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ON p-ADIC ANALOGUES OF THE BIRCH AND
SWINNERTON-DYER CONJECTURE FOR GARRETT

L-FUNCTIONS

by Massimo BERTOLINI,
Marco Adamo SEVESO & Rodolfo VENERUCCI

Abstract. — This article formulates a p-adic analogue of the Birch and Swin-
nerton-Dyer conjecture for a p-adic L-function associated to a triple of Hida families
of modular forms. This involves the construction of a p-adic regulator, obtained by
building on Nekovář theory of Selmer complexes. Moreover, it is proved that our
conjectures imply the “Elliptic Stark Conjectures” of Darmon, Lauder and Rotger.

Résumé. — Cet article formule un analogue p-adique de la conjecture de Birch
et Swinnerton-Dyer pour une fonction L p-adique associée à un triplet de familles de
Hida de formes modulaires. Cela nécessite la construction d’un régulateur p-adique,
obtenu en s’appuyant sur la théorie des complexes de Selmer de Nekovář. De plus,
il est prouvé que nos conjectures impliquent les « Elliptic Stark Conjectures » de
Darmon, Lauder et Rotger.

Introduction

Let A be an elliptic curve over the field Q of rational numbers and let
ϱ1, ϱ2 be a pair of two-dimensional odd Artin representations of the absolute
Galois group of Q. Set ϱ = ϱ1 ⊗ ϱ2 and denote by Kϱ the extension of Q
cut out by ϱ. Assume the self-duality hypothesis det(ϱ1) = det(ϱ2)−1. The
equivariant Birch and Swinnerton-Dyer conjecture aims at understanding
the ϱ-component A(Kϱ)ϱ of the Mordell–Weil group of A/Kϱ in terms of
the complex L-function L(A, ϱ, s) of A twisted by ϱ.

This question is better understood, if one assumes that ϱ1 and ϱ2 are
induced by finite order Hecke characters of the same imaginary quadratic

Keywords: p-adic BSD conjectures, p-adic regulators, triple product L-functions, rational
points on elliptic curves.
2020 Mathematics Subject Classification: 11G05, 11G40.
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field K. In this case ϱ factors as the direct sum of the Artin representations
induced from K to Q by two ring class characters χ and ψ. This is mirrored
in the decomposition of Mordell–Weil groups

A(Kϱ)ϱ = A(Kχ)χ ⊕A(Kψ)ψ,

where A(Kχ)χ denotes the χ-component of the Mordell–Weil group of A
over the extension of K cut out by χ, and likewise for A(Kψ)ψ. On the
level of L-functions one has the corresponding factorisation

L(A, ϱ, s) = L(A/K,χ, s) · L(A/K,ψ, s).

As a consequence, one is led to consider the two factors separately. Focusing
on the terms corresponding to χ, if the order of vanishing of L(A/K,χ, s)
at s = 1 is at most one, the fundamental work of Gross–Zagier [19] and
Kolyvagin [23], as complemented by [4, 24], establishes most of the Birch
and Swinnerton-Dyer conjecture. In particular, the presence of points of
infinite order in A(Kχ)χ is accounted for by the Heegner point construction.
In the case of the Mordell–Weil group of A/Q, Kato’s Euler system [22]
provides an alternate approach to the above results in analytic rank zero.
For rank one, specialisations of Kato’s class can be related to Heegner
points, via a somewhat indirect method as in [6]. In higher rank situations,
a canonical construction of rational points is not generally available. As
a partial replacement, techniques of Iwasawa theory can be invoked, in
order to construct non-trivial classes in the p-adic Selmer group of A/Kχ

and hence of A/Kϱ. These classes can sometimes be obtained as universal
norms of Heegner points, and otherwise their existence may be seen as a
consequence of the anticyclotomic main conjecture. See for example [3, 14,
20, 31] for the first type of construction, and [5, 7] for the second approach.
It should be noted that these Selmer classes do not in general bear an
explicit connection to algebraic points.

Needless to say, the situation is even more mysterious for a represen-
tation ϱ which does not factor as above as a direct sum of 2-dimensional
representations. All known results rely heavily on p-adic methods, and no-
tably on the arithmetic theory of triple product p-adic L-functions, which
has received considerable attention in recent years. If L(A, ϱ, 1) is non-zero,
the article [17] by Darmon–Rotger has obtained the finiteness of A(Kϱ)ϱ.
The proof is based on an explicit reciprocity law, of the kind evisaged
by Perrin-Riou [28], which relates a big diagonal class to a triple product
p-adic L-function. In particular, the specialisation of this class at the triple
of weights (2, 1, 1) corresponding to the pair (A, ϱ) encodes the special value
L(A, ϱ, 1), and can be used to bound the Mordell–Weil group.
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More generally, assume in the rest of this discussion that the order of
vanishing of L(A, ϱ, s) at s = 1 is even. In the rank 2 case, [17] and the
work [13] by Castella–Hsieh establish different relations between the struc-
ture of the p-Selmer group of A and the non-vanishing of the specialisation
of the big diagonal class in the weights (2, 1, 1). (This class is Selmer as
a consequence of the explicit reciprocity law.) This poses the challenge of
elucidating the relation between the resulting Selmer classes and rational
points. As mentioned in the last part of this Introduction, this is a major
theme of this paper, where the role of certain canonical p-adic regulators
is made explicit. Furthermore, under the assumption that ϱ decomposes as
above as the sum of the Artin representations induced by two Hecke chara-
cters of a quadratic number field (real or imaginary), the work [9] relates
this specialisation to explicit logarithmic expressions involving Heegner and
Stark–Heegner points on A. More germane to the setting of this paper are
the results of [8, 10], which prove low rank cases of our p-adic equivariant
Birch and Swinnerton-Dyer conjecture, under the assumption that p is a
multiplicative prime for A. See also Remarks 1.3 for additional information.

The purpose of this article is twofold. The first objective is to formu-
late a p-adic analogue of the above equivariant Birch and Swinnerton-Dyer
conjecture. Assume for simplicity (but see Section 1.1 for generalisations)
that p is an ordinary prime for A and that ϱ1 and ϱ2 are irreducible. Let
(f, g, h) be the triple of cuspidal modular forms associated to (A, ϱ1, ϱ2)
by the modularity theorems. Hida’s theory associates to (f, g, h) a triple
(f , gα,hα) of p-adic families of ordinary cuspidal modular forms, where f

specialises in weight 2 to the unique ordinary p-stabilisation of f , while
gα and hα specialise in weight 1 to a choice of p-stabilisations gα and hα
of g and h respectively. Our conjecture replaces L(A, ϱ, s) with a p-adic
L-function Lααp (A, ϱ) arising from the triple of p-adic families (f , gα,hα).
The L-function Lααp (A, ϱ) interpolates the central critical values of the com-
plex L-functions of fk ⊗ gl ⊗hm at triples of classical weights (k, l,m) such
that k ⩾ l+m, where fk, gl and hm denotes the specialisation of f , gα and
hα at k, l and m respectively. A p-adic avatar of the Birch and Swinnerton-
Dyer conjecture suggests that the behaviour of Lααp (A, ϱ) at the triple of
weights (2, 1, 1) should reflect the arithmetic of A over Kϱ. This is the
content of our Conjecture 1.1, which states that the order of vanishing of
Lααp (A, ϱ) at (2, 1, 1) is equal to the rank of the ϱ-component A†(Kϱ)ϱ of the
extended Mordell–Weil group of A/Kϱ. Furthermore, it relates the leading
term of Lααp (A, ϱ) to the regulator Rααp (A, ϱ) of a p-adic height pairing on
this extended Mordell–Weil group, constructed in Section 2 by exploiting
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Nekovář’s theory of Selmer complexes associated to Hida’s deformation of
the Galois representations of (f, gα, hα).

