ 0 for all x∗ ∈ C

}
and is again a cone.

It should be always clear from the context whether the polarity is con-
sidered in this linear setting of two vector spaces in duality or between X
and T as in Definition 1.1 and 1.2.

The classical bipolar theorems in this setting take the following forms:
Theorem 3.1. — Let E be a real Banach space.
If C ⊂ E, then its bipolar ◦(C◦) is equal to the norm closure of the

convex hull of C ∪ {0}.
If C ⊂ E∗, then its bipolar (◦C)◦ is equal to the weak-* closure of the

convex hull of C ∪ {0}.
The second statement is not so useful for our purposes because taking

the weak-* closure can be quite complicated, as we shall soon recall. Fortu-
nately, there is an interesting consequence of the Krein–Smulian theorem [8,
Theorem V.12.1], which asserts that a convex subset of E∗ for a separable
Banach space E is weak-* closed if and only if it is sequentially weak-*
closed, see [8, Theorem V.12.10]. This allows to significantly strengthen
the result for separable Banach spaces as follows.

If C is a subset of a dual E∗, let us define an increasing family of subsets
Cα ⊂ E∗ indexed by the ordinals α by letting C0 = C, Cα be the set of all
weak-* limits of sequences in Cα−1 if α is a successor and Cα =

⋃
β<α Cβ

if α is a limit ordinal. The smallest ordinal α such that Cα = Cα+1 (that is
Cα is weak-* sequentially closed) is sometimes called the order of C. When
E is separable, the order of C is countable, see for example the argument
in the proof of [8, Theorem V.12.10]. Moreover, if C is convex, then so is
Cα for every α. It follows from [8, Theorem V.12.10] that, for the order
of C, Cα coincides with the weak-* closure of C. Let us summarize this
discussion.

Proposition 3.2. — Let E be a real separable Banach space and C be
a subset of E∗. There is a countable ordinal α such that the bipolar of C
coincides with

(
conv(C)

)
α

.
The smallest ordinal α in the previous proposition measures the difficulty

to construct the bipolar of C out of C.
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14 Mikael DE LA SALLE

The order has been more studied for linear subspaces C. It is known that
for many cases, every countable ordinal appears as the order of a linear
subspace of E∗. This was stated by Banach [20], and later examples such
as E∗ = ℓ1 = (c0)∗, ℓ∞, H∞ were provided together will full proofs [35, 36].
It is now known that this holds whenever E is not quasi-reflexive, that is
when the canonical image of E has infinite codimension in its bidual [26].
See also the survey [27] for more information on this.

It turns out that, for our applications, the order will always be equal
to 1. This will follow from the following result.

Proposition 3.3. — Let E be a real Banach space and C ⊂ E∗.
Assume that there is a convex subset A ⊂ E containing 0 such that
A ∩

{
x ∈ E | ∥x∥ ⩽ r

}
is norm-compact for every r > 0 and A◦ ⊂ C.

Then the bipolar (◦C)◦ of C is equal to the norm closure of the convex
hull of C.

Proof. — Note that our assumption implies that 0 ∈ C (as 0 ∈ A◦). The
set A is a norm convex subset containing 0, so A = ◦(A◦) by the bipolar
theorem in E. From the assumption A◦ ⊂ C, we deduce that ◦C ⊂ ◦A◦ = A.
Hence ◦C satisfies the same assumption as A. It follows from the Krein–
Smulian theorem that its image by the canonical injection j : E → E∗∗ is
weak-* closed (as norm-compact sets are weak-* closed), and hence j(◦C) =
C◦ by Hahn–Banach. We deduce (◦C)◦ = ◦j(◦C) = ◦(C◦), which is the
norm-closed convex hull of C by the bipolar theorem in E∗. This concludes
the proof. □

3.2. Reminders on the Jordan decomposition of measures

Recall that any signed measure m on a Borel space has a unique de-
composition m = m+ − m− for two positive measures satisfying ∥m∥ =
∥m+∥ + ∥m−∥ (where the norm is the total variation norm). This is the
Jordan decomposition of m. If m = m1 − m2 is any other decomposition
with m1,m2 positive measures, then m1 − m+ = m2 − m− is a positive
measure. We will use the following elementary fact.

Lemma 3.4. — Let m and m′ be any signed measure, and let m1,m2
be any positive finite measures such that m = m1 −m2. There is a decom-
position m′ = m′

1 −m′
2 with

∥m1 −m′
1∥ + ∥m2 −m′

2∥ = ∥m−m′∥.
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Proof. — Let m = m+ − m− and m′ = m′
+ − m′

− be the Jordan de-
compositions. A small computation gives that ∥m−m′∥ = ∥m+ −m′

+∥ +
∥m− −m′

−∥.
By the property of the Jordan decomposition just recalled, m′′ := m1 −

m+ = m2 − m− is a positive measure. Define m′
1 = m′

+ + m′′ and m′
2 =

m′
2 +m′′, so that m′ = m′

1 −m′
2 and

∥m1 −m′
1∥ + ∥m2 −m′

2∥ = ∥m+ −m′
+∥ + ∥m− −m′

−∥ = ∥m−m′∥. □

3.3. On (4) in Corollary 1.7

This short subsection is not needed anywhere else in the paper, but
it hopefully illustrates some basic things about Theorem 1.6 and Corol-
lary 1.7. We start by a lemma which clarifies in which situation an opera-
tor T is of the form (4) in Corollary 1.7.

Lemma 3.5. — Let T be an operator between subspaces

dom(T ), ran(T ) ⊂ Lp(Ω,m)

of norm ⩽ 1 and A ⊂ Ω measurable. The following are equivalent.
• Tf(x) = f(x) for almost every x ∈ Ω \A and every f ∈ dom(T ).
• If we write Lp(Ω,m) = Lp(A,m) ⊕p Lp(Ω \ A,m), then there is

an operator S with domain equal to the image of dom(T ) by the
first coordinate projection such that T (f1, f2) = (Sf1, f2) for all
(f1, f2) ∈ dom(T ).

In that case, S is unique, dom(S) =
{
f
∣∣
A
, f ∈ dom(S)

}
and S(f

∣∣
A

) =
(Tf)

∣∣
A

for all f ∈ dom(T ).

Proof. — Clearly, the assumption that Tf(x) = f(x) for almost every
x ∈ Ω \ A and every f ∈ dom(T ) is equivalent to the existence of a linear
map S : dom(T ) → Lp(A,m) such that T (f1, f2) =

(
S(f1, f2), f2

)
. So to

prove the equivalence stated in the lemma, we have to observe that, in this
situation, S(f1, f2) depends only on f1, i.e. (by linearity) that S(f1, f2) = 0
if f1 = 0. For (0, f2) ∈ dom(T ) we have

∥∥T (0, f2)
∥∥p

p
=
∥∥S(0, f2)

∥∥p

p
+ ∥f2∥p,

which (by the assumption that ∥T∥ ⩽ 1) is less than ∥f2∥p. This proves
that

∥∥S(0, f2)
∥∥p

p
= 0, as requested.

The last assertion is a tautology. □

Finally, we provide an example that illustrates the main result.
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Example 3.6. — The inequality
∥∥(T ◦ S)X

∥∥ ⩽ ∥TX∥∥SX∥ is clear for
every Banach space X and every operators T, S such that T ◦ S makes
sense. So it follows from Corollary 1.7 that, with the notation therein, if
S, T ∈ B then T ◦ S belongs to B′. We prove this directly, because it
illustrates the subtle property (4).

So let S, T ∈ B such that ran(S) ⊂ dom(T ). By (2) the operator S ⊕
T : dom(S) ⊕ dom(T ) → ran(S) ⊕ ran(T ) belongs to B′. By composing by
the spatial isometry (f, g) ∈ ran(S) ⊕ ran(T ) 7→ (g, f) ∈ ran(T ) ⊕ ran(S)
(which is allowed by (3)) and restricting to the subspace D =

{
(f, Sf) | f ∈

dom(S)
}

⊂ dom(S) ⊕ dom(T ) (which is allowed by (5)), we obtain that
the map (f, Sf) ∈ D 7→ (T ◦ Sf, Sf) belongs to B′. By (4), we conclude
that T ◦ S belongs to B′ as required.

4. The space of degree p homogeneous functions on Kn

Let n be a positive integer. Denote by |z| the ℓp-norm on Kn,

|z| =
(
|z1|p + · · · + |zn|p

) 1
p .

In the rare occasions when we want to insist on p, we write |z|p for this
quantity.

A function φ : Kn → R is called homogeneous of degree p if φ(λz) =
|λ|pφ(z) for all z ∈ Kn and λ ∈ K. The space Hn of continuous homo-
geneous of degree p functions on Kn is a Banach space over the field of
real numbers for the topology of uniform convergence on compact subsets
on Kn. A particular choice of norm is ∥φ∥ = sup|z|⩽1

∣∣φ(z)
∣∣, so that for this

norm Hn is isometrically isomorphic to the space of real-valued continuous
functions on KPn−1 through the identification of φ ∈ Hn with the function
Kz ∈ KPn−1 7→ φ

(
z

|z|
)
. An equivalent definition of the norm of φ ∈ Hn is

the smallest number such that for every z ∈ Kn

(4.1)
∣∣φ(z)

∣∣ ⩽ (|z1|p + · · · + |zn|p
)
∥φ∥.

We encode a class A ⊂ X of Banach spaces by the cone N(A,n) ⊂ Hn

(N for norms) of functions of the form z 7→
∥∥∑n

i=1 zixi

∥∥p for X ∈ A and
x1, . . . , xn ∈ X.

