On p-adic analogues of the Birch and Swinnerton-Dyer conjecture for Garrett L-functions
[Sur les analogues p-adiques de la conjecture de Birch et Swinnerton-Dyer pour les fonctions L de Garrett]
Annales de l'Institut Fourier, Online first, 37 p.

This article formulates a p-adic analogue of the Birch and Swinnerton-Dyer conjecture for a p-adic L-function associated to a triple of Hida families of modular forms. This involves the construction of a p-adic regulator, obtained by building on Nekovář theory of Selmer complexes. Moreover, it is proved that our conjectures imply the “Elliptic Stark Conjectures” of Darmon, Lauder and Rotger.

Cet article formule un analogue p-adique de la conjecture de Birch et Swinnerton-Dyer pour une fonction L p-adique associée à un triplet de familles de Hida de formes modulaires. Cela nécessite la construction d’un régulateur p-adique, obtenu en s’appuyant sur la théorie des complexes de Selmer de Nekovář. De plus, il est prouvé que nos conjectures impliquent les «  Elliptic Stark Conjectures » de Darmon, Lauder et Rotger.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3726
Classification : 11G05, 11G40
Keywords: $p$-adic BSD conjectures, $p$-adic regulators, triple product $L$-functions, rational points on elliptic curves
Mots-clés : Conjectures $p$-adiques de BSD, régulateurs $p$-adiques, fonctions $L$ triple produit, points rationnels sur les courbes elliptiques

Bertolini, Massimo 1 ; Seveso, Marco Adamo 2 ; Venerucci, Rodolfo 2

1 Universität Duisburg-Essen, Fakultät für Mathematik, Mathematikcarrée Thea-Leymann-Straße 9, 45127 Essen (Germany)
2 Università degli Studi di Milano, Dipartimento di matematica Federigo Enriques, Via Cesare Saldini 50, 20133 Milano (Italy)
@unpublished{AIF_0__0_0_A14_0,
     author = {Bertolini, Massimo and Seveso, Marco Adamo and Venerucci, Rodolfo},
     title = {On $p$-adic analogues of the {Birch} and {Swinnerton-Dyer} conjecture for {Garrett} $L$-functions},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3726},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Bertolini, Massimo
AU  - Seveso, Marco Adamo
AU  - Venerucci, Rodolfo
TI  - On $p$-adic analogues of the Birch and Swinnerton-Dyer conjecture for Garrett $L$-functions
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3726
LA  - en
ID  - AIF_0__0_0_A14_0
ER  - 
%0 Unpublished Work
%A Bertolini, Massimo
%A Seveso, Marco Adamo
%A Venerucci, Rodolfo
%T On $p$-adic analogues of the Birch and Swinnerton-Dyer conjecture for Garrett $L$-functions
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3726
%G en
%F AIF_0__0_0_A14_0
Bertolini, Massimo; Seveso, Marco Adamo; Venerucci, Rodolfo. On $p$-adic analogues of the Birch and Swinnerton-Dyer conjecture for Garrett $L$-functions. Annales de l'Institut Fourier, Online first, 37 p.

[1] Andreatta, Fabrizio; Iovita, Adrian Triple product p-adic L-functions associated to finite slope p-adic families of modular forms, Duke Math. J., Volume 170 (2021) no. 9, pp. 1989-2083 | DOI | MR | Zbl

[2] Benois, Denis p-adic heights and p-adic Hodge theory, Mémoires de la Société Mathématique de France. Nouvelle Série, 167, Société Mathématique de France, 2020 | DOI | MR | Zbl

[3] Bertolini, Massimo Selmer groups and Heegner points in anticyclotomic Z p -extensions, Compos. Math., Volume 99 (1995) no. 2, pp. 153-182 | MR | Zbl

[4] Bertolini, Massimo; Darmon, Henri A rigid analytic Gross–Zagier formula and arithmetic applications, Ann. Math. (2), Volume 146 (1997) no. 1, pp. 111-147 (with an appendix by Bas Edixhoven) | DOI | MR | Zbl

[5] Bertolini, Massimo; Darmon, Henri Iwasawa’s Main Conjecture for Elliptic Curves over Anticyclotomic p -extensions, Ann. Math., Volume 162 (2005) no. 1, pp. 1-64 | DOI | Zbl

[6] Bertolini, Massimo; Darmon, Henri; Venerucci, Rodolfo Heegner points and Beilinson–Kato elements: a conjecture of Perrin–Riou, Adv. Math., Volume 398 (2022), 108172, 50 pages | DOI | MR | Zbl

[7] Bertolini, Massimo; Longo, Matteo; Venerucci, Rodolfo The anticyclotomic main conjectures for elliptic curves (2023) | arXiv | Zbl

[8] Bertolini, Massimo; Seveso, Marco Adamo; Venerucci, Rodolfo Heegner points and exceptional zeros of Garrett p-adic L-functions, Milan J. Math., Volume 89 (2021) no. 1, pp. 241-261 | DOI | MR | Zbl

[9] Bertolini, Massimo; Seveso, Marco Adamo; Venerucci, Rodolfo Balanced diagonal classes and rational points on elliptic curves, Heegner points, Stark–Heegner points, and diagonal classes (Astérisque), Volume 434, Société Mathématique de France, 2022, pp. 175-201 | MR

