[Sur les analogues -adiques de la conjecture de Birch et Swinnerton-Dyer pour les fonctions de Garrett]
This article formulates a -adic analogue of the Birch and Swinnerton-Dyer conjecture for a -adic -function associated to a triple of Hida families of modular forms. This involves the construction of a -adic regulator, obtained by building on Nekovář theory of Selmer complexes. Moreover, it is proved that our conjectures imply the “Elliptic Stark Conjectures” of Darmon, Lauder and Rotger.
Cet article formule un analogue -adique de la conjecture de Birch et Swinnerton-Dyer pour une fonction -adique associée à un triplet de familles de Hida de formes modulaires. Cela nécessite la construction d’un régulateur -adique, obtenu en s’appuyant sur la théorie des complexes de Selmer de Nekovář. De plus, il est prouvé que nos conjectures impliquent les « Elliptic Stark Conjectures » de Darmon, Lauder et Rotger.
Révisé le :
Accepté le :
Première publication :
Keywords: $p$-adic BSD conjectures, $p$-adic regulators, triple product $L$-functions, rational points on elliptic curves
Mots-clés : Conjectures $p$-adiques de BSD, régulateurs $p$-adiques, fonctions $L$ triple produit, points rationnels sur les courbes elliptiques
Bertolini, Massimo 1 ; Seveso, Marco Adamo 2 ; Venerucci, Rodolfo 2
@unpublished{AIF_0__0_0_A14_0, author = {Bertolini, Massimo and Seveso, Marco Adamo and Venerucci, Rodolfo}, title = {On $p$-adic analogues of the {Birch} and {Swinnerton-Dyer} conjecture for {Garrett} $L$-functions}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3726}, language = {en}, note = {Online first}, }
TY - UNPB AU - Bertolini, Massimo AU - Seveso, Marco Adamo AU - Venerucci, Rodolfo TI - On $p$-adic analogues of the Birch and Swinnerton-Dyer conjecture for Garrett $L$-functions JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3726 LA - en ID - AIF_0__0_0_A14_0 ER -
%0 Unpublished Work %A Bertolini, Massimo %A Seveso, Marco Adamo %A Venerucci, Rodolfo %T On $p$-adic analogues of the Birch and Swinnerton-Dyer conjecture for Garrett $L$-functions %J Annales de l'Institut Fourier %D 2025 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3726 %G en %F AIF_0__0_0_A14_0
Bertolini, Massimo; Seveso, Marco Adamo; Venerucci, Rodolfo. On $p$-adic analogues of the Birch and Swinnerton-Dyer conjecture for Garrett $L$-functions. Annales de l'Institut Fourier, Online first, 37 p.
[1] Triple product -adic -functions associated to finite slope -adic families of modular forms, Duke Math. J., Volume 170 (2021) no. 9, pp. 1989-2083 | DOI | MR | Zbl
[2] -adic heights and -adic Hodge theory, Mémoires de la Société Mathématique de France. Nouvelle Série, 167, Société Mathématique de France, 2020 | DOI | MR | Zbl
[3] Selmer groups and Heegner points in anticyclotomic -extensions, Compos. Math., Volume 99 (1995) no. 2, pp. 153-182 | MR | Zbl
[4] A rigid analytic Gross–Zagier formula and arithmetic applications, Ann. Math. (2), Volume 146 (1997) no. 1, pp. 111-147 (with an appendix by Bas Edixhoven) | DOI | MR | Zbl
[5] Iwasawa’s Main Conjecture for Elliptic Curves over Anticyclotomic -extensions, Ann. Math., Volume 162 (2005) no. 1, pp. 1-64 | DOI | Zbl
[6] Heegner points and Beilinson–Kato elements: a conjecture of Perrin–Riou, Adv. Math., Volume 398 (2022), 108172, 50 pages | DOI | MR | Zbl
[7] The anticyclotomic main conjectures for elliptic curves (2023) | arXiv | Zbl
[8] Heegner points and exceptional zeros of Garrett -adic -functions, Milan J. Math., Volume 89 (2021) no. 1, pp. 241-261 | DOI | MR | Zbl