When (Ω,m) is a measure space and f = (f1, . . . , fn) is an n-tuple of
elements of Lp(Ω,m), we can define a continuous linear form µf on Hn by

(4.2) ⟨µf , φ⟩ =
∫
φ
(
f1(ω), . . . , fn(ω)

)
dm(ω).
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Indeed, it follows from (4.1) that the integral is well-defined and that µf ∈
H∗

n with norm equal to ∥f1∥p
p + · · · + ∥fn∥p

p (the inequality ⩽ is immediate
from (4.1), and the equality follows by evaluating µf at the norm 1 element
z 7→ |z|p in Hn).

We encode a class B ⊂ T of operators by the cone P (B,n) ⊂ H∗
n

P (B,n) =
{
µf − µT f , T ∈ B and f ∈ dom(T )n

}
where for f = (f1, . . . , fn) ∈ dom(T )n, we denote Tf = (Tf1, . . . , T fn). It
is a cone because for every t ⩾ 0, t(µf − µT f ) = µ

t
1
p f

− µ
T t

1
p f

.
The crucial but obvious property motivating these definitions is that, if

φ(z) =
∥∥∑n

i=1 zixi

∥∥p

X
for elements x1, . . . , xn in a Banach space X, then

⟨µf , φ⟩ =
∥∥∑

i fixi

∥∥p

Lp(Ω,m;X). As a consequence,

⟨µf − µT f , φ⟩ =
∥∥∥∑

i

fixi

∥∥∥p

Lp(Ω,m;X)
−
∥∥∥∑

i

(Tfi)xi

∥∥∥p

Lp(Ω,m;X)
.

In particular, we have

Lemma 4.1. — Let A ⊂ X be a class of Banach spaces and B ⊂ T a
class of operators.

(1) B ⊂ A◦ if and only if for every n, P (B,n) ⊂ N(A,n)◦.
(2) A ⊂ ◦B if and only if for every n, N(A,n) ⊂ ◦P (B,n).

4.1. Polarity in Hn

We start by improving Lemma 4.1. The next result expresses that the
polarity in ⟨X , T ⟩ (see Definitions 1.1 and 1.2) is well encoded by the
polarity ⟨Hn, H

∗
n⟩ (see Section 3.1). Recall that REG is the class of all

operators T ∈ T with regular norm ∥T∥r := supX∈X ∥TX∥ ⩽ 1.

Proposition 4.2. — Let A ⊂ X be a class of Banach spaces and B ⊂ T
a class of operators. Then

(1) P (A◦, n) = N(A,n)◦.
(2) N(◦B,n) ⊂ ◦P (B ∪ REG, n).

In the proof, we need a description of the dual of Hn.

Lemma 4.3. — Every continuous linear form l on Hn is of the form
µf − µg for some measure spaces (Ω,m) and (Ω′,m′) and n-tuples f ∈
Lp(Ω,m)n and g ∈ Lp(Ω′,m′)n. Moreover Ω,m, f and Ω′,m′, g can be
chosen so that f and g take almost surely their values in

{
z ∈ Kn, |z| = 1

}
and so that m(Ω) +m′(Ω′) is equal to the norm of l.
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Proof. — By the identification of Hn with C(KPn−1) and by the Riesz
representation theorem, every continuous linear form l on Hn is of the form

φ 7→
∫

KPn−1
φ
( z

|z|

)
dν(Kz)

for a unique signed measure ν on KPn−1, and the norm of l is the total
variation of ν. Let ν = ν+ − ν− be the Jordan decomposition of ν and
s : KPn−1 →

{
z ∈ Kn, |z| = 1

}
a measurable section. Define (Ω,m) =

(KPn−1, ν+) and f ∈ Lp(Ω,m)n by s(ω) =
(
f1(ω), . . . , fn(ω)

)
. Similarly

define (Ω′,m′) = (KPn−1, ν−) and g ∈ Lp(Ω′,m′)n by

s(ω) =
(
g1(ω), . . . , gn(ω)

)
.

Then we have ∫
KPn−1

φ
( z

|z|

)
dν(Kz) = ⟨µf − µg, φ⟩.

This proves the lemma, because by construction f, g both take values in{
z ∈ Kn, |z| = 1

}
and m(Ω) + m′(Ω) = (ν+ + ν−)(KPn−1) is the norm

of l. □

Proof of Proposition 4.2. — We start by (1). If every space in A is trivial
(of dimension 0), we have N(A,n)◦ = H∗

n, A◦ = T , and the result is easy.
We can therefore assume that A contains a space of dimension ⩾ 1. Let
f, g be n-tuples in Lp spaces. Note that if φ(z) =

∥∥∑n
i=1 zixi

∥∥p then

⟨µf − µg, φ⟩ =
∥∥∥∑

i

fixi

∥∥∥p

Lp(X)
−
∥∥∥∑

i

gixi

∥∥∥p

Lp(X)
.

So the linear form µf − µg ∈ H∗
n belongs to N(A,n)◦ if and only if for

every X ∈ A and x1, . . . , xn ∈ X,
∥∥∑ fixi

∥∥p

Lp(X) ⩾
∥∥∑ gixi

∥∥p

Lp(X). Using
that there is a nonzero X ∈ A, this holds if and only if there is a linear
map T sending fi to gi such that T ∈ A◦. This shows that µf −µg belongs
to N(A,n)◦ if and only if it belongs to P (A◦, n). By Lemma 4.3 every
element of H∗

n is of this form, which proves (1).
We move to (2). Denote by Cn the closed convex cone Cn = N(X , n). We

first prove that N(◦B,n) = ◦P (B,n)∩Cn. By definition N(◦B,n) ⊂ Cn. So
we have to prove that for φ ∈ Cn, φ ∈ N(◦B,n) if and only if φ ∈ ◦P (B,n).
But if φ(z) =

∥∥∑n
i=1 zixi

∥∥p and X = span(x1, . . . , xn), then we have that
φ ∈ N(B◦, n) if and only if ∥T ⊗ idX∥ ⩽ 1 for all T ∈ B, if and only if
for all T ∈ B and f1, . . . , fn ∈ dom(T ),

∥∥∑
i Tfixi

∥∥p
⩽
∥∥∑

i fixi

∥∥p, if and
only if φ ∈ P (B,n)◦.

We can now conclude with (2). By (1) for A = X , we have C◦
n =

P (REG, n). On the other hand, since Cn is a closed convex cone, the bipolar
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theorem implies that Cn = ◦C◦
n, and hence Cn = ◦P (REG, n). We therefore

get

N(◦B,n) = ◦P (B,n) ∩ ◦P (REG, n)
= ◦(P (B,n) ∪ P (REG, n)

)
= ◦P (B ∪ REG, n).

This proves (2). □

By the bipolar theorem in Hn and H∗
n, we obtain

Corollary 4.4. — Let A ⊂ X be a class of Banach spaces and B ⊂ T
a class of operators. Then

(1) N(◦A◦, n) = convN(A,n).
(2) P (◦B◦, n) = convw∗ P (B ∪ REG, n).

The rest of this section consists in understanding the closed convex hulls
of N(A,n) and P (B,n).

4.2. Understanding the encoding of Banach spaces in Hn

The following easy fact will be important later.

Lemma 4.5. — For every integer n, bounded subsets of N(X , n) are
relatively norm-compact.

Proof. — By the Arzelà–Ascoli theorem, we have to prove that bounded
subsets of N(X , n) are equicontinuous, seen in C(KPn−1). This follows
from the triangle inequality. For example for p = 1 and φ(z) =

∥∥∑
i zixi

∥∥,
then we have∣∣φ(z) − φ(z′)

∣∣ ⩽ ∥∥∥∑
i

(zi − z′
i)xi

∥∥∥ ⩽
∑

i

|zi − z′
i|φ(ei).

The case of arbitrary p is similar. Alternatively, it follows from the case
p = 1 by continuity of the map t 7→ tp. □

Lemma 4.5 allows to considerably strengthen the second statement in
Corollary 4.4, replacing weak-* closure by norm closure.

Corollary 4.6. — Let B ⊂ T a class of operators. Then

P (◦B◦, n) = conv∥ · ∥ P (B ∪ REG, n).
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Proof. — The setN(X , n) is a closed convex cone inHn, so by Lemma 4.5
N(X , n) ∩

{
φ ∈ Hn | ∥φ∥ ⩽ r

}
is norm-compact for every r. More-

over, we have that N(X , n)◦ = P (REG, n) by Proposition 4.2. So, since
P (B ∪ REG, n) contains N(X , n)◦, Proposition 3.3 implies that its bipolar
is equal to the norm closure of its convex hull. □

Let us list elementary properties of N .

Lemma 4.7. — Let A,A1, A2 ⊂ X be classes of Banach spaces.
(1) N(A1, n) ⊂ N(A2, n) if and only if, for every X ∈ A1, every sub-

space of dimension ⩽ n of X is isometric to a subspace of a space
in A2.

(2) The convex hull of N(A,n) is equal to N(⊕ℓp
A,n), where ⊕ℓp

A

denotes the set of all finite ℓp-direct sums of Banach spaces in A.
(3) The norm closure of N(A,n) in Hn coincides with N(A,n) where

A denotes the set of Banach spaces finitely represented in A.

As a consequence of (1) and (3), if two classes of Banach spaces A1, A2 are
closed under finite representability, then A1 = A2 if and only if N(A1, n) =
N(A2, n) for all n.

Proof. — The first point is obvious from the following observation: if
x1, . . . , xn (respectively y1, . . . , yn) are elements in a Banach space X (re-
spectively in a Banach space Y ), then the functions z 7→

∥∥∑n
i=1 zixi

∥∥p and
z 7→

∥∥∑n
i=1 ziyi

∥∥p coincide if and only if there is an isometry from the
linear span of {x1, . . . , xn} to the linear span of {y1, . . . , yn} sending xi

to yi.
If φ1, . . . , φk ∈ N(A,n) are given by φj(z) =

∥∥∑n
i=1 zix

(j)
i

∥∥p

Xj
then by

the definition of the ℓp-direct sum X1 ⊕p · · · ⊕p Xk we can write
k∑

j=1
φj(z) =

∥∥∥∥ n∑
i=1

zi(x(j)
i )1⩽j⩽k

∥∥∥∥p

X1⊕p···⊕pXk

.