[10] Bertolini, Massimo; Seveso, Marco Adamo; Venerucci, Rodolfo On exceptional zeros of Garrett–Hida p-adic L-functions, Ann. Math. Qué., Volume 46 (2022) no. 2, pp. 303-324 | DOI | MR | Zbl

[11] Bertolini, Massimo; Seveso, Marco Adamo; Venerucci, Rodolfo Reciprocity laws for balanced diagonal classes, Heegner points, Stark–Heegner points, and diagonal classes (Astérisque), Volume 434, Société Mathématique de France, 2022, pp. 77-171 | MR

[12] Betina, Adel; Dimitrov, Mladen; Pozzi, Alice On the failure of Gorensteinness at weight 1 Eisenstein points of the eigencurve, Am. J. Math., Volume 144 (2022) no. 1, pp. 227-265 | DOI | MR | Zbl

[13] Castella, Francesc; Hsieh, Ming-Lun On the nonvanishing of generalised Kato classes for elliptic curves of rank 2, Forum Math. Sigma, Volume 10 (2022), e12, 32 pages | DOI | MR | Zbl

[14] Cornut, Christophe Mazur’s conjecture on higher Heegner points, Invent. Math., Volume 148 (2002) no. 3, pp. 495-523 | DOI | MR | Zbl

[15] Darmon, Henri; Lauder, Alan; Rotger, Victor Stark points and p-adic iterated integrals attached to modular forms of weight one, Forum Math. Pi, Volume 3 (2015), e8, 95 pages | DOI | MR | Zbl

[16] Darmon, Henri; Rotger, Victor Elliptic curves of rank two and generalised Kato classes, Res. Math. Sci., Volume 3 (2016), 27, 32 pages | DOI | MR | Zbl

[17] Darmon, Henri; Rotger, Victor Diagonal cycles and Euler systems. II: The Birch and Swinnerton-Dyer conjecture for Hasse–Weil–Artin L-functions, J. Am. Math. Soc., Volume 30 (2017) no. 3, pp. 601-672 | DOI | MR | Zbl

[18] Darmon, Henri; Rotger, Victor p-adic families of diagonal cycles (2020) (preprint) | arXiv

[19] Gross, Benedict H.; Zagier, Don B. Heegner points and derivatives of L-series, Invent. Math., Volume 84 (1986) no. 2, pp. 225-320 | DOI | MR | Zbl

[20] Howard, Benjamin The Heegner point Kolyvagin system, Compos. Math., Volume 140 (2004) no. 6, pp. 1439-1472 | DOI | MR | Zbl

[21] Hsieh, Ming-Lun Hida families and p-adic triple product L-functions, Am. J. Math., Volume 143 (2021) no. 2, pp. 411-532 | DOI | MR | Zbl

[22] Kato, Kazuya p-adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | MR | Zbl

[23] Kolyvagin, Viktor A. Euler systems, The Grothendieck Festschrift. Vol. II (Progress in Mathematics), Volume 87, Birkhäuser (1990), pp. 435-483 | Zbl

[24] Longo, Matteo; Vigni, Stefano On the vanishing of Selmer groups for elliptic curves over ring class fields, J. Number Theory, Volume 130 (2010) no. 1, pp. 128-163 | DOI | MR | Zbl

[25] Mazur, Barry; Tate, John T. jun.; Teitelbaum, Jeremy T. On p-adic analogues of the conjectures of Birch and Swinnerton–Dyer, Invent. Math., Volume 84 (1986) no. 1, pp. 1-48 | DOI | MR | Zbl

[26] Nekovář, Jan Selmer complexes, Astérisque, 310, Société Mathématique de France, 2006 | Numdam | MR | Zbl

[27] Nekovář, Jan; Nizioł, Wiesława Syntomic cohomology and p-adic regulators for varieties over p-adic fields, Algebra Number Theory, Volume 10 (2016) no. 8, pp. 1695-1790 | DOI | MR | Zbl

[28] Perrin-Riou, Bernadette Fonctions L p-adiques d’une courbe elliptique et points rationnels, Ann. Inst. Fourier, Volume 43 (1993) no. 4, pp. 945-995 | DOI | Numdam | MR | Zbl

[29] Pottharst, Jonathan Analytic families of finite-slope Selmer groups, Algebra Number Theory, Volume 7 (2013) no. 7, pp. 1571-1612 | DOI | MR | Zbl

[30] Rubin, Karl Abelian varieties, p-adic heights and derivatives, Algebra and number theory (Essen, 1992), Walter de Gruyter, 1994, pp. 247-266 | MR | Zbl

[31] Vatsal, Vinayak Uniform distribution of Heegner points, Invent. Math., Volume 148 (2002) no. 1, pp. 1-46 | DOI | MR | Zbl

[32] Venerucci, Rodolfo p-adic regulators and p-adic analytic families of modular forms, Ph. D. Thesis, University of Milan, Italy (2013)

[33] Venerucci, Rodolfo Exceptional zero formulae and a conjecture of Perrin-Riou, Invent. Math., Volume 203 (2016) no. 3, pp. 923-972 | DOI | MR | Zbl

[34] Venerucci, Rodolfo p-adic regulators and p-adic families of modular representations (2016) (preprint)

Cité par Sources :