The second objective of this article is to understand the Elliptic Stark
Conjectures of Darmon, Lauder and Rotger [15, 16] within the conceptual
framework of the p-adic variants of the Birch and Swinnerton-Dyer con-
jecture. Under the assumption that the Mordell–Weil rank is equal to 2,
the above mentioned works obtained experimentally a relation between an
iterated p-adic integral associated to the triple (f, gα, hα) and certain com-
binations of p-adic logarithms of rational points in the ϱ-component of the
Mordell–Weil group of A. Section 3 (see in particular Conjecture 3.5 and
Remarks 3.6) shows that these conjectural relations are a consequence of
Conjecture 1.1, combined with a formula, established in Theorem 3.3 by
building on the ideas and methods of [28, 30, 34], for the derivatives of the
big diagonal class encoding Lααp (A, ϱ) via the explicit reciprocity law.

1. The p-adic Birch and Swinnerton-Dyer conjecture

This section states the main conjecture of this paper, assuming the pre-
cise definition of the Garrett–Nekovář p-adic height pairings given in Sec-
tion 2 below. To ease the exposition we state our conjecture for p-ordinary
elliptic curves over Q, i.e. p-stabilised ordinary weight-two newforms with
trivial character and rational Fourier coefficients. See Section 1.1 below for
possible generalisations.

Let Q ⊂ C be the field of algebraic numbers. Fix a rational prime p > 3,
an algebraic closure Qp of Qp and an embedding of Q into Qp. For positive
integers k and m, a Dirichlet character χ : (Z/mZ)∗ → Q∗ and a subfield
F of Qp, denote by Mk(m,χ)F the F -module of modular forms of weight
k, level Γ1(m), character χ and Fourier coefficients contained in F , and by
Sk(m,χ)F its subspace of cuspidal modular forms. When χ is the trivial
character, we omit it from the notation.

Let A be an elliptic curve defined over Q and let

ϱ = ϱ1 ⊗ ϱ2

be the tensor product of two odd, two-dimensional Artin representations

ϱi : GQ −→ GL(Vϱi
) ≃ GL2(Q(ϱ))

of GQ = Gal(Q/Q) with coefficients in a number field Q(ϱ) (contained
in Q), satisfying the self-duality condition

(1.1) det(ϱ1) = det(ϱ2)−1.

ANNALES DE L’INSTITUT FOURIER
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According to the modularity theorem of Wiles, Taylor–Wiles et al., the
p-adic Tate module of A/Q with Qp-coefficients is isomorphic to the dual
of the p-adic Deligne representation of the weight-two cuspidal newform

f =
∑
n⩾ 1

an(f) · qn ∈ S2(Nf )Q,

where Nf is the conductor of A/Q and aℓ(f) = 1 + ℓ− |A(Z/ℓZ)| for each
prime ℓ ∤ Nf . Similarly, the Serre conjecture, proved by Khare and Win-
tenberger, implies that ϱ1 and ϱ2 are isomorphic respectively to the duals
of the Deligne–Serre representations associated with weight-one normalised
Hecke eigenforms

g =
∑
n⩾ 0

an(g) · qn ∈ M1(Ng, χg)Q(ϱ)

and

h =
∑
n⩾ 0

an(h) · qn ∈ M1(Nh, χh)Q(ϱ)

of conductors Ng and Nh equal to those of ϱ1 and ϱ2 respectively and
characters χg and χh = χ−1

g (cf. Equation (1.1)). The form g (resp., h) is
cupidal precisely if the Artin representation ϱ1 (resp., ϱ2) is irreducible.

Assume that A has good ordinary or multiplicative reduction at p, so that
Nf is of the form Mf · prf with rf ⩽ 1 and Mf coprime with p. The p-th
Hecke polynomial X2−ap(f)·X+1Nf

(p)·p of f has a unique root αf which
is a p-adic unit, the other root being βf = 1Nf

(p)p/αf . (Here 1Nf
is the

trivial character modulo Nf .) By Hida theory, the ordinary p-stabilisation

fα(q) = f(q) − βf · f(qp) ∈ S2(Mfp)Q(αf )

is the specialisation at weight two of a unique cuspidal Hida family

f = fα =
∑
n⩾ 1

an(f) · qn ∈ O(Uf )[[q]]

for a suitable connected open disc Uf centred at 2 in the weight space
W over Qp. Here W is the rigid analytic space over Qp whose Qp-points
Homcont(Z∗

p,Q
∗
p) contain Z via the embedding sending k to t 7→ tk−2.

Moreover O(Uf ) is the ring of analytic functions on Uf . For each classical
weight k in Uf ∩ Z>2, the weight-k specialisation fk =

∑
n⩾ 1 an(f)(k) · qn

of f is (the q-expansion of) the ordinary p-stabilisation of a p-ordinary
newform fk of weight k and level Γ0(Mf ).

Let ξ denote either g or h, and let αξ and βξ = χξ(p)/αξ be the roots
of its pth Hecke polynomial X2 − ap(ξ) ·X + χξ(p). Fix a finite extension
L of Qp which contains the Fourier coefficients of ξ, the roots αf and αξ
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(for ξ = g, h), and the N -th roots of unity, where N is the least common
multiple of Nf , Ng and Nh. We assume that p does not divide Nξ and
that ξ is cuspidal and p-regular (viz. the roots αξ and βξ are distinct).
Moreover we assume that ξ is not the theta series associated with a ray class
character of a real quadratic field in which p splits. Under these assumptions
the p-stabilisation

ξα(q) = ξ(q) − βξ · ξ(qp) ∈ S1(Nξp, χξ)L
is the weight-one specialisation of a unique cuspidal Hida family

ξα =
∑
n⩾ 1

an(ξα) · qn ∈ O(Uξ)[[q]],

where Uξ is a connected open disc in W⊗Qp
L centred at 1. For each classical

weight u in Uξ∩Z⩾ 1, the weight-u specialisation ξα,u =
∑
n⩾ 1 an(ξ)(u)·qn

is the ordinary p-stabilisation of a p-ordinary newform ξu of weight u,
level Γ1(Nξ) and character χξ. We refer the reader to [11] (especially the
discussion following Assumption 1.1, Remark 1.4 and Section 5) and the
references therein for more details.

Let Σcl denote the set of classical triples, namely the intersection of
Uf × Ug × Uh with Z3

⩾ 1. Under the self-duality assumption (1.1), for each
(k, l,m) in Σcl the complex Garrett L-function L(fk ⊗ gl ⊗ hm, s) admits
an analytic continuation to all of C and satisfies a functional equation with
sign +1 or −1 relating its values at s and k+l+m−2−s. Assume from now
on that the conductors Ng and Nh of g and h are coprime to the conductor
Nf of the elliptic curve A:

(1.2) (Ng ·Nh, Nf ) = 1.

Assumption (1.2) guarantees that the signs in the above functional equa-
tions are equal to +1 for all classical triples (k, l,m) in the f -unbalanced
region, i.e. triples (k, l,m) in Σcl such that k ⩾ l + m. In particular the
complex Garrett L-function

L(A, ϱ, s) = L(f ⊗ g ⊗ h, s)

vanishes to even order at the central critical point s = 1. Set Ofgh =
Of ⊗̂QpOg⊗̂LOh, where O· denotes the ring of bounded functions on U·. The
article [21] associates to the triple of Hida families (f , gα,hα) a square-root
Garrett–Hida p-adic L-function

L αα
p (A, ϱ) = Lp(f , gα,hα) ∈ Ofgh,

whose square, the Garrett–Hida p-adic L-function of (A, ϱ),

Lααp (A, ϱ) = L αα
p (A, ϱ)2

ANNALES DE L’INSTITUT FOURIER
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interpolates the central critical values

L

(
fk ⊗ gl ⊗ hm,

k + l +m− 2
2

)
of the complex Garrett L-functions L(fk ⊗ gl ⊗ hm, s) at classical triples
(k, l,m) in the f -unbalanced region. We refer to [11, Section 6.1] (where
Lααp (A, ϱ) is denoted by Lp(f , gα,hα)) for the precise interpolation prop-
erty (see in particular equation (132) of loc. cit.). The L-function Lααp (A, ϱ)
is symmetric in the families gα and hα.