This shows that N(⊕ℓp
A,n) coincides with{

φ1 + · · · + φk, k ∈ N, φj ∈ N(A,n)
}
.

This is the convex hull of N(A,n) because N(A,n) is a cone.
We move to (3). If a sequence φk ∈ N(A,n) converges uniformly on

compact subsets to φ ∈ Hn, then φ
1
p is the uniform limit on compact sets

of the seminorms φ
1
p

k , so it is a seminorm on Kn. This means that there
is a Banach space X ∈ X and x1, . . . , xn spanning X such that φ(z) =∥∥∑n

i=1 zixi

∥∥p. The family x1, . . . , xn might not be linearly independent, so
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we extract from it a basis of X. Without loss of generality we can assume
that this basis is x1, . . . , xm for some m ⩽ n. Write

φk(z) =
∥∥∥∥ n∑

i=1
zix

(k)
i

∥∥∥∥p

Xk

for some Xk ∈ A and x
(k)
1 , . . . , x

(k)
n ∈ Xk. From the assumption that φk

converges uniformly on compacta to φ and the assumption that x1, . . . , xm

is linearly independent, we get that for every ε > 0 there is k such that

(1 − ε)φ(z, 0) ⩽ φk(z, 0) ⩽ (1 + ε)φ(z, 0)

for all z ∈ Km. This means that the linear map u : X → Xk sending xi to
(1 − ε)− 1

px
(k)
i for i ⩽ m satisfies

∥x∥ ⩽
∥∥u(x)

∥∥ ⩽
(1 + ε

1 − ε

) 1
p ∥x∥ for all x ∈ X.

Since ε > 0 was arbitrary we have proved that X is finitely representable
in A, i.e. that φ ∈ N(A,n). This proves that N(A,n) ⊂ N(A,n).

The converse inclusion is proved by reading the preceding argument back-
wards. □

We can conclude our proof of Hernandez’ theorem.
Proof of Theorem 1.3. — Let A′ be the class of Banach spaces which

are finitely representable in the class of ℓp-direct sums of spaces in A. It
follows from Corollary 4.4 and Lemma 4.7 that for every integer n,

N(◦A◦, n) = N(A′, n).

Since both ◦A◦ and A′ are closed under finite representability, we get the
equality ◦A◦ = A′ by the remark following Lemma 4.7. □

4.3. Proof of Theorem 1.4

If X is at Banach–Mazur ⩽ C from ◦A◦, then the inequality ∥TX∥ ⩽ C

for every T ∈ A◦ is clear.
For the converse, we will need the following consequence of the Hahn–

Banach theorem.

Lemma 4.8. — Let K be a compact Hausdorff topological space, and
C(K) the space of real-valued continuous functions on K. Let A be a closed
convex cone in the positive cone of C(K) such that A∩B(0, 1) is compact.
Let s ⩾ 1. Then for every ψ ∈ C(K), the following are equivalent

• ∃ φ ∈ A, ψ ⩽ φ ⩽ sψ.
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• ⟨sµ − ν, ψ⟩ ⩾ 0 for every positive measures µ, ν on K such that
⟨µ− ν, φ⟩ ⩾ 0 for all φ ∈ A.

Proof. — ⇒ is easy because the inequality ψ ⩽ φ ⩽ sψ implies ⟨sµ −
ν, ψ⟩ ⩾ ⟨µ− ν, φ⟩.

For the converse, since A is a convex cone, the set B of ψ satisfying ∃ φ ∈
A, ψ ⩽ φ ⩽ sψ is a convex cone. Moreover, the compactness assumption on
A implies that B is also closed. Assume that ψ /∈ B. By Hahn–Banach there
is a linear form on C(K) which is nonnegative on B and negative at ψ. By
the Riesz representation theorem and the Hahn decomposition, this linear
form can be written as f 7→

∫
f d(µ − ν) for positive measures µ, ν such

that there is a Baire measurable subset E ⊂ K satisfying ν(E) = 0 and
µ(K \ E) = 0.

Let φ ∈ A. Let fn : K → [0, 1] be a sequence of continuous functions
converging in L1(K,µ+ν) to the indicator function of E. Then for every n,
the function

( 1
s +
(
1− 1

s

)
fn

)
φ belongs to B so

〈
µ−ν,

( 1
s +
(
1− 1

s

)
fn

)
φ
〉
> 0.

By making n → ∞ we get
〈
µ−ν, 1

sφ1K\E +φ1E

〉
⩾ 0, which can be written

as
〈 1

sµ− ν, φ
〉
⩾ 0.

So we have
〈 1

sµ−ν, φ
〉
⩾ 0 for every φ ∈ A, whereas ⟨µ−ν, ψ⟩ < 0. This

proves the lemma. □

We can now prove the converse implication in Theorem 1.4. Assume that
∥TX∥ ⩽ C for every T ∈ A◦. Let x1, . . . , xn ∈ X. Define ψ ∈ Hn by ψ(z) =∥∥∑n

i=1 zixi

∥∥p, and view ψ in C(KPn−1). The assumption that ∥TX∥ ⩽ C

for every T ∈ A◦ implies that ⟨Cpµ− ν, ψ⟩ ⩾ 0 for every positive measures
µ, ν on KPn−1 such that ⟨µ − ν, φ⟩ ⩾ 0 for all φ ∈ A. By Lemma 4.8
(remember Lemma 4.5) this implies that there is φ in the closed convex
hull of N(A,n) such that ψ ⩽ φ ⩽ Cpψ. By the proof of Theorem 1.3,
there is a space Y ∈ ◦A◦ and y1, . . . , yn ∈ Y such that φ(z) =

∥∥∑
i ziyi

∥∥p.
By taking the 1/p-th power in the inequality ψ ⩽ φ ⩽ Cpψ we get that∥∥∑ zixi

∥∥ ⩽
∥∥∑ ziyi

∥∥ ⩽ C
∥∥∑ zixi

∥∥ for every y ∈ Kn. This means that the
linear span of x1, . . . , xn is at Banach–Mazur distance ⩽ C from the linear
span on {y1, . . . , yn} and concludes the proof.

4.4. Understanding the encoding of operators in H∗
n

The main result of this subsection is Proposition 4.9, which describes
how operators are encoded in H∗

n. If B ⊂ T , we define new (larger) classes
as follows:
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• Λ1(B) is the set of operators

(T, id) : dom(T ) ⊕p Lp(Ω, µ) → ran(T ) ⊕ Lp(Ω, µ)

for T ∈ B and a measure space (Ω, µ);
• Λ2(B) =

{
U ◦ T ◦ V | U, V spatial isometries, T ∈ B

}
;

• Λ3(B) is the set of all S : dom(S) ⊂ Lp(Ω1,m1) → Lp(Ω2,m2)
such that there is T ∈ B where dom(T ) ⊂ Lp(Ω1,m1) ⊕ Lp(Ω,m),
ran(T ) ⊂ Lp(Ω2,m2) ⊕ Lp(Ω,m), dom(S) is the image of dom(T )
by the first coordinate projection and T (f ⊕ g) = Sf ⊕ g for every
f ⊕ g ∈ dom(T );

• Λ4(B) is the set of all S : dom(S) ⊂ Lp(Ω,m) → Lp(Ω′,m′) such
that for every finite family f1, . . . , fn in the domain of T and every
ε > 0, there is T ∈ B with domain contained in Lp(Ω,m) and range
contained in Lp(Ω′,m′) and elements g1, . . . , gn ∈ D(S) such that
∥fi − gi∥ ⩽ ε and ∥Tfi − Sgi∥ ⩽ ε.

To save place, we denote Λ123(B) = Λ3
(
Λ2
(
Λ1(B)

))
.

Proposition 4.9. — For every T ∈ T and B ⊂ T , the following are
equivalent:

• for every n, P (T, n) ⊂ P (B,n);
• the restriction of T to every finite dimensional subspace of dom(T )

belongs to Λ123(B).

The start with a couple of lemmas that will be used in the proof.

Lemma 4.10. — Let f, g, f̃ , g̃ be n-tuples of elements of Lp spaces. Then
µf − µg = µf̃ − µg̃ if and only if there is h ∈ Lp(Ω,m)n, h̃ ∈ Lp(Ω̃, m̃)n

such that µ(fi⊕hi)n
i=1

= µ(f̃i⊕h̃i)n
i=1

and µ(gi⊕hi)n
i=1

= µ(g̃i⊕h̃i)n
i=1

.

Proof. — The if direction is easy, because µ(fi⊕hi)n
i=1

= µf + µh.
For the converse, assume that µf − µg = µf̃ − µg̃. Let νf be the positive

measure on KPn−1 such that, for every φ ∈ Hn

(4.3) ⟨µf , φ⟩ =
∫

KPn−1
φ
( z

|z|

)
dνf (Kz).

Define similarly νg, νf̃ , νg̃. Then νf − νg = νf̃ − νg̃ is a signed measure
on KPn−1. Let ν+ − ν− be its Jordan decomposition. By the properties
of the Jordan decomposition, νf − ν+ = νg − ν− is a positive measure on
KPn−1, and therefore by the proof of Lemma 4.3 it is of the form to νh̃ for
some n-tuple h̃ ∈ Lp(Ω̃, m̃). Similarly, there is a h ∈ Lp(Ω,m)n such that
νf̃ − ν+ = νg̃ − ν− = νh.
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We can rewrite these equalities as

ν+ = νf − νh̃ = νf̃ − νh

and
ν− = νf − νh̃ = νf̃ − νh.