[9] Balanced diagonal classes and rational points on elliptic curves, Heegner points, Stark–Heegner points, and diagonal classes (Astérisque), Volume 434, Société Mathématique de France, 2022, pp. 175-201 | MR
[10] On exceptional zeros of Garrett–Hida -adic -functions, Ann. Math. Qué., Volume 46 (2022) no. 2, pp. 303-324 | DOI | MR | Zbl
[11] Reciprocity laws for balanced diagonal classes, Heegner points, Stark–Heegner points, and diagonal classes (Astérisque), Volume 434, Société Mathématique de France, 2022, pp. 77-171 | MR
[12] On the failure of Gorensteinness at weight 1 Eisenstein points of the eigencurve, Am. J. Math., Volume 144 (2022) no. 1, pp. 227-265 | DOI | MR | Zbl
[13] On the nonvanishing of generalised Kato classes for elliptic curves of rank 2, Forum Math. Sigma, Volume 10 (2022), e12, 32 pages | DOI | MR | Zbl
[14] Mazur’s conjecture on higher Heegner points, Invent. Math., Volume 148 (2002) no. 3, pp. 495-523 | DOI | MR | Zbl
[15] Stark points and -adic iterated integrals attached to modular forms of weight one, Forum Math. Pi, Volume 3 (2015), e8, 95 pages | DOI | MR | Zbl
[16] Elliptic curves of rank two and generalised Kato classes, Res. Math. Sci., Volume 3 (2016), 27, 32 pages | DOI | MR | Zbl
[17] Diagonal cycles and Euler systems. II: The Birch and Swinnerton-Dyer conjecture for Hasse–Weil–Artin -functions, J. Am. Math. Soc., Volume 30 (2017) no. 3, pp. 601-672 | DOI | MR | Zbl
[18] -adic families of diagonal cycles (2020) (preprint) | arXiv
[19] Heegner points and derivatives of -series, Invent. Math., Volume 84 (1986) no. 2, pp. 225-320 | DOI | MR | Zbl
[20] The Heegner point Kolyvagin system, Compos. Math., Volume 140 (2004) no. 6, pp. 1439-1472 | DOI | MR | Zbl
[21] Hida families and -adic triple product -functions, Am. J. Math., Volume 143 (2021) no. 2, pp. 411-532 | DOI | MR | Zbl
[22] -adic Hodge theory and values of zeta functions of modular forms, Cohomologies -adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | MR | Zbl
[23] Euler systems, The Grothendieck Festschrift. Vol. II (Progress in Mathematics), Volume 87, Birkhäuser (1990), pp. 435-483 | Zbl
[24] On the vanishing of Selmer groups for elliptic curves over ring class fields, J. Number Theory, Volume 130 (2010) no. 1, pp. 128-163 | DOI | MR | Zbl
[25] On -adic analogues of the conjectures of Birch and Swinnerton–Dyer, Invent. Math., Volume 84 (1986) no. 1, pp. 1-48 | DOI | MR | Zbl
[26] Selmer complexes, Astérisque, 310, Société Mathématique de France, 2006 | Numdam | MR | Zbl
[27] Syntomic cohomology and -adic regulators for varieties over -adic fields, Algebra Number Theory, Volume 10 (2016) no. 8, pp. 1695-1790 | DOI | MR | Zbl
[28] Fonctions -adiques d’une courbe elliptique et points rationnels, Ann. Inst. Fourier, Volume 43 (1993) no. 4, pp. 945-995 | DOI | Numdam | MR | Zbl
[29] Analytic families of finite-slope Selmer groups, Algebra Number Theory, Volume 7 (2013) no. 7, pp. 1571-1612 | DOI | MR | Zbl
[30] Abelian varieties, -adic heights and derivatives, Algebra and number theory (Essen, 1992), Walter de Gruyter, 1994, pp. 247-266 | MR | Zbl
[31] Uniform distribution of Heegner points, Invent. Math., Volume 148 (2002) no. 1, pp. 1-46 | DOI | MR | Zbl
[32] -adic regulators and -adic analytic families of modular forms, Ph. D. Thesis, University of Milan, Italy (2013)
[33] Exceptional zero formulae and a conjecture of Perrin-Riou, Invent. Math., Volume 203 (2016) no. 3, pp. 923-972 | DOI | MR | Zbl
[34] -adic regulators and -adic families of modular representations (2016) (preprint)
Cité par Sources :