Enlarging Q(ϱ) if necessary, we assume it contains αξ for ξ equal to f, g
and h. The weight-one specialisation (cf. Section 2.1 below)

V (ξ) = V (ξα) ⊗1 L

of the Galois representation V (ξα) associated with ξα affords the dual of
the p-adic Deligne–Serre representation of ξ with coefficients in L. The GQ-
representation V (ξα) is a free rank-two Oξ-module and the tensor product
·⊗1L = ·⊗Oξ,1L is taken with respect to evaluation at 1 in Uξ. The global
p-adic representation V (ξ) is equipped with a canonical, GQ-equivariant,
perfect, skew-symmetric pairing

(1.3) πξ : V (ξ) ⊗L V (ξ) −→ L(χξ),

arising as the weight-one specialisation of a suitably twisted Poincaré du-
ality on V (ξα) (cf. Section 2.1). Enlarging L if necessary, fix isomorphisms

(1.4) γg : Vϱ1 ⊗Q(ϱ) L ≃ V (g) and γh : Vϱ2 ⊗Q(ϱ) L ≃ V (h)

of L[GQ]-modules such that the perfect dualities πg◦γg⊗γg and πh◦γh⊗γh
map the Q(ϱ)-structures Vϱ1 ⊗Q(ϱ) Vϱ1 and Vϱ2 ⊗Q(ϱ) Vϱ2 into the Q(ϱ)-
structures Q(ϱ)(χg) and Q(ϱ)(χh) of L(χg) and L(χh) respectively.

Let V (f) = Tap(A/Q) ⊗Zp
L be the p-adic Tate module A/Q with

coefficients in L, and let V (f)− be the maximal unramified quotient of
the restriction of V (f) to GQp

. It is a 1-dimensional L-module, on which
an arithmetic Frobenius in GQp

acts as multiplication by αf . Set Vϱ =
Vϱ1 ⊗Q(ϱ) Vϱ2 , V (f, ϱ) = V (f) ⊗Q(ϱ) Vϱ and V (f, ϱ)− = V (f)− ⊗Q(ϱ) Vϱ, so
that V (f, ϱ)− is the maximal GQp

-unramified quotient of V (f, ϱ), on which
an arithmetic Frobenius acts with eigenvalues αfαgαh, αfβgαh, αfαgβh
and αfβgβh. Define the module of p-adic periods of (A, ϱ):

Qp(A, ϱ)L = H0(Qp, V (f, ϱ)−)

to be the space of GQp
-invariants of V (f, ϱ)−. As suggested by the notation

Qp(A, ϱ)L = Qp(A, ϱ) ⊗Q(ϱ) L

TOME 0 (0), FASCICULE 0



8 Massimo BERTOLINI, Marco Adamo SEVESO & Rodolfo VENERUCCI

for a canonical Q(ϱ)-submodule Qp(A, ϱ) defined as follows. Note first that
Qp(A, ϱ)L is zero if A has good reduction at p. In this case set Qp(A, ϱ) = 0.
If A has multiplicative reduction at p, Tate’s theory gives a rigid analytic
isomorphism

℘Tate : Gan
m,Qp2 /q

Z
A ≃ AQp2 ,

unique up to sign. Here AQp2 is the base change of A to the quadratic
unramified extension Qp2 of Qp and qA in pZp is the Tate period of A.
Taking the p-adic Tate modules ℘Tate induces a (canonical up to sign)
isomorphism of GQp2 -modules V (f)− ≃ L. Write q(A) in V (f)− for the
element corresponding to the identity of L under this isomorhism and define

Qp(A, ϱ) =
(
Q(ϱ) · q(A) ⊗Q(ϱ) Vϱ

)GQp .

LetX1(Nf , p) be the compact modular curve of level Γ1(Nf , p)=Γ1(Nf )∩
Γ0(p) over Q. Fix a modular parametrisation (viz. a non-constant map of
Q-schemes)

℘∞ : X1(Nf , p) −→ A.

Let Kϱ be a finite Galois extension of Q such that ϱ1 and ϱ2 factor through
Gal(Kϱ/Q). Define the p-extended Mordell–Weil group of (A, ϱ) by

A†(Kϱ)ϱ =
(
A(Kϱ) ⊗Z Vϱ

)Gal(Kϱ/Q) ⊕ Qp(A, ϱ).

Section 2 below associates with the triple (f, gα, hα), the modular parame-
trisation ℘∞, and the isomorphisms γg and γh a Garrett–Nekovář p-adic
height pairing

(1.5) ⟨⟨·, ·⟩⟩fgαhα
: A†(Kϱ)ϱ ×A†(Kϱ)ϱ −→ I /I 2,

where I is the ideal of analytic functions in Ofgh vanishing at wo =
(2, 1, 1). The pairing ⟨⟨·, ·⟩⟩fgαhα

is skew-symmetric and associated by co-
homological means to an appropriate self-dual twist of the representation
V (f)⊗̂Qp

V (gα)⊗̂LV (hα), viewed as a p-adic deformation of V (f, g, h) =
V (f) ⊗L V (g) ⊗L V (h). Its construction grounds on Nekovář’s theory of
Selmer complexes and generalised Poitou–Tate duality [26]. More precisely,
after identifying V (f) with the fα-isotypic component of the cohomology
group H1

ét(X1(Nf , p)Q, L(1)) via the fixed modular parametrisation ℘∞,
Section 2 below defines a canonical Garrett–Nekovář p-adic height pairing

(1.6) ⟨⟨·, ·⟩⟩fgαhα
: Sel†(Q, V (f, g, h)) ⊗L Sel†(Q, V (f, g, h)) −→ I /I 2,

where the (naive) extended Selmer group

(1.7) Sel†(Q, V (f, g, h)) = Sel(Q, V (f, g, h)) ⊕H0(Qp, V (f, g, h)−)

ANNALES DE L’INSTITUT FOURIER
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is the direct sum of the Bloch–Kato Selmer group of V (f, g, h) over Q
and the module of GQp

-invariants of the maximal p-unramified quotient
V (f, g, h)− of V (f, g, h). The global Kummer map A(Kϱ) → H1(Kϱ, V (f))
and the fixed isomorphisms γg and γh give rise to an embedding γgh :
A†(Kϱ)ϱ ↪→ Sel†(Q, V (f, g, h)), and one defines (1.5) as the restriction of
the canonical height pairing (1.6) along γgh.

Set
r†(A, ϱ) = dimQ(ϱ) A

†(Kϱ)ϱ

and define the Garrett–Nekovář regulator

Rααp (A, ϱ) ∈
(
I r†(A,ϱ)/I r†(A,ϱ)+1

)
/Q(ϱ)∗2

to be the discriminant of the Garrett–Nekovář p-adic height pairing:

Rααp (A, ϱ) = det
(

⟨⟨Pi, Pj⟩⟩fgαhα

)
1 ⩽ i, j⩽ r†(A,ϱ)

,

where P1, . . . , Pr†(A,ϱ) is a Q(ϱ)-basis of the p-extended Mordell–Weil group
A†(Kϱ)ϱ. In view of the normalisation of the isomorphisms γg and γh fixed
in (1.4), the regulator Rααp (A, ϱ) is independent of the choice of γg and γh.
Moreover, it does not depend on the modular parametrisation ℘∞.

If Qp(A, ϱ) is non-zero —the exceptional case— assume that either

(1.8) Lan
f ̸= Lan

gα
or Lan

f ̸= Lan
hα
,

where the analytic L -invariants of f and ξα = gα,hα are defined respec-
tively as the logarithmic derivatives

(1.9) Lan
f = −2 · d log(ap(f))k=2 and Lan

ξα
= −2 · d log(ap(ξα))u=1

of −2 times the p-th Fourier coefficients of f and ξα at k = 2 and u = 1.
Here Of and Oξ are identified with subrings of the power series rings L[[k−
2]] and L[[u − 1]], where k − 2 and u − 1 are uniformisers at the centres 2
and 1 of Uf and Uξ respectively.

Conjecture 1.1.
(1) The Garrett–Hida p-adic L-function Lααp (A, ϱ) belongs to I r†(A,ϱ).

Denote by Lααp (A, ϱ)∗ the image of Lααp (A, ϱ) in(
I r†(A,ϱ)/I r†(A,ϱ)+1

)/
Q(ϱ)∗2.