This implies that µf + µh = µf̃ + µh̃ and µg + µh = µg̃ + µh̃ and proves
the lemma. □

Lemma 4.11. — For two families f ∈ Lp(Ω,m)n and g ∈ Lp(Ω′,m′)n,
µf = µg if and only if there is a spatial isometry span{f1, . . . , fn} →
span{g1, . . . , gn} sending fi to gi.

Proof. — The if direction is easy: firstly if there is a measurable function
h : Ω → K \ {0}, if (Ω′,m′) =

(
Ω, |h|−pm

)
and gi = hfi for all i, then

for every φ ∈ Hn, φ(g1, . . . , gn) = |h|pφ(f1, . . . , fn) and therefore ⟨µg, φ⟩ =
⟨µf , φ⟩. Secondly if f1, . . . , fn and g1, . . . , gn are equidistributed outside of 0
in the sense of Definition 1.5, then

∫
φ(f1, . . . , fn) dm =

∫
φ(g1, . . . , gn) dm′

for every Borel function φ vanishing at 0 and such that the integrals are
defined. In particular µf = µg.

For the converse, assume that µf = µg. Take a measurable section
s : KPn−1 → Kn with values in

{
z ∈ Kn, |z| = 1

}
. Then there are mea-

surable nonvanishing functions h : Ω → K∗ and h′ : Ω′ → K∗ such that
f(ω) = h(ω)s

(
Kf(ω)

)
for every ω ∈ Ω such that f(ω) ̸= 0, and simi-

larly g(ω′) = h′(ω′)s
(
Kg(ω′)

)
if g(ω′) ̸= 0. By replacing m by |h|−1/pm

and fi by hifi and similarly for g we can assume that h = 1 and h′ = 1,
and we shall prove that f and g are equidistributed outside of 0. By this
we mean that for every Borel E ⊂ Kn \ {0}, m

({
ω,
(
f1(ω), . . . , fn(ω)

)
∈

E
})

= m′({ω′,
(
g1(ω′), . . . , gn(ω′)

)
∈ E

})
. This clearly implies that, for

every matrix A ∈ Mm,n(K), Af and Ag are equidistributed outside of 0.
Hence the linear map sending fi to gi is well-defined, and an equidistribu-
tion outside 0 (see Definition 1.5).

By the identification of Hn with C(KPn−1), using that |f | ∈ {0, 1} we
have ∫

Ω\f−1(0)
ψ(Kf) dm =

∫
Ω′\g−1(0)

ψ(Kg) dm′

for every continuous function ψ : KPn−1 → K, and therefore also for every
bounded Borel function φ : KPn−1 → K. This implies, since f and g take
values in {0} ∪ s(KPn−1), that

∫
φ(f) dm =

∫
φ(g) dm′ for every Borel

function Kn → K vanishing at 0. Equivalently, f and g are equidistributed
outside of 0. □
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Remark 4.12. — The same proof shows actually a bit more: if a linear
map T : E ⊂ Lp(Ω,m) → Lp(Ω′,m′) satisfies µf = µT f for every n and
every f ∈ En, then T is a spatial isometry. Indeed, since by our standing
assumption E (as every other space considered in this paper) is separable,
we can find a sequence (fi)i⩾0 generating a dense subspace of E and satis-
fying

∑
i∥fi∥p < ∞, and in particular

(
fi(ω)

)
i⩾0 belongs to ℓp for almost

every ω. Then the same proof applies, except that we replace Kn by ℓp and
KPn−1 by its projectivization ℓp/K∗.

We shall also need the following variant:

Lemma 4.13. — For two families f ∈ Lp(Ω,m)n and g ∈ Lp(Ω′,m′)n

and ε > 0, ∥µf − µg∥ < ε if and only if there are spatial isometries

U : span{f1, . . . , fn} → Lp(Ω′′,m′′)
V : span{g1, . . . , gn} → Lp(Ω′′,m′′)

such that ∫
Ω′′

(
|Uf |p + |V g|p

)
χUf ̸=V g < ε.

Proof. — We prove the slightly stronger statement with < ε replaced by
⩽ ε.

The if direction is easy: by Lemma 4.11 we have µf = µUf and µg = µV g,
and therefore for every φ ∈ Hn,

⟨µf − µg, φ⟩ =
∫

Ω′′
φ(Uf) − φ(V g)

⩽
∫

Ω′′

(∣∣φ(Uf)
∣∣+
∣∣φ(V g)

∣∣)χf ̸=Ug

⩽
∫

Ω′′

(
|Uf |p + |V g|p

)
∥φ∥

⩽ ε∥φ∥.

Taking the supremum over φ we get ∥µf − µg∥ ⩽ ε.
The converse follows from a coupling argument. Assume that ∥µf −µg∥⩽ε.

Let νf and νg be the measures on KPn−1 given by (4.3), so that the total
variation norm of νf − νg is at most ε. This means that we can decompose
νf =ν0+ν1 and νg =ν0+ν2 for positive measures with (ν1+ν2)(KPn−1)⩽ε.
As in the proof of Lemma 4.3, each νk corresponds by (4.3) to µhk for an
n-tuple hk ∈ Lp(Ωk,mk)n with

∑
i∥hk

i ∥p
p = νk(KPn−1). In particular, we

have µf = µh0 + µh1 and µg = µh0 + µh2 .
Let us define Ω′′ as the disjoint union Ω0 ∪Ω1 ∪Ω2, m′′ as m0 +m1 +m2,

and f ′ = h0 ⊕h1 ⊕0 and g′ = h0 ⊕0⊕h1, so that µf ′ = µh0 +µh1 = µf and
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µg′ = µg. By Lemma 4.11, there are spatial isometries U and V sending f
to f ′ and g to g′ respectively, and we have∫

Ω′′

(
|f ′|p + |g′|p

)
χf ′ ̸=g′ =

∫
Ω1

|h1|p +
∫

Ω2

|h2|p ⩽ ε.

This proves the lemma. □

We will also need the following asymmetric variant of the previous lemma.

Remark 4.14. — In Lemma 4.13, we can moreover assume that (Ω′′,m′′)
is
(
Ω × [0, 1],m ⊗ dλ

)
(for λ the Lebesgue measure), and that the spatial

isometry U is simply Uξ(ω, s) = ξ(ω).

Proof. — Let µf , µg, νf = ν0 + ν1, νg = ν0 + ν2 be as in the proof of
Lemma 4.13, where ∥ν1 + ν2∥ < ε. We can even assume that ν1 ̸= 0 (this is
where the strict inequality < ε is used). Denote by dν0

dνf
: KPn−1 → [0, 1] the

Radon–Nikodym derivative. Define A ⊂ Ω×[0, 1] = Ω′′ by A =
{

(ω, s) | s ⩽
0 ⩽ s ⩽ dν0

dνf

(
K∗f(x)

)}
, so that µfχA

= ν0 and µfχΩ′′\A
= ν1. In particular,

Ω′′ \A has positive measure and is therefore an atomless standard measure
space, and we can find h ∈ Lp(Ω′′,m′′)n that vanishes on A such that µh

corresponds to ν2. We then have µg = µh + µfχA
= µh+fχA

. The last
equality is because h and fχA are disjointly supported. By Lemma 4.11,
there is a spatial isometry V sending g to h+ fχA. Moreover, we have∫

Ω′′

(
|f |p + |h+ fχA|p

)
χf ̸=h+fχA

⩽
∫

Ω′′\A

(
|f |p + |h|p

)
< ε. □

We can now prove Proposition 4.9.
Proof of Proposition 4.9. — Assume that, for a fixed n, P (T, n) ⊂

P (B,n). This means that, for every f ∈ dom(T )n, there exist S ∈ B

and g ∈ dom(S)n such that µf − µT f = µg − µSg
. By Lemmas 4.10

and 4.11, there are h ∈ Lp(Ω,m)n and h ∈ Lp(Ω′,m′)n and spatial isome-
tries U : span

{
Sgi ⊕ hi

}
→ span

{
Tfi ⊕ hi

}
sending Sgi ⊕ hi to Tfi ⊕ hi

and V : span
{
fi ⊕ hi → gi ⊕ hi

}
sending fi ⊕ hi to gi ⊕ hi. The op-

erator S1 = (S, id) on dom(T ) ⊕ Lp(Ω′,m′) belongs to Λ1(B), so the
operator S2 = U ◦ S1 ◦ V , which sends fi ⊕ hi to Tfi ⊕ hi belongs to
Λ2
(
Λ1(B)

)
, and therefore the restriction of T to span{f1, . . . , fn} belongs

to Λ3
(
Λ2
(
Λ1(B)

))
. This proves one direction.

The converse is simpler: it follows from the easy directions in Lem-
mas 4.10 and 4.11 that P

(
Λi(B), n

)
= P (B,n) for i = 1, 2, 3. In particular,

if the restriction of T to every ⩽ n-dimensional subspace of dom(T ) belongs
to Λ123(B), then P (T, n) ⊂ P (B,n). □
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4.5. Convergences in H∗
n

This section is devoted to the understanding of the encoding of both
weak-* sequential convergence and norm convergence in H∗

n. Our first result
asserts that weak-* convergence of sequences corresponds to the operation
Λ4 we just defined.

Proposition 4.15. — Let B ⊂ T . The smallest class containing B and
stable by all operations Λ1,Λ2,Λ3,Λ4 coincides with the set of T ∈ T such
that for every n, P (T, n) is contained in the sequential weak-* closure of
P (B,n).

Proof. — We define by transfinite induction, for every ordinal α, a class
Bα as follows. B0 is Λ123(B). Set Bα = Λ123

(
Λ4(Bα−1)

)
if α is a successor

ordinal, and Bα =
⋃

β<α Bβ if α is a limit ordinal.
Similarly, we define, for every integer n and every ordinal α, a subset

Cn
α ⊂ H∗

n by Cn
0 = P (B,n), for a successor ordinal Cn

α is the set of all
limits of weak-* converging sequences of elements of Cn

α−1. If α is a limit
ordinal we set Cn

α =
⋃

β<α C
n
β .

We claim that, for every T ∈ T with finite-dimensional domain, P (T, n)
is contained in Cn

α for every n if and only if T belongs to Bα. We prove it
by transfinite induction. If α = 0, this is Proposition 4.9. Let α > 0 and
assume that the claim holds for all β < α. If α is a limit ordinal, the claim
is clear.

So assume that α is a successor. Assume first that P (T, n) ⊂ Cn
α for ev-

ery n. Let n be the dimension of dom(T ) and f = (f1, . . . , fn) a basis. Then
µf −µT f is a limit of a weak-* converging sequence νk of elements of Cn

α−1.
By Lemma 4.3 there are f (k) ∈ Lp(Ωk,mk)n and g(k) ∈ Lp(Ω′

k,m
′
k)n

with values in
{
z ∈ Kn, |z| = 1

}
such that νk = µf(k) − µg(k) and

mk(Ωk) + m′
k(Ω′

k) is the norm of the corresponding linear form, which
is bounded by Banach–Steinhaus. For simplicity of the exposition assume
that mk(Ωk) + m′

k(Ω′
k) ⩽ 1. By the induction hypothesis, there is an

operator Sk ∈ Bα−1 such that f (k) ∈ D(Sk)n and Skf
(k) = g(k). We

have two sequences of probability measures, f (k)
∗ mk +

(
1 −mk(Ωk)

)
δ0 and

g
(k)
∗ m′

k +
(
1−m′

k(Ω′
k)
)
δ0, on {0}∪

{
z ∈ K, |z| = 1

}
⊂ Kn. By compactness,

up to an extraction we can assume that both sequences converge weak-*,
and by Skorohod’s representation theorem we can assume that (Ωk,mk)
does not depend on k and that f (k) converges almost surely to some f (∞) ∈
Ln

p and similarly g(k) converges almost surely, and in particular in Lp, to
g(∞) (this modifies the operators Sk, but they still satisfy νk = µf(k) −µSf(k)

and therefore still belong to Bα−1). In particular, the operator S(∞) from
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dom(S(∞)) = span{f (∞)
1 , . . . , f

(∞)
n } → span{g(∞)

1 , . . . , g
(∞)
n } sending f (∞)

i

to g(∞)
i belongs to Λ4(Bα−1) and it satisfies

µf(∞) − µS(∞)f(∞) = lim
k
µf(k) − µS(k)f(k) = µf − µT f .

By Proposition 4.9 again, the restriction of T to span{f1, . . . , fn} = E

belongs to Λ123(S(∞)) ⊂ Bα. This concludes the proof that P (T, n) ⊂ Cn
α

for all n implies that the restriction of T belongs to Bα. The converse is
similar but easier and left to the reader. □

Similarly, norm convergence is well encoded.

Lemma 4.16. — Let B ⊂ T , T : dom(T ) ⊂ Lp(Ω1,m1) → Lp(Ω2,m2)
a linear map with domain of finite dimension n, and (f1, . . . , fn) be a basis
of dom(T ). Then P (T, n) is contained in the norm-closure of P (B,n) if
and only if for every ε > 0, there is S ∈ Λ123(B) with dom(S) ⊂ Lp

(
Ω1 ×

[0, 1],m1 ⊗dλ
)

and ran(S) ⊂ Lp

(
Ω2 ×[0, 1],m2 ⊗dλ

)
, there are g1, . . . , gn ∈

dom(S) such that∫
Ω1×[0,1]

(∣∣f(ω)
∣∣p +

∣∣g(ω, s)
∣∣p)χf(ω)̸=g(ω,s) dm1(ω) ds ⩽ ε

and ∫
Ω2×[0,1]

(∣∣Tf(ω)
∣∣p +

∣∣Sg(ω, s)∣∣p) 1
p

χT f(ω)̸=Sg(ω,s) dm2(ω) ds ⩽ ε.

Proof. — Assume that P (T, n) is contained in the closure of P (B,n).
This means that for every ε > 0, there is µ′ ∈ P (B,n) such that ∥µf −
µT f − µ′∥ < ε. By Lemma 3.4, we can write µ′ = µg − µh for n-tuples of
elements of Lp spaces g, h where ∥µf − µg∥ + ∥µT f − µh∥ < ε. Since we
have some room (< ε), we can even assume that {g1, . . . , gn} are linearly
independent, so that we can define a linear map S sending gi to hi. By
Proposition 4.9, S belongs to Λ123(B), and so does S composed with any
spatial isometry. So the only if direction follows from Lemma 4.13 and its
improvement in Remark 4.14.

The converse is proved the same way. □

4.6. Proof of the main theorem

We are also ready to prove our main theorem (Theorem 1.6). Before we
do so, we only need to understand the operation of taking convex hulls.

ANNALES DE L’INSTITUT FOURIER



A DUALITY OPERATORS/BANACH SPACES 29

Lemma 4.17. — Let B ⊂ T and n ∈ N. The convex hull of P (B,n) is
equal to P

(
⊕ℓp

(B), n
)

where ⊕ℓp
(B) is the class of all finite ℓp-direct sums

of operators in B.

Proof. — This is clear: if T1, . . . , Tk ∈ B and f (j) ∈ D(Tj)n for all j,
then ∑

j

µf(j) − µT f(j) = µf − µ(T1⊕···⊕Tk)f

where fi = f
(1)
i ⊕ · · · ⊕ f

(k)
i ∈ D(T1) ⊕ . . . D(Tk) and f = (f1, . . . , fn) ∈(

D(T1) ⊕ · · · ⊕D(Tk)
)n. □

We can conclude.
Proof of Theorem 1.6. — We start with the easy direction. Assume that

for every n and ε, the assumption in the second bullet point holds. Let
X be a Banach space such that supS∈B∥SX∥ ⩽ 1. We have to prove that
∥TX∥ ⩽ 1. That is, for every integer n and every x1, . . . , xn,

(4.4)
∥∥∥∑

i

(Tfi)xi

∥∥∥
Lp(Ω2;X)

⩽
∥∥∥∑

i

fixi

∥∥∥
Lp(Ω1,X)

.

Let ε > 0, and S = S0 ⊕ S1 ⊕ · · · ⊕ Sk, U , V , gi, g
′
i, hi given by the

assumption. In the following computation, we view Tfi as an element of
Lp

(
Ω2 × [0, 1]

)
that does not depend on the second variable in [0, 1], and

similarly for fi. We denote simply by ∥ · ∥p the norm in Lp

(
Ωi × [0, 1];X

)
or Lp

(
Ωi × [0, 1]

)
. We can bound∥∥∥∑

i

(Tfi)xi

∥∥∥
Lp(Ω2;X)

⩽
∑

i

∥Tfi − g′
i∥p∥xi∥ +

∥∥∥∑
i

g′
ixi

∥∥∥
p

⩽ ε
∑

i

∥xi∥ +
∥∥∥∑

i

g′
ixi

∥∥∥
p

= ε
∑

i

∥xi∥ +
(∥∥∥∑

i

(g′
i, hi)xi

∥∥∥p

p
−
∥∥∥∑

i

hixi

∥∥∥p

p

) 1
p

.

The quantity inside the parenthesis is equal to∥∥∥∑
i

S(gi, hi)xi

∥∥∥p

p
−
∥∥∥∑

i

hixi

∥∥∥p

p
,

so using that ∥SX∥ = max0⩽i⩽k

∥∥(Si)X

∥∥ ⩽ 1, we obtain that it is bounded
above by ∥∥∥∑

i

(gi, hi)xi

∥∥∥p

p
−
∥∥∥∑

i

hixi

∥∥∥p

p
=
∥∥∥∑

i

gixi

∥∥∥p

p
.
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We can therefore go on with our computation and get∥∥∥∑
i

(Tfi)xi

∥∥∥
Lp(Ω2;X)

⩽ ε
∑

i

∥xi∥ +
∥∥∥∑

i

gixi

∥∥∥
p

⩽ ε
∑

i

∥xi∥ +
∑

i

∥fi − gi∥p∥xi∥ +
∥∥∥∑

i

fixi

∥∥∥
p

⩽ 2ε
∑

i

∥xi∥ +
∥∥∥∑

i

fixi

∥∥∥
p
.

Making ε → 0, we obtain (4.4) as required.
The converse direction relies on everything we have obtained so far. As-

sume that T ∈ (◦B)◦. We know from Corollary 4.6 that for every integer n,
P (T, n) ⊂ conv∥ · ∥ P (B ∪ REG, n), which is the same as the norm-closure
of P

(
⊕ℓp

(B ∪ REG)
)

by Lemma 4.17. So by Lemma 4.16, for every ε > 0
there is S ∈ Λ123(B ∪ REG) with dom(S) ⊂ Lp

(
Ω1 × [0, 1],m1 ⊗ dλ

)
and

ran(S) ⊂ Lp

(
Ω2 × [0, 1],m2 ⊗ dλ

)
, there are g1, . . . , gn ∈ dom(S) such that∫

Ω1×[0,1]

(∣∣f(ω)
∣∣p +

∣∣g(ω, s)
∣∣p)χf(ω) ̸=g(ω,s) dm1(ω) ds ⩽ εp

and ∫
Ω2×[0,1]

(∣∣Tf(ω)
∣∣p +

∣∣Sg(ω, s)∣∣p) 1
p

χT f(ω) ̸=Sg(ω,s) dm2(ω) ds ⩽ εp.

In particular, using that
∫ (

|a|p + |b|p
)
χa̸=b ⩾

∫
|a− b|p =

∑
i

∫
|ai − bi|p for

every a, b ∈ (Lp)n, we have for every i,(∫
Ω1×[0,1]

∣∣fi(ω) − gi(ω, s)
∣∣p dm1(ω) ds

) 1
p

⩽ ε

and (∫
Ω2×[0,1]

∣∣Tfi(ω) − Sgi(ω, s)
∣∣p dm2(ω) ds

) 1
p

⩽ ε.