Then
Lααp (A, ϱ)∗ = Rααp (A, ϱ).

(2) Lααp (A, ϱ)∗ is non-zero if and only if Lααp (A, ϱ) is not identically
zero.

TOME 0 (0), FASCICULE 0
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Remark 1.2. — In special cases where the forms g and h are theta
series associated with the same imaginary quadratic field, it may occur that
Lααp (A, ϱ) vanishes identically, as a consequence of the fact thatV(f , gα,hα)
splits as the direct sum of two non-trivial factors. It follows in these cases
from Conjecture 1.1 that the Garrett–Nekovář p-adic height ⟨⟨·, ·⟩⟩fgαhα

is
necessarily degenerate.

Remarks 1.3.
(1) Under the current assumptions, the module Qp(A, ϱ) is non-zero

precisely if

αf = αg · αh or αf = βg · αh,

in which case dimQ(ϱ) Qp(A, ϱ) = 2 and one says that (A, ϱ) is
exceptional at p. Since by assumption g is p-regular, only one of
the displayed equalities can be satisfied. Moreover, as αξ and βξ
are roots of unity for ξ = g, h, if (A, ϱ) is exceptional at p, then
α2
f = 1 and either αg · αh = αf = βg · βh or αg · βh = αf = βg · αh

by the self-duality assumption (1.1).
(2) The value of Lααp (A, ϱ) at w0 = (2, 1, 1) is a non-zero complex

multiple of(
1 − αgαh

αf

)2(
1 − βgαh

αf

)2(
1 − αgβh

αf

)2(
1 − βgβh

αf

)2
· L(A, ϱ, 1).

It follows that (A, ϱ) is exceptional at p precisely if Lααp (A, ϱ) has
an exceptional zero in the sense of [25], viz. one of the Euler fac-
tors which appear in the previous expression is equal to zero. In
this case r†(A, ϱ) = dimQ(ϱ) A(Kϱ)ϱ + 2, hence Conjecture 1.1 and
the classical Birch and Swinnerton-Dyer conjecture predict that the
order of vanishing of Lααp (A, ϱ) at wo equals ords=1 L(A, ϱ, s) + 2.

(3) Since ⟨⟨·, ·⟩⟩fgαhα
is skew-symmetric, the regulator Rααp (A, ϱ) vani-

shes if r†(A, ϱ) is odd. On the other hand, the assumption (1.2) im-
plies that the order of vanishing of L(A, ϱ, s) at s = 1 is even, hence
r†(A, ϱ) should also be even by the classical Birch and Swinnerton-
Dyer conjecture (and the first remark).

(4) If L(A, ϱ, s) does not vanish at s = 1 and (A, ϱ) is not exceptional at
p, then Lααp (A, ϱ)(wo) is the square of a non-zero element of Q(ϱ)∗.
In this case Conjecture 1.1 is a consequence of the classical Birch
and Swinnerton-Dyer conjecture.

(5) Assume that (A, ϱ) is exceptional at p. The article [10] proves Con-
jecture 1.1 when L(A, ϱ, s) does not vanish at s = 1. It also shows
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the equality

⟨⟨q, q′⟩⟩fgαhα
=
(
Lan

f − Lan
g

)
· (l − 1) + ε ·

(
Lan

f − Lan
h

)
· (m − 1)

in (I /I 2)/Q(ϱ)∗ (cf. Equation (1.9)), where (q, q′) is a Q(ϱ)-basis
of Qp(A, ϱ) and ε = +1 if αf = αg ·αh while ε = −1 if αf = βg ·αh.
(Recall that ⟨⟨·, ·⟩⟩fgαhα

is skew-symmetric, and that by assumption
either Lan

f ̸= Lan
g or Lan

f ̸= Lan
h , hence ⟨⟨q, q′⟩⟩fgαhα

is a non-zero
square root of Rααp (A, ϱ).)

(6) Assume that (A, ϱ) is exceptional and that L(A, ϱ, s) vanishes at
s = 1. Let (q, q′) be a Q(ϱ)-basis of Qp(A, ϱ). Conjecture 1.1 pre-
dicts the equality
∂2L αα

p (A, ϱ)
∂k2 (wo) = logq(P ) · logq′(Q) − logq′(P ) · logq(Q)

in L/Q(ϱ)∗ for two rational points P and Q in A(Kϱ)ϱ, where
logq·(·) is the evaluation at q· of the Bloch–Kato p-adic logarithm
for q· = q, q′. The reader is referred to [10, Section 2.2] for details.

1.1. Generalisations

1.1.1. The semi-stable case

Assume that A has semi-stable reduction at p, and let αf be a non-zero
root of the p-th Hecke polynomial hf,p = X2 − ap(f) ·X + 1Nf

(p) · p of f .
If A has good ordinary reduction at p and αf is the root of hf,p with posi-
tive p-adic valuation, assume in addition that A does not have complex
multiplication. Under these assumptions, there exists a unique Coleman
family (of slope ordp(αf )) which specialises to fα = f(q) − βf · f(qp) in
weight 2, where βf · αf = 1Nf

(p) · p. By combining the results of [1, 21],
one should be able to associate to the triple (fα, gα,hα) a canonical p-adic
L-function Lααp (fα, ϱ) = Lp(fα, gα,hα)2 (generalising the construction of
Lααp (A, ϱ) = Lααp (fα, ϱ) when A is p-ordinary and αf is the unit root of
hf,p). On the algebraic side of the matter, (while not necessarily ordinary)
the Galois representation V (fα) associated with fα is trianguline at p. In
light of the extension of Nekovář’s theory to families of trianguline rep-
resentations obtained in [2, 29], the construction of ⟨⟨·, ·⟩⟩fαgαhα

, given in
Section 2 below when A is p-ordinary and αf is the unit root of hf,p, easily
generalises to the present setting. Conjecture 1.1 should then extend to the
semi-stable setting.
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1.1.2. The reducible case

The formalism leading to the definition of the p-adic regulator Rααp (A, ϱ)
extends to the case in which one or both the Artin representations ϱ1
and ϱ2 is reducible and p-irregular, i.e. of the form χ ⊕ χ′ for Dirichlet
characters satisfying χ(p) = χ′(p). Let ξ = g or h be the associated weight-
one Eisenstein series Eis1(χ, χ′). According to the main result of [12] there
exists a unique cuspidal Hida family ξα specialising in weight one to the
(unique) p-stabilisation ξα of ξ. The construction of ⟨⟨·, ·⟩⟩fgαhα

given in
Section 2 carries over to this setting, if V (ξα) is replaced by its parabolic
counterpart (cf. Section 2.3 and [6, Proposition 2.2]). This guarantees the
freeness of V (ξα) and of its maximal p-unramified quotient. Note that the
p-regular reducible cases would involve the Hida–Rankin p-adic L-functions
associated to f and one or two families of Eisenstein series.

1.1.3. The higher-weight case

One can formulate a higher-weight analogue of Conjecture 1.1, in which
the weight-2 newform associated with A is replaced by a newform

f =
∑
n⩾ 1

an(f) · qn ∈ Sk(Nf )L

of even weight k ⩾ 2 and trivial character. Assume for simplicity that p
does not divide the conductor Nf of f , and that ap(f) is a p-adic unit
(under the embedding Q ↪→ Qp fixed at the outset). Let f = fα be the
unique Hida family specialising to the ordinary p-stabilisation fα of f at
weight k. The article [21] associates to (fα, gα,hα) a p-adic L-function
Lααp (fα, ϱ) = L f

p (f , gα,hα)2. Let Ek−2 be the (k − 2)-fold fibre product
of the universal generalised elliptic curve E → X1(Nf ) over the modular
curve X1(Nf ) of level Γ1(Nf ) over Q. The self-dual twist Vf of the Deligne
representation of f is a direct summand of Hk−1

ét (Ek−2⊗QQ, L(k/2)), hence
the p-adic Abel–Jacobi map yields a morphism (cf. [27])

rét :
(

CHk/2(Ek−2 ⊗Q Kϱ

)
0 ⊗Q Vϱ

)Gal(Kϱ/Q)
−→ Sel

(
Q, Vf ⊗Q(ϱ) Vϱ

)
,

where CHi(·)0 is the Chow group of homologically trivial codimension i

cycles in · with Q-coefficients, and Sel(Q, ·) is the Bloch–Kato Selmer group
of · over Q. Define Af (Kϱ)ϱ to be the image of the Abel–Jacobi map rét:

Af (Kϱ)ϱ = Image(rét).
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The constructions of Section 2 below readily generalise to give a pairing

⟨⟨·, ·⟩⟩fgαhα
: Af (Kϱ)ϱ ⊗Q(ϱ) Af (Kϱ)ϱ −→ Ik/I

2
k ,

where Ik is the ideal of functions in Ofgh which vanish at (k, 1, 1). The
pairing ⟨⟨·, ·⟩⟩fgαhα

is skew-symmetric, and canonical up to the choice of the
isomorphisms γg and γh fixed in (1.4). The Bloch–Kato conjecture predicts
that rét is injective, and that the dimension r(fα, ϱ) of Af (Kϱ)ϱ over Q(ϱ)
is finite. Generalising Conjecture 1.1, we expect that Lααp (fα, ϱ) belongs to
I
r(fα,ϱ)
k − I

r(fα,ϱ)+1
k when non-identically zero, and moreover its image

in (I r(fα,ϱ)/I r(fα,ϱ)+1)/Q(ϱ)∗2 is equal to the regulator of the pairing
⟨⟨·, ·⟩⟩fgαhα

.

2. Garrett–Nekovářp-adic height pairings

Notation. — In this section we set (f , g,h) = (f , gα,hα). We denote by
GNp the Galois group of the maximal algebraic extension of Q which is
uramified at all the rational primes not dividing Np.

2.1. Galois representations (cf. [11])

Let ξ be one of f , g and h, and let V (ξ) be the Galois representation
introduced in [11, Section 5]. Under the current assumptions it is a free
Oξ-module of rank two, equipped with a linear action of GNp. (Recall that
Oξ denotes the ring of bounded functions on Uξ, cf. Section 1.) For each
classical point u in Uξ ∩ Z⩾2, there is a natural specialisation isomorphism

ρu : V (ξ) ⊗u L ≃ V (ξu)

between the base change of V (ξ) along evaluation at u on Oξ and the ho-
mological Deligne representation V (ξu) of ξu. (We refer to Equation (106)
of loc. cit. for more details.) Moreover, if ξ = g,h, the base change of V (ξ)
along evaluation at 1 on Uξ yields a canonical model of the (homologi-
cal) Deligne–Serre representation associated with the weight-one cuspidal
eigenform ξ1. In this case we set (cf. Section 1) V (ξ) = V (ξ1) = V (ξ) ⊗1 L

and denote by ρ1 : V (ξ) ⊗1 L ≃ V (ξ1) the identity.
The representation V (f2) is the f -isotypic component of H1

ét(X1(Nf , p),
L(1)) and the modular parametrisation ℘∞ : X1(Nf , p) → A fixed in Sec-
tion 1 induces an isomorphism ℘∞∗ : V (f2) ≃ V (f).With a slight abuse of

TOME 0 (0), FASCICULE 0



14 Massimo BERTOLINI, Marco Adamo SEVESO & Rodolfo VENERUCCI

notation we write again

(2.1) ρ2 : V (f) ⊗2 L ≃ V (f)

for the composition of ℘∞∗ with the specialisation isomorphism ρ2.
The restriction of V (ξ) to GQp is nearly-ordinary: let χu−1

cyc : GQ → O∗
ξ

be the character whose composition with evaluation at u in Uξ ∩ Z is the
(u − 1)-th power of the p-adic cyclotomic character χcyc : GQ → Z∗

p, and
let ǎp(ξ) : GQp

→ O∗
ξ be the unramified character sending an arithmetic

Frobenius to the p-th Fourier coefficient ap(ξ) of ξ. Then there exists a
natural short exact sequence of Oξ[GQp

]-modules

0 −→ V (ξ)+ i+−→ V (ξ) p−

−→ V (ξ)− −→ 0

with

(2.2) V (ξ)+ ≃ Oξ

(
χu−1

cyc · χξ · ǎp(ξ)−1) and V (ξ)− ≃ Oξ(ǎp(ξ)).

According to [11, Equations (103) and (114)], there exists a natural skew-
symmetric GQ-equivariant perfect pairing

πξ : V (ξ) ⊗Oξ
V (ξ) −→ Oξ

(
χξ · χu−1

cyc
)
.

For each u in Uξ ∩ Z⩾ 2, the base change of πξ along evaluation at u and
the specialisation isomorphism ρu yield a perfect pairing πξu

: V (ξu) ⊗E

V (ξu) → L(χξ+u−1). If ξ = f and u = 2, then πf2 is equal, up to sign, to
the pairing arising from the Poincaré duality H1(X1(Nf , p),Qp(1))⊗2 →
Qp(1) (cf. loco citato), hence its composition

πf : V (f) ⊗L V (f) −→ L(1)

with the inverse of ℘⊗2
∞∗ is a rational multiple of the Weil pairing. If ξ

equals either g or h, then the base change of πξ along evaluation at u = 1
on Oξ yields the perfect pairing πξ : V (ξ) ⊗L V (ξ) → L(χξ) introduced in
Equation (1.3).

As in Section 1, set Ofgh = Of ⊗̂QpOg⊗̂LOh and define

V (f , g,h) = V (f)⊗̂Qp
V (g)⊗̂LV (h) ⊗Ofgh

Ξfgh,

where Ξfgh : GQ → O∗
fgh is the character satisfying

Ξfgh(g)(w) = χcyc(g)(4−k−l−m)/2

for each g in GQ and w = (k, l,m) in Uf × Ug × Uh ∩ Z3. The GQ-
representation V (f , g,h) is a free Ofgh-module of rank eight. Moreover
V (f , g,h) is Kummer self-dual: because χg = χ−1

h (cf. Equation (1.1)),
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the product of the perfect pairings πξ (for ξ = f , g,h) define a GQ-equi-
variant and skew-symmetric perfect pairing

(2.3) πfgh : V (f , g,h) ⊗Ofgh
V (f , g,h) −→ Ofgh(1).

Set wo = (2, 1, 1). Then the specialisation map (2.1) induces an isomor-
phism

(2.4) ρwo
: V (f , g,h) ⊗wo

L ≃ V (f, g, h)

between the base change of V (f , g,h) along evaluation at wo on Ofgh and

V (f, g, h) = V (f) ⊗L V (g) ⊗L V (h).

The pairing πfgh and ρwo yield a GQ-equivariant, skew-symmetric and
perfect duality

πfgh : V (f, g, h) ⊗L V (f, g, h) −→ L(1),

which by construction equals the product of the dualities πf , πg and πh.

2.2. Selmer complexes (cf. [26])

For ξ = f , g,h, denote by Λξ the ring of analytic functions on Uξ

bounded by 1, and set Λfgh = Λf ⊗̂ZpΛg⊗̂OL
Λh, so that Ofgh = Λfgh[1/p].

The OL-algebra Λfgh is isomorphic to a three-variable power series ring
with coefficients in OL. In particular it is a regular local complete Noe-
therian ring with finite residue field. Let G denote either GNp or GQℓ

,
for a rational prime ℓ dividing Np, and let (B, M) denote one of the pairs
(OL, V(f, g, h)) and (Λfgh, V(f , g,h)), where V(f, g, h) (resp., V(f , g,h)) is
an OL-lattice (resp., a Λfgh-lattice) in V (f, g, h) (resp., V (f , g,h)) pre-
served by the action of GNp. Equip G with the profinite topology and
M with the mB-adic topology, where mB is the maximal ideal of B. Set
(B,M) = (B[1/p], M[1/p]) and

C•
cont(G,M) = C•

cont(G, M) ⊗B B,

where C•
cont(G, M) is the complex of non-homogeneous continuous cochains

of G with values in M. If G = GQℓ
, we also write C•

cont(Qℓ,M) as a short-
hand for C•

cont(GQℓ
,M).