Also, using that REG contains the identity and is stable by ℓp-direct sums,
Λ1
(
⊕ℓp

(B∪REG)
)

is the set of all operators of the form S0⊕S1⊕· · ·⊕Sk for
S0 ∈ REG and S1, . . . , Sk ∈ B. So the fact that S belongs to Λ123(B∪REG)
means that there exist S0 ∈ REG, S1, . . . , Sk ∈ B, spatial isometries U, V
and a measure space (Ω,m) such that V ◦ (S0 ⊕ · · · ⊕ Sk) ◦ V contains
elements of the form (gi, hi) in its domain for all 1 ⩽ i ⩽ n and some
hi ∈ Lp(Ω,m) and so that V ◦ (S0 ⊕ · · · ⊕ Sk) ◦ V (gi, hi) = (Sgi, hi).
We can of course replace (Ω,m) by any standard measure space as this
amounts to conjugating by another spatial isometry. So we have obtained
the conclusion of the theorem. □
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5. Variants of the duality

The duality defined in the introduction was implicit in many early works
on the geometry of Banach spaces, and was essentially present in [30], where
Pisier explicitly considered a duality that is very close to ours. He defines
the polars by the same formulas as in Definitions 1.1 and 1.2, but with
different classes of operators instead of T .

Definition 5.1. — Denote by Tf the class of all linear operators be-
tween (full, as opposed to subspace of) Lp spaces. If n is an integer, denote
Tf,n the class of all linear operators ℓn

p → Lp and Tf,<∞ =
⋃

n∈N Tf,n.

In particular, for the duality between X and Tf , the polar of a set B
of Banach spaces is smaller than for the duality between X and T , and
therefore its bipolar is larger. Hernandez also obtained a description of the
bipolar B for this duality: it is the set of Banach spaces that are finitely
representable in subspaces of quotients of finite ℓp direct sums of spaces
in B, see Theorem 5.5. This is quite different from Theorem 1.3. For exam-
ple for the duality considered here, every Banach space in the bipolar of ℓ1
has cotype max(p, 2) (this is immediate from Hernandez’s Theorem 1.3 and
the fact that ℓp(ℓ1) has cotype max(p, 2)), whereas for the duality in [30],
the bipolar of ℓ1 contains every space finitely representable in a quotient
of ℓ1, i.e. every Banach space.

However, as far as the bipolar of a set of operators is concerned, the
two dualities are very related: if B ⊂ Tf , then its bipolar for the polarity
between X and Tf is the set of operators between Lp spaces which belong to
◦B◦ (for the polarity between X and T ). So our Theorem 1.6 also provides
an answer to [30, Problem 4.1].

The dualities discussed so far are isometric variants of two other iso-
morphic forms of the duality in [30], where A◦ is the class of operators
such that ∥TX∥ < ∞ for all X ∈ A, and ◦B is the class of Banach space
such ∥TX∥ < ∞ for all T ∈ B. But, if B is finite, the bipolar of B for
this “isomorphic” duality coincides with

⋃
R>0 R

(◦(R−1B)◦). If B is infi-
nite, the “isomorphic” bipolar of B is

⋃
R>0

⋃
c∈(0,1]B R(◦cB)◦, where for

c = (cT )T ∈B ∈ (0, 1]B , cB =
{
cTT | T ∈ B

}
. So our bipolar Theorem 1.6

also allows to describe the bipolar for the isomorphic forms of the duality.
It turns out that the methods of this paper also allow us to recover

Hernandez’s characterization of the bipolar of a set of Banach spaces for
the duality between X and Tf . Let us start with an easy fact, which allows
us to restrict our attention to Tf,n.
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Lemma 5.2. — The bipolar of a subset A ⊂ X for the duality between
X and Tf coincides with its bipolar for the duality between X and Tf,<∞.

Proof. — Any Lp space can be written as the closure of an increasing
net of finite dimensional Lp spaces, which are isomorphic to ℓn

p . □

Denote by e = (e1, . . . , en) the standard basis of ℓn
p . We encode a subset

B ⊂ Tf,n, as the cone P̃ (B,n) ⊂ H∗
n

P̃ (B,n) =
{
s(µe − µT e) | T ∈ B, s > 0

}
.

We warn the reader that P̃ (B,n) is strictly smaller than P (B,n) even for
B ⊂ Tf,n. Note however that the duality is still efficiently encoded. The
following result is the analogue of Lemma 4.1 and is proved identically.

Lemma 5.3. — Let n ∈ N be an integer, A ⊂ X be a class of Banach
spaces and B ⊂ Tf,n a class of operators ℓn

p → Lp.
(1) B ⊂ A◦ if and only if P̃ (B,n) ⊂ N(A,n)◦.
(2) A ⊂ ◦B if and only if N(A,n) ⊂ ◦P̃ (B,n).

Moreover, we have the following.

Lemma 5.4. — The subset P̃ (Tf,n, n) ⊂ H∗
n is a weak-* closed convex

cone. Its polar is

Cn :=
{
φ ∈ Hn | φ ⩽ 0, φ(e1) = · · · = φ(en) = 0

}
.

Proof. — The convexity of the cone P̃ (Tf,n, n) is clear, as θ(µe −µT e) +
(1 − θ)(µe − µSe) can be written as µe − µRe for the linear map R : ℓn

p →

Lp⊕Lp given in matrix form by R =
(

θ
1
p T

(1−θ)
1
p S

)
. For the weak-* closedness,

by the Krein–Smulian theorem [8, Theorem V.12.1], we have to show that
the intersection of P̃ (Tf,n, n) with the closed unit ball BH∗

n
is weak-* closed.

Recall that every element of H∗
n can be regarded as a signed measure on

KPn−1. If it belongs to P̃ (Tf,n, n) ∩ BH∗
n
, then its positive part in the

Jordan decomposition has total mass ⩽ 1 and has support contained in
{Ke1, . . . ,Ken}. In particular, it is less than µe. It follows that it can be
written as µe − µf for some f ∈ (Lp)n. So we are reduced to showing that{
µe − µf | f ∈ Ln

p

}
is weak-* closed in H∗

n, which is clear.
It remains to identify the polar of P̃ (Tf,n, n). If φ ∈ Cn, and T ∈ Tf,n,

we have
⟨µe, φ⟩ =

∑
i

φ(ei) = 0,

so
⟨µe − µT e, φ⟩ = −⟨µT e, φ⟩ ⩾ 0.
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This shows the inclusion Cn ⊂ ◦P̃ (Tf,n, n).
For the converse inclusion, consider φ ∈ ◦P̃ (Tf,n, n). Then for every f ∈

(Lp)n, we have

(5.1) ⟨µe − µf , φ⟩ ⩾ 0.

In particular, replacing f by sf and making s → ∞, we obtain

−⟨µf , φ⟩ ⩾ 0

for every f ∈ (Lp)n. Taking for f a constant z, this forces φ(z) ⩽ 0 for
every z ∈ Kn. Taking f = 0 in (5.1) leads to∑

i

φ(ei) = ⟨µe, φ⟩ ⩾ 0.

This implies that φ(ei) = 0 for every i, and that φ belongs to Cn. This
concludes the proof of the inclusion ◦P̃ (Tf,n, n) ⊂ Cn and of the lemma. □

We can now reprove Hernandez’ Theorem.

Theorem 5.5 ([11]). — Let A ⊂ X and X ∈ X . The following are
equivalent.

(1) For every operator T : Lp → Lp, ∥TX∥ ⩽ supY ∈A∥TY ∥.
(2) X is finitely representable in the class of all quotients of finite ℓp-

direct sums of elements in A.

Proof. — The interesting direction is (1)⇒(2). So assume that (1) holds.
Equivalently by Lemma 5.2 X belongs to the bipolar of A for the duality
between X and Tf,<∞. By Lemma 5.3, this holds if and only if for every n,

N(X,n) ⊂ ◦(
P̃ (Tf,n, n) ∩N(Y, n)◦).

By Lemma 5.4 and the bipolar theorem, P̃ (Tf,n, n) coincides with C◦
n, so

the previous inclusion becomes

N(X,n) ⊂ ◦((
Cn ∪N(Y, n)

)◦)
.

By the bipolar theorem again, we obtain that N(X,n) belongs to the closed
convex hull of Cn ∪N(Y, n), which is nothing but Cn + conv

(
N(Y, n)

)
(use

compactness as in Lemma 4.5 to see that Cn +conv
(
N(Y, n)

)
is closed). By

Lemma 4.7, we obtain that for every n ∈ N and every x1, . . . , xn ∈ X, there
is a space Y finitely representable in the finite ℓp-direct sums of elements
in A and elements y1, . . . , yn spanning Y such that

∀ i, ∥xi∥ = ∥yi∥ and ∀ z ∈ Kn,
∥∥∥∑

i

zixi

∥∥∥
X

⩽
∥∥∥∑

i

ziyi

∥∥∥
Y
.
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Now if E is any finite dimensional subspace of X, and ε > 0, we can pick
a finite family x1, . . . , xn in its unit sphere whose convex hull contains the
ball of radius (1 + ε)−1. Applying the preceding to these xi’s, we obtain
a space Y finitely representable in ⊕ℓp

A and a linear map u : Y → E of
norm 1 such that the image of the unit ball contains the ball of radius
(1 + ε)−1 of E. In other words, E is at Banach–Mazur distance ⩽ 1 + ε

from a quotient of Y . But a subspace of a quotient is the same as a quotient
of a subspace, so we have obtained that X is finitely representable in the
quotients of spaces in ⊕ℓpA. This is (2).

The converse implication (2)⇒(1) can be proved using the same argu-
ments, but it is easy and classical to check it directly. The point that per-
haps deserves a small justification is why ∥TX∥ ⩽ ∥TY ∥ if X is a quotient
of Y and T : Lp → Lp is an operator. One argument is by duality. Indeed,
X∗ identifies then as a subspace of Y ∗, and if T ∗ : Lq → Lq denotes the
dual of T (for 1

q + 1
p = 1), then

∥TX∥ = ∥T ∗
X∗∥ ⩽ ∥T ∗

Y ∗∥ = ∥TY ∥. □

Appendix A. On the GL(n,K)-invariant subspaces of
homogeneous functions

Let 0 < p < ∞. We recall some definition that already appeared in the
body of the paper for p ⩾ 1.

Let n be a positive integer. Denote by |z| the ℓp-“norm” on Kn

|z| =
(
|z1|p + · · · + |zn|p

) 1
p .

A function φ : Kn → R is called homogeneous of degree p if φ(λz) =
|λ|pφ(z) for all z ∈ Kn and λ ∈ K. The space Hn of real continuous
homogeneous of degree p functions on Kn is a Banach space for the topology
of uniform convergence on compact subsets on Kn. A particular choice of
norm is ∥φ∥ = sup|z|⩽1

∣∣φ(z)
∣∣, so that for this norm Hn is isometrically

isomorphic to the space of continuous functions on KPn−1 through the
identification of φ ∈ Hn with the function Kz ∈ KPn−1 7→ φ

(
z

|z|
)
. For

this identification, the natural action of GLn(K) on Hn corresponds to the
action of GLn(K) on C(KPn−1) given by

A · φ(Kz) = |A−1z|p

|z|p
φ(A−1Kz).

Theorem A.1. — The GLn(K)-invariant closed subspaces of the Ba-
nach space Hn of continuous p-homogeneous functions Kn → R are:
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• {0} and Hn if p is not an even integer;
• {0}, Hn and the subspace of degree p homogeneous polynomials if
p is an even integer.

Remark A.2. — This theorem allows to reprove the result [9] that if p is
not an even integer, then every isometry between subspaces of Lp spaces
is a spatial isometry. Indeed, if T is such an isometry, n is an integer,
f ∈ D(T )n and φ(z) = |z1|p, then we get for every A ∈ GLn(K) (with the
notation of (4.2))

⟨µf − µT f , φ ◦A⟩ =
∥∥∥∑

j

a1,jfj

∥∥∥p

−
∥∥∥∑

j

a1,jTfj

∥∥∥p

= 0.

The linear form µf −µT f therefore vanishes on the GLn(K)-invariant sub-
space spanned by

{
φ ◦ A, A ∈ GLn(K)

}
. By Theorem A.1 this subspace

is dense, which implies that µf − µT f = 0. One concludes by Remark 4.12
that T is a spatial isometry.

When p is an even integer, the same argument shows that ifX is a Banach
space and x, y ∈ X are so that (z1, z2) 7→ ∥z1x+ z2y∥p is not a polynomial
in z1, z2, z1, z2 (for example if X = K2 with the ℓq norm for q which is
not an even divisor of p), then every operator T between subspaces of Lp

spaces such that ∥TX∥ = ∥T−1
X ∥ = 1 is a spatial isometry. In particular we

have the following.

Corollary A.3. — For any 0 < p < ∞ (even integer or not) a linear
map T between subspaces of Lp spaces is a spatial isometry if and only if
T is a regular isometry.

Rudin’s proof in [32] relied on the Wiener Tauberian theorem. In the
proof of Theorem A.1, we shall need the following variant.

Proposition A.4. — Let f, g : Rd → C be two measurable functions
and C > 0 such that

∣∣f(x)
∣∣ ⩽ C

(
1 + |x|

)p and
∣∣g(x)

∣∣ ⩽ C
(
1 + |x|

)−p−d−1

for all x ∈ Rd. Assume that g ∗ f = 0. Then the support of the tempered
distribution f̂ is contained in

{
ξ ∈ Rd, ĝ(ξ) = 0

}
.

Proof. — First observe that g ∈ L1(Rd), by the assumption on g.
If g belongs to D(Rd) (the space of compactly supported C∞ functions),

then the proposition is easy: by taking Fourier transform we have ĝf̂ = 0
(multiplication of a distribution by a C∞ function), from which the conclu-
sion follows. The strategy will be to approximate g by compactly supported
C∞ functions.

We have to prove that for every ξ ∈ Rd with ĝ(ξ) ̸= 0, there is a neigh-
bourhood V of ξ such that ⟨f̂ , φ⟩ = 0 for every φ ∈ D(V ). By standard
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translation/convolution/dilation arguments, we can assume that ξ = 0, g
is C∞, and that ĝ does not vanish on the closure of B(0, 1). We will prove
that ⟨f̂ , φ⟩ = 0 for every φ ∈ D

(
B(0, 1)

)
.

Let ρ : Rd → [0, 1] be a compactly supported C∞ function, equal to 1
on B(0, 1), and define a sequence of functions gn ∈ D(Rd) by gn(x) =
g(x)ρ

(
x
n

)
. By the dominated convergence theorem, ∥gn − g∥L1(Rd) → 0,

and so ∥ĝn − ĝ∥L∞ → 0. In particular there exists n0 such that ĝn does not
vanish on B(0, 1) for all n ⩾ n0.

Let φ ∈ D
(
B(0, 1)

)
. Then φ

ĝn
belongs to D

(
B(0, 1)

)
, so we can write

⟨f̂ , φ⟩ =
〈
ĝnf̂ ,

φ

ĝn

〉
=
〈
gn ∗ f,F−1

( φ
ĝn

)〉
where F−1 is the inverse Fourier transform. Using that gn ∗ f(x) = (gn −
g)∗f(x) = O

( 1
n

(
1+ |x|

n

)p) (this inequality will be explained below), we get

(A.1)
∣∣⟨f̂ , φ⟩

∣∣ ⩽ C

n

∫ (
1 + |x|

n

)p∣∣∣F−1
( φ
ĝn

)∣∣∣dx.
To justify to domination of hn(x) := (gn−g)∗f(x) =

∫
(gn−g)(y)f(x−y) dy,

use that ∣∣(gn − g)(y)
∣∣ ≲ (1 + |y|

)−p−d−11|y|>n

and ∣∣f(x− y)
∣∣ ≲ (1 + |x− y|

)p
≲
(

1 + max
(
|x|, |y|

))p

to obtain∣∣hn(x)
∣∣ ≲ ∫

|y|>n

(
1 + |y|

)−p−d−1
(

1 + max
(
|x|, |y|

))p

dy.

If |x| ⩽ n, then the preceding inequality becomes∣∣hn(x)
∣∣ ≲ ∫

|y|>n

(
1 + |y|

)−d−1 dy ≲
1
n
.

If |x| ⩾ n, then we cut the integral as
∫

n<|y|⩽|x| +
∫

|x|<|y| and get

∣∣hn(x)
∣∣ ≲ ∫

n<|y|⩽|x|

(
1 + |x|

)p(
1 + |y|

)p+d+1 dy +
∫

|y|>|x|

(
1 + |y|

)−d−1 dy

≲ |x|p 1
np+1 + 1

|x|

≲
|x|p

np+1 .

This proves the announced inequality.
In view of (A.1), we see that our goal is to prove good integrability

properties on the function F−1( φ
ĝn

)
, i.e. good regularity properties of its
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Fourier transform φ
ĝn

. To achieve this, we denote by A(Rd) the Fourier
algebra of Rd, i.e. the Banach space F

(
L1(Rd)

)
for the norm ∥h∥A(Rd) =

∥F−1h∥L1(Rd). The inequality

(A.2) ∥h1h2∥A(Rd) ⩽ ∥h1∥A(Rd)∥h2∥A(Rd)

is the reason for the term “algebra” and is clear from the usual properties
of convolution and Fourier transform. We have the following lemmas.

Lemma A.5. — For every φ ∈ D
(
B(0, 1)

)
, there is a constant C = C(φ)

such that φ
ĝn

belongs to A(Rd) with norm ⩽ C for all n ⩾ n0.

Lemma A.6. — There is a constant C ′ such that Dαĝn belongs to
A(Rd) with norm ⩽ C ′ for all n ∈ N and α ∈ Nd, |α| < p+ 1.

These two lemmas, together with the Leibniz derivation rule and the fact
that A(Rd) is a Banach algebra (A.2), imply that, for every φ ∈ D

(
B(0, 1)

)
,

there is a constant C such that Dα φ
ĝn

belongs to A(Rd) with norm less
than C for all n ⩾ n0 and α ∈ Nd, |α| < p+ 1. Therefore, for every such n
and α we have ∫ ∣∣∣xαF−1

( φ
ĝn

)∣∣∣dx ⩽ C.

This implies that, if k is the unique integer in the interval [p, p + 1), then
for every n ⩾ n0∫ (

1 + |x|
)p
∣∣∣F−1

( φ
ĝn

)∣∣∣dx ⩽
∫ (

1 + |x|
)k
∣∣∣F−1

( φ
ĝn

)∣∣∣ dx ⩽ C ′.