Recall the Of [GQp
]-submodule V (f)+ of V (f) introduced in Section 2.1

and set

V (f , g,h)+ = V (f)+⊗̂QpV (g)⊗̂LV (h) ⊗Ofgh
Ξfgh.
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Define V (f)+ to be the image of V (f)+ ⊗2 L under the specialisation
isomorphism ρ2 : V (f) ⊗2 L ≃ V (f) (cf. Equation (2.1)), and set

V (f, g, h)+ = V (f)+ ⊗L V (g) ⊗L V (h).

Denote by i+ : M+ ↪→ M the natural inclusion, fix a GQp
-stable B-lattice

M+ mapping into M under i+, and define C•
cont(GQp ,M

+) = C•
cont(Qp,M

+)
to be the base change to B of the complex C•

cont(GQp
, M+) of continuous

non-homogeneous cochains of GQp with values in M+. The inclusion i+

induces a morphism of complexes

i+ : C•
cont
(
Qp,M

+) −→ C•
cont(Qp,M),

which we call the f -Greenberg local condition on the GQp
-representation

M .
The Nekovář–Selmer complex

C̃•
f (GNp,M)

relative to the form f of the GNp-representation M is the complex of B-
modules

Cone

C•
cont(GNp,M) ⊕ C•

cont
(
Qp,M

+) resNp −i+−−−−−−→
⊕
ℓ|Np

C•
cont(Qℓ,M)

[−1],

where resNp =
⊕

ℓ|Np resℓ is the direct sum over the primes dividing Np

of the restriction morphisms resℓ : RΓcont(GNp,M) → RΓcont(Qℓ,M)
associated with fixed embeddings iℓ : Q ↪→ Qℓ (with ip the embedding
fixed at the outset.) Denote by

RΓ̃f (Q,M) ∈ Db
ft(B)

the image of C̃•
f (GNp,M) in the derived category Db

ft(B) of bounded com-
plexes of B-modules with cohomology of finite type over B and by

H̃ ·
f (Q,M) = H ·

(
RΓ̃f (Q,M)

)
its cohomology. (The complex RΓ̃f (Q,M) is indeed a perfect complex of
perfect amplitude contained in [0, 3], cf. [26].) Similarly denote by

RΓcont(GNp,M), RΓcont(Qℓ,M) and RΓcont
(
Qp,M

+)
the images in Db

ft(B) of C•
cont(GNp,M), C•

cont(Qℓ,M) and C•
cont(Qp,M

+),
and by

H ·(GNp,M), H ·(Qℓ,M) and H ·(Qp,M
+)

their cohomology.
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The specialisation isomorphism (2.4) induces isomorphisms in Db
ft(L):

(2.5) ρwo
: RΓcont(G,V (f , g,h)) ⊗L

Ofgh,wo
L ≃ RΓcont(G,V (f, g, h))

and

ρwo
: RΓcont

(
Qp, V (f , g,h)+)⊗L

Ofgh,wo
L ≃ RΓcont

(
Qp, V (f, g, h)+),

which in turn induce on f -Selmer complexes an isomorphism

(2.6) ρwo
: RΓ̃f (Q, V (f , g,h)) ⊗L

Ofgh,wo
L ≃ RΓ̃f (Q, V (f, g, h)).

(This follows easily by the fact the kernel of evaluation at wo on Ofgh is
generated by an Ofgh-regular sequence.)

The local Tate duality implies that for each prime ℓ dividing N the com-
plex RΓcont(Qℓ, V (f, g, h)) is isomorphic to zero, hence so is RΓcont(Qℓ,

V (f , g,h)) by Equation (2.5). It then follows from the definition of the
Selmer complex C̃•

f (GNp,M) that one has a distinguished triangle in
Db

ft(R):

(2.7) RΓ̃f (Q,M) −→ RΓcont(GNp,M) p−◦ resp−−−−−→ RΓcont
(
Qp,M

−),
where M− is the quotient of M by M+ and p− is the map induced on
complexes by the the projection p− : M → M−.

2.3. The extended Selmer group

The exact triangle (2.7) gives rise to a long exact cohomology sequence

(2.8) H̃i
f (Q,M) −→ Hi(GNp,M) −→ Hi(Qp,M

−) ȷ−→ H̃i+1
f (Q,M).

As easily checked

Sel(Q, V (f, g, h))

= ker
(
H1(GNp, V (f, g, h)) p−◦ resp−−−−−→ H1(Qp, V (f, g, h)−)

)
,

hence one can extract from the previous sequence the short exact sequence

(2.9) 0 −→ H0(Qp, V (f, g, h)−) −→ H̃1
f (Q, V (f, g, h))

−→ Sel(Q, V (f, g, h)) −→ 0.

The projection in the previous equation has a natural splitting

(2.10) ıur : Sel(Q, V (f, g, h)) ↪→ H̃1
f (Q, V (f, g, h)),
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characterised by the following property. Denote by

(2.11) ·+ : H̃1
f (Q, V (f, g, h)) −→ H1(Qp, V (f, g, h)+)

the morphism induced by the natural map of complexes (i.e. projection)

C̃•
f (GNp, V (f, g, h)) −→ C•

cont
(
Qp, V (f, g, h)+).

Then for any Selmer class x in Sel(Q, V (f, g, h)) one has

ıur(x)+ ∈ H1
fin
(
Qp, V (f, g, h)+),

where H1
fin(Qp, ·) denotes the Bloch–Kato finite subspace of H1(Qp, ·). We

often identify the Bloch–Kato Selmer group Sel(Q, V (f, g, h)) with a sub-
group of the Nekovář extended Selmer group H̃1

f (Q, V (f, g, h)) via the
splitting ınr. In other words, we use the splitting ınr to identify the Nekovář
extended Selmer group H̃1

f (Q, V (f, g, h)) with the naive extended Selmer
group Sel†(Q, V (f, g, h)) introduced in Equation (1.7):

(2.12) H̃1
f (Q, V (f, g, h)) = Sel(Q, V (f, g, h)) ⊕H0(Qp, V (f, g, h)−).

The Kummer map and the Shapiro isomorphism yield an injective mor-
phism

(A(Kϱ) ⊗Z Vϱ)Gal(Kϱ/Q) ⊗Q(ϱ) L ↪→ Sel
(
Q, V (f) ⊗Q(ϱ) Vϱ

)
.

Together with the isomorphism of L[GQ]-modules

γg ⊗ γh : Vϱ ⊗Q(ϱ) L ≃ V (g) ⊗L V (h)

(cf. Equation (1.4)), it entails an injective morphism of L-vector spaces

(2.13) γgh : A†(Kϱ)ϱ ⊗Q(ϱ) L ↪→ H̃1
f (Q, V (f, g, h)),

which is an isomorphism precisely if the p-part of the ϱ-isotypic component
of the Shafarevich–Tate group of A over Kϱ is finite.

2.4. Generalised Poitou–Tate duality (cf. [26])

[26, Section 6.3] (see also Proposition 1.3.2) associates to the Kummer
duality

πfgh : V (f, g, h) ⊗L V (f, g, h) −→ L(1)
(satisfying πfgh(V (f, g, h)+ ⊗LV (f, g, h)+) = 0) a global cup-product pair-
ing

∪Nek : RΓ̃f (Q, V (f, g, h)) ⊗L
L RΓ̃f (Q, V (f, g, h)) −→ RΓ̃∅(Q, L(1)),
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where RΓ̃∅(Q, L(1)) denotes the complex

Cone

RΓcont(GNp, L(1)) resNp−−−→
⊕
ℓ|Np

RΓcont(Qℓ, L(1))

[−1].

Let H̃ ·
∅(Q, L(1)) be the cohomology of RΓ̃∅(Q, L(1)). The fundamental

exact sequence of global class field theory yields a canonical isomorphism

TrL : H̃3
∅(Q, L(1)) ≃

⊕
ℓ|Np

H2(Qℓ, L(1))
/

resNp
(
H2(GNp, L(1))

)
≃ L,

arising from the sum of the invariant maps invℓ : H2(Qℓ, L(1)) ≃ L of local
class field theory, for ℓ dividing Np (cf. [26, Equation (5.3.1.3.2)]). Define

(2.14) ⟨·, ·⟩Nek : H̃2
f (Q, V (f, g, h)) ⊗L H̃

1
f (Q, V (f, g, h))

−→ H̃3
∅(Q, L(1)) ≃ L.

to be the composition of the map H2,1(∪Nek) induced on (2, 1)-cohomology
by Nekovář’s global cup-product ∪Nek with the trace isomorphism TrL.

2.5. The p-adic height pairing

To lighten the notation, we abbreviate V (f, g, h), V (f , g,h),RΓ̃f (Q, ·)
and H̃(Q, ·) with V,V ,RΓ̃f (·) and H̃f (·) respectively.

Applying RΓ̃f (V ) ⊗L
Ofgh

· to the exact triangle

(2.15) I /I 2 −→ Ofgh/I
2 −→ L

δ−→ I /I 2[1]

arising from evaluation at wo on Ofgh, yields a morphism in Db
ft(Ofgh):

(2.16) RΓ̃f (V ) ⊗L
Ofgh,wo

L −→ RΓ̃f (V ) ⊗L
Ofgh

I /I 2[1].

The specialisation map ρwo
gives rise to isomorphisms (cf. Equation (2.6))

ρwo
: RΓ̃f (V ) ⊗L

Ofgh,wo
L ≃ RΓ̃f (V )

and
ρwo

⊗ id : RΓ̃f (V ) ⊗L
Ofgh

I /I 2 ≃ RΓ̃f (V ) ⊗L I /I 2,

which together with (2.16) induce a derived Bockstein map

Rβ̃fgh : RΓ̃f (Q, V (f, g, h)) −→ RΓ̃f (Q, V (f, g, h))[1] ⊗L I /I 2.

The Garrett–Nekovář canonical p-adic height pairing

⟨⟨·, ·⟩⟩fgh : H̃1
f (Q, V (f, g, h)) ⊗L H̃

1
f (Q, V (f, g, h)) −→ I /I 2
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is the composition of the Nekovář cup-product pairing (cf. Equation (2.14))

⟨·, ·⟩Nek ⊗ I /I 2 : H̃2
f (V ) ⊗L H̃

1
f (V ) ⊗L I /I 2 −→ I /I 2

with the morphism

H̃1
f (V ) ⊗L H̃

1
f (V ) −→ H̃2

f (V ) ⊗L H̃
1
f (V ) ⊗L I /I 2,

arising from the Bockstein map

(2.17) β̃fgh = H1
(

Rβ̃fgh

)
: H̃1

f (Q, V (f, g, h))

−→ H̃2
f (Q, V (f, g, h)) ⊗L I /I 2.

Proposition 2.1. — The p-adic height ⟨⟨·, ·⟩⟩fgh is skew-symmetric.

Proof. — As explained in Section 2.1, the Kummer self-duality πfgh on
V (f, g, h) lifts (under ρwo) to a skew-symmetric, GQ-equivariant perfect
pairing

πfgh : V (f , g,h) ⊗Ofgh
V (f , g,h) −→ Ofgh(1),

under which the GQp -submodule V (f , g,h)+ of V (f , g,h) is its own or-
thogonal complement. The proposition then follows from the results
of [32, Appendix C]. □

The p-adic height pairing (cf. Equation (1.5))

⟨⟨·, ·⟩⟩fgαhα
: A†(Kϱ)ϱ ⊗Q(ϱ) A

†(Kϱ)ϱ −→ I /I 2

which appears in Conjecture 1.1 is defined to be restriction of the canon-
ical height pairing ⟨⟨·, ·⟩⟩fgαhα

: H̃1
f (Q, V (f, g, h))⊗2 → I /I 2 to the p-

extended Mordell–Weil group A†(Kϱ)ϱ along the injective morphism γgh
introduced in Equation (2.13).

3. Diagonal classes and rational points

As proved in [11, Theorem A] and [18, Theorem 5.1], the square root p-
adic L-function L αα

p (A, ϱ) is the image of a big diagonal class κ(f , gα,hα)
in H1(Q, V (f , gα,hα)) under an appropriate branch of the Perrin-Riou big
logarithm. The leading term of Lααp (A, ϱ) at wo = (2, 1, 1) is then intimately
connected to the derivatives of the class κ(f , gα,hα) at wo. This section
exploits this connection and its relation with Conjecture 1.1.

To simplify the exposition, we assume in this section that

(3.1) αf ̸= αg · αh and αf ̸= βg · αh.
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This condition is equivalent to the vanishing of the module of p-adic periods
Qp(A, ϱ) of (A, ϱ) (or equivalently of the module H0(Qp, V (f, g, h)−)), and
is satisfied when A has good (ordinary) reduction at p (cf. Remark 1.3.1).
In particular, in this section, the Nekovář extended Selmer group and the
Bloch–Kato Selmer group of V (f, g, h) over Q are equal to each other (cf.
Equation (2.12)):

H̃1
f (Q, V (f, g, h)) = Sel(Q, V (f, g, h)).

3.1. Differentials and logarithms

Let ξ denote one of f , gα or hα, and recall the short exact sequence of
Oξ-modules V (ξ)+ ↪→ V (ξ) →→ V (ξ)− (cf. Section 2.1).

If ξ = gα,hα define

V (ξ)α = V (ξ)− ⊗1 L and V (ξ)β = V (ξ)+ ⊗1 L.

Equation (2.2) implies that

V (ξ)α = V (ξ)Frobp=αξ and V (ξ)β = V (ξ)Frobp=βξ

are the subspaces of V (ξ) on which an arithmetic Frobenius Frobp in GQp

acts as multiplication by αξ and βξ respectively. In particular one has the
decomposition

V (ξ) = V (ξ)α ⊕ V (ξ)β
of L[GQp ]-modules. (Recall that by assumption the roots αξ and βξ =
χξ(p) · α−1

ξ of the p-th Hecke polynomial of ξ are distinct, cf. Section 1.)
SetD(ξ)− = H0(Qp, V (ξ)−⊗̂Qp

Q̂nr
p ), where Q̂nr

p is the p-adic completion
of the maximal unramified extension of Qp (equipped with its natural GQp -
action). As explained in [11, Section 5], the Oξ-module D(ξ)− is free of rank
one, and its base changeD(ξ)−

u = D(ξ)−⊗uL along evaluation at a classical
weight u in Uξ ∩ Z⩾ 2 on Oξ is canonically isomorphic to the ξu-isotypic
component L · ξu of Su(pNξ, χξ)L. Moreover, there exists an Oξ-basis

ωξ ∈ D(ξ)−

whose image ωξu
in D(ξ)−

u corresponds to ξu under the aforementioned iso-
morphism for each classical weight u in Uξ ∩Z⩾ 2 (cf. [11, Equations (117)–
(119)]).

Remark 3.1. — We caution the reader that the notation used here differ
from that of [11]. Precisely, Section 5 of loc. cit. introduces a differential
ωξ = ωBSV

ξ in a suitable dual D∗(ξ)− of D(ξ)−. Here we denote by ωξ
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the image of ωBSV
ξ under the isomorphism w−

Np : D∗(ξ)− ≃ D(ξ)− induced
by the Atkin–Lehner isomorphism w−

Np : V ∗(ξ)−(1+κUf
) ≃ V (ξ)− defined

in [11, Equation (114)]. Accordingly the canonical isomorphism D(ξ)−
u ≃ L·

ξu mentioned above arises from the specialisation isomorphism D∗(ξ)− ⊗u

L ≃ Fil1 V ∗
dR(ξu) defined in [11, Equation (116)] and the Atkin–Lehner

operator (cf. Equation (29) of loc. cit.).

If ξ is either gα or hα, the weight-one specialisation of ωξ yields canonical
elements

ωξα ∈ D(ξ)−
1 = Dcris(V (ξ)α).