A fortiori, by (A.1) we have ∣∣⟨f̂ , φ⟩
∣∣ ⩽ C ′

n
,

so making n → ∞ we obtain ⟨f̂ , φ⟩ = 0. This concludes the proof. □

We have to prove the two lemmas used above.
Proof of Lemma A.5. — Let ρ ∈ D

(
B(0, 1)

)
which is equal to 1 on

the support of φ. The fact that ρ
ĝ (and ρ

ĝn
for every n ⩾ n0) belongs

to A(Rd) is essentially the Wiener Tauberian theorem. Indeed, the proof
in [33, Theorem 9.3] shows that for every x ∈ C such that ĝ(x) ̸= 0, there
is ε > 0 such that ρ

ĝ ∈ A(Rd) for every ρ ∈ D
(
B(x, ε)

)
. The claimed

result follows by a partition of unity argument. To obtain a bound on ρ
ĝn

independent from n, we write
φ

ĝn
= φ

ĝ

1
1 − ρ

ĝ (ĝ − ĝn) .
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Since ρ
ĝ belongs to A(Rd) and ∥ĝ − ĝn∥A(Rd) = ∥g − gn∥L1(Rd) → 0, there

is n1 ⩾ n0 such that ρ
ĝ (ĝ− ĝn) has A(Rd)-norm less than 1

2 for all n ⩾ n1.
This implies that for n ⩾ n1

φ

ĝn
=
∑
k⩾0

φ

ĝ

(ρ
ĝ

(ĝ − ĝn)
)k

belongs to A(Rd) with norm less than 2
∥∥φ

ĝ

∥∥
A(Rd). The lemma follows with

C = max
(

2
∥∥∥φ
ĝ

∥∥∥
A(Rd)

, max
n0⩽n<n1

∥∥∥ φ
ĝn

∥∥∥
A(Rd)

)
. □

Proof of Lemma A.6. — We have

∥Dαĝn∥A(Rd) = ∥xαgn∥L1(Rd) ⩽ ∥xαg∥L1(Rd)

because gn(x) = g(x)ρ
(

x
n

)
and 0 ⩽ ρ ⩽ 1. The quantity ∥xαg∥L1(Rd) is

finite because g(x) = O
(
|x|−p−d−1) and |α| < p+ 1. □

We can now prove the main result on GLn(K)-invariant subspaces of Hn.
Proof of Theorem A.1. — For simplicity we write the proof for K = C.

The real case is similar, see Remark A.9. Let f0 ∈ Hn be a nonzero function
such that the space spanned by the functions f0 ◦A for A ∈ GLn(C) is not
dense in Hn. We will prove that p is an even integer and that f0 is a homoge-
neous polynomial. By the Hahn–Banach theorem, there is a nonzero linear
form φ on Hn which vanishes on f0◦A for all A. By the Riesz representation
theorem, there is a unique nonzero signed measure µ on CPn−1 such that
φ(f) =

∫
f
(

z
|z|
)

dµ(Cz). We can assume that µ is absolutely continuous
with respect to the Lebesgue measure (= the unique U(n)-invariant proba-
bility measure) on CPn−1, with a C∞ Radon–Nikodym derivative. Indeed,
if ρ is a C∞ function on U(n), then the measure ρ ∗ µ =

∫
(u∗µ)ρ(u) du

is absolutely continuous with respect to the Lebesgue measure on CPn−1,
has a C∞ density, and still satisfies

∫
f0 ◦A

(
z

|z|
)

d(h∗µ)(Cz) = 0 for every
A ∈ GLn(C). Moreover if ρ ⩾ 0 has a support which is a small enough
neighbourhood of the identity, then ρ ∗ µ ̸= 0.

So in particular, µ has a nonzero bounded Radon–Nikodym derivative h
with respect to the Lebesgue measure. By Lemma A.8 we can write∫

CPn−1
F (Cz) dµ(z) =

∫
Cn−1

(Fh)
(
C(1, z)

) c(
1 + |z1|2 + · · · + |zn−1|2

)n dz.

Taking F (Cz) = (f0 ◦A)
(

z
|z|
)
, we get F

(
C(1, z)

)
= f0◦A(1,z)

1+|z|p and

(A.3) 0 =
∫

Cn−1
f0 ◦A(1, z)g(z) dz

ANNALES DE L’INSTITUT FOURIER



A DUALITY OPERATORS/BANACH SPACES 39

for the nonzero function g(z) = 1
1+|z|p

dµ
dλ

(
C(1, z)

)
c

(1+|z|2
2)n , which satisfies

(A.4) g(z) = O
((

1 + |z|
)−p−2n)

.

Now if we take for A =
( 1 0

b −A′−1
)

for A′ ∈ GLn−1(C), then (A.3) be-
comes

0 =
∫
f0(1, b−A′−1z)g(z) dz = |detA′|

∫
(g ◦A′)(z)f0(1, b− z) dz.

The second equality is a change of variable. In other words, if f : Cn−1 → R
is the function f(z) = f0(1, z), then f is a continuous function satisfying
f(z) = O

(
1 + |z|p

)
as z → ∞, and such that (g ◦ A′) ∗ f = 0 for every

A′ ∈ GLn−1(C).
Viewing Cn−1 as a real vector space Rd with d = 2n − 2, we see that

we are in the setting of Proposition A.4 ((A.4) indeed implies that (g ◦
A′)(z) = O

((
1 + |z|

)−p−d−2)). So the proposition implies that the support
of f̂ is contained in

{
ξ ∈ Cn−1, F(g ◦ A′)(ξ) ̸= 0

}
. But, g being nonzero,

there exists ξ ̸= 0 such that ĝ(ξ) ̸= 0. Since GLn−1(C) acts transitively
on Cn−1 \ {0}, we get that the support of f̂ is contained in {0}. This
implies that f is a polynomial function in z, z. So we have proved that (A.3)
implies that the function z 7→ f0(1, z) is a polynomial function in z, z. But
since (A.3) for f0 clearly implies (A.3) for f0 ◦A for every A ∈ GLn(C), we
get that z 7→ f0 ◦A(1, z) is a polynomial for every A. This implies that p is
an even integer and that f0 is a homogeneous polynomial, see Lemma A.7.

This shows that if p is not an even integer, then {0} and Hn are the only
closed GLn(C)-invariant subspaces of Hn, and that otherwise all other in-
variant closed subspaces are contained in the space of degree p homogeneous
polynomials. It remains to show that for every nonzero degree p homoge-
neous polynomial, every other such polynomial belongs to the linear space
spanned by its GLn(C) orbit. This is not difficult. □

Lemma A.7. — Let f0 ∈ Hn be a nonzero function such that, for every
A ∈ GLn(C), z ∈ Cn−1 7→ f0 ◦A(1, z) is a polynomial in z, z. Then p is an
even integer and f0 is a homogeneous polynomial of degree p.

Proof. — Let P ∈ C[X1, . . . , X2n−2] such that f0(1, z) = P (z, z). Using
that f0 ∈ Hn, we have that

∣∣P (z, z)
∣∣ = O

((
1 + |z|

)p), and in particular
deg(P ) ⩽ p, so we can write

P (z, z) =
∑

α,β∈Nd

|α|+|β|⩽p

aα,βz
αzβ .
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Let c ∈ Cn−1 and A =
(

1 c∗

0 1
)
. Similarly there is a polynomial Pc ∈

C[X1, . . . , X2n−2] of degree ⩽ p such that f ◦A(1, z) = Pc(z). Then

Pc(z) =
∣∣1+⟨z, c⟩

∣∣pf(1, z

1 + ⟨z, c⟩

)
=
∣∣1+⟨z, c⟩

∣∣pP( z

1 + ⟨z, c⟩
,

z

1 + ⟨z, c⟩

)
.

We can rewrite this quantity as∑
α,β

aα,β

(
1 + ⟨z, c⟩

) p
2 −|α|(1 + ⟨z, c⟩

) p
2 −|β|

zαzβ .

By expanding (1 + t)l =
∑

n⩾0
(

l
n

)
tn, for small z the preceding sum is∑

α,β,n,m

aα,β

(p
2 − |α|
n

)(p
2 − |β|
m

)
⟨z, c⟩n⟨z, c⟩

m
zαzβ .

Since Pc is a polynomial of degree ⩽ p, we get that for every N > p,∑
|α|+|β|+n+m=N

aα,β

(p
2 − |α|
n

)(p
2 − |β|
m

)
⟨z, c⟩n⟨z, c⟩

m
zαzβ = 0.

Since this is valid for every c, we get

aα,β

(p
2 − |α|
n

)(p
2 − |β|
m

)
= 0

for every α, β ∈ Nd and n,m ∈ N such that |α| + |β| + n+m > p.
Let α, β such that aα,β ̸= 0 (such α, β exist by the assumption that f0 is

nonzero). Then taking n = 0 and m very large, we find that
( p

2 −|β|
m

)
= 0,

which implies that p
2 − |β| is a nonnegative integer. Similarly p

2 − |α| is a
nonnegative integer. This proves that p is an even integer and

f0(1, z) =
∑

|α|,|β|⩽ p
2

aα,βz
αzβ .

By homogeneity we get

f0(z1, z) =
∑

|α|,|β|⩽ p
2

z
p
2 −|α|
1 zαz

p
2 −|β|
1 zβ .

This is the lemma. □

Lemma A.8. — The Lebesgue measure λ on CPn−1 is given by∫
CPn−1

F (Cz) dλ(z) = c

∫
Cn−1

F
(
C(1, z)

) 1(
1 + |z1|2 + · · · + |zn−1|2

)n dz

for some number c > 0.
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Proof. — One checks by a change of variable that the finite measure

F ∈ C(CPn−1) 7→
∫

Cn−1
F
(
C(1, z)

) 1(
1 + |z1|2 + · · · + |zn−1|2

)n dz

is invariant by U(n). □

Remark A.9. — We did not use the full strength of Proposition A.4 for
K = C, as we used it for a function g satisfying g(z) = O

((
1+ |z|

)−p−d−2),
which is strictly stronger that the required g(z) = O

((
1 + |z|

)−p−d−1).
The reason for this 2 is that the real dimension drops by 2 between Cn

and CPn−1. In the real case, the dimension drops by 1, and the same
proof (using all the assumptions of Proposition A.4 this time) leads to the
following: the GLn(R)-invariant closed subspace of the Banach space Hn,R
of continuous p-homogeneous functions Rn → R are (1) {0} and Hn,R if p
is not an even integer (2) {0}, Hn,R and the space of homogeneous degree
p polynomials if p is an even integer.

As a consequence, the conclusion of Remark A.2 holds also over R.
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