In this case, let ηξα
in Dcris(V (ξ)β) be the class satisfying

⟨ηξα , ωξα⟩ξ = 1,

where

⟨·, ·⟩ξ : Dcris(V (ξ)α) ⊗L Dcris(V (ξ)β) −→ Dcris(L(χξ)) ≃ L

is the perfect pairing induced by the duality πξ introduced in Equation
(1.3). (The crystalline module Dcris(χξ) = H0(Qp, L(χξ) ⊗Qp

Bcris) of the
one-dimensional representation L(χξ) is generated over L by the Gauß sum

G(χξ) =
∑

a∈ (Z/c(χξ)Z)∗

χξ(a) ⊗ e2πia/c(χξ)

in L⊗Qp Qp(µNξ
) of the primitive character χξ : (Z/c(χξ)Z)∗ → L∗ asso-

ciated with χξ. Since by assumption L contains Q(µNξ
), here we identify

G(χξ) with the element
∑
a χξ(a) ·e2πia/c(χξ) of L, hence Dcris(χξ) with L.)

Identify V (f) = Tap(A) ⊗Zp L with the f -isotypic component of the
étale cohomology group H1

ét(X1(Nf , p)Q,Qp(1)) ⊗Qp
L under the modular

parametrisation ℘∞ fixed in Section 1. The modular form f in

Fil0 H1
dR
(
X1(Nf , p)Qp

,Qp(1)
)

then defines (via the comparison isomorphism between étale and de Rham
cohomology) a class

ωf ∈ Fil0 DdR(V (f))

(where DdR(·) = H0(Qp, ·⊗Qp
BdR) is Fontaine’s de Rham functor). Define

ηf in DdR(V (f))/Fil0 to be the de Rham class satisfying

⟨ηf , ωf ⟩f = 1,

where ⟨·, ·⟩f : DdR(V (f))⊗LDdR(V (f)) → L is the perfect pairing induced
on the de Rham modules by the Weil pairing on V (f).
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Set VdR(f, g, h) = DdR(V (f, g, h)). The Bloch–Kato exponential map
gives an isomorphism between VdR(f, g, h)/Fil0 and the finite subspace
H1

fin(Qp, V (f, g, h)) of H1(Qp, V (f, g, h)) (cf. Lemma [11, 9.1]). Denote by

logp : H1
fin(Qp, V (f, g, h)) −→ VdR(f, g, h)/Fil0

the inverse of the Bloch–Kato exponential. Under the self-duality assump-
tion (1.1), the product of the pairings ⟨·, ·⟩ξ, for ξ = f, g, h, yields a perfect
duality

⟨·, ·⟩fgh : VdR(f, g, h) ⊗L VdR(f, g, h) −→ DdR(Qp(1)) ⊗Qp L = L.

(Here one identifies VdR(f, g, h) with the tensor product of DdR(V (f)),
Dcris(V (g)) and Dcris(V (h)) under the natural isomorphism.) Define the
αα-logarithm

logαα =
〈
logp(·), ωf ⊗ ηgα

⊗ ηhα

〉
fgh

: H1
fin(Qp, V (f, g, h)) −→ L.

to be the composition of the Bloch–Kato p-adic logarithm with evaluation
on the class ωf ⊗ ηgα

⊗ ηhα
in Fil0 VdR(f, g, h) under the duality ⟨·, ·⟩fgh.

If κ is a global Selmer class in Sel(Q, V (f, g, h)), we often write logαα(κ)
as a shorthand for logαα(resp(κ)).

3.2. Diagonal classes

Following [11, Section 7.2] define (cf. Section 2.1)

F 2V (f , gα,hα)

=
[ ∑
p+q+r=2

F pV (f)⊗̂LF qV (gα)⊗̂LF rV (hα)
]

⊗Ofgh
Ξfgh,

where for ξ = f , gα,hα one sets F iV (ξ) = V (ξ) for i ⩽ 0, F 1V (ξ) =
V (ξ)+ and F jV (ξ) = 0 for j ⩾ 2. It is an Ofgh[GQp

]-submodule of
V (f , gα,hα), free of rank four over Ofgh. We call the image of the in-
jective natural map

H1(Qp,F
2V (f , gα,hα)

)
−→ H1(Qp, V (f , gα,hα))

the balanced local condition, and denote it by H1
bal(Qp, V (f , gα,hα)). The

balanced Selmer group H1
bal(Q, V (f , gα,hα)) is the module of global co-

homology classes in H1(Q, V (f , gα,hα)) which are unramified at every
prime ℓ ̸= p and whose restriction at p belongs to the balanced local con-
dition. For each classical triple w = (k, l,m) in Uf × Ug × Uh ∩ Z3

⩾ 2,
one defines similarly the balanced local condition H1

bal(Qp, Vw), where
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Vw = V (fk, gα,l,hα,m) is the self-dual Tate twist of the tensor product
of the homological Deligne representations V (ξu) of ξu = fk, gα,l,hα,m. If
w is balanced (id est k < l+m, l < k+m and m < k+l), then H1

bal(Qp, Vw)
equals the Bloch–Kato finite subspace of H1(Qp, Vw) (cf. [11, Lemma 7.2]).
The work of Perrin-Riou et alii yields a big logarithm map

Lf : H1
bal(Qp, V (f , gα,hα)) −→ Ofgh,

satisfying the following interpolation property. Let Z be a local balanced
class in H1

bal(Qp, V (f , gα,hα)), and let w = (k, l,m) be a balanced classical
triple. Denote by Zw in H1

bal(Qp, Vw) the image of Z under the map induced
in cohomology by the specialisation isomorphismρw :V (f , gα,hα)⊗wL≃Vw
(the latter being defined as the tensor product of the specialisation isomor-
phisms ρu : V (ξ)⊗uL ≃ V (ξu), for ξu = fk, gα,l,hα,m, cf. Section 2.1). Set
cw = (k + l +m− 2)/2, αk = ap(f)(k), αl = ap(gα)(l), αm = ap(hα)(m),
and define βξ by the identities αk · βk = pk−1, αl · βl = χg(p) · pl−1 and
αm · βm = χh(p) · pm−1. Then one has

Lf (Z)(w) = (−1)cw−k

(cw − k)! ·

(
1 − βkαlαm

pcw

)
(

1 − αkβlβm

pcw

) ·
〈
logp(Zw),℧w

〉
w
,

where logp is the Bloch–Kato logarithm map, ℧w in Fil0 DdR(Vw) denotes
the differential ηfk

⊗ωgα,l
⊗ωhα,m (defined similarly as in Section 3.1), and

the pairing ⟨·, ·⟩w : DdR(Vw)/Fil0 ⊗L Fil0 DdR(Vw) → L is the one induced
by the specialisation at w of the perfect duality πfgh (cf. Equation (2.3)).
We refer to [11, Proposition 7.3] for a proof of the existence of Lf .

[11, Theorem A] constructs a canonical big balanced diagonal class

κ(f , gα,hα) ∈ H1
bal(Q, V (f , gα,hα))

such that

(3.2) Lf

(
resp

(
κ(f , gα,hα)

))
= L αα

p (A, ϱ).

One defines the (balanced) diagonal class

κ(f, gα, hα) ∈ H1(Q, V (f, g, h))

to be the image of κ(f , gα,hα) under the map induced in cohomology by
the specialisation isomorphism ρwo

defined in Equation (2.4). Note that
wo lies outside the balanced region, hence the class κ(f, gα, hα) is not
necessarily crystalline at p. Indeed, under the current assumption (3.1),
it follows from the explicit reciprocity law (3.2) and Perrin-Riou’s reci-
procity law for big dual exponentials that κ(f, gα, hα) is crystalline at
p (hence a Selmer class) precisely if the the complex Garrett L-function
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L(A, ϱ, s) = L(f ⊗ g ⊗ h, s) vanishes at the central point s = 1. (Cf. [11,
Theorem B], proved in the present setting in Section 9.1 of loco citato.)

Lemma 3.2. — Assume that L(A, ϱ, s) vanishes at s = 1, so that the
diagonal class κ(f, gα, hα) is crystalline at p. Then

logαα(κ(f, gα, hα)) = 0.

Proof. — Set V = V (f, g, h), V = V (f , gα,hα), κ = κ(f, gα, hα) and
κp = resp(κ). Define F 2V = F 2V ⊗wo

L and V ·
ij = V (f)· ⊗L V (g)i ⊗L

V (h)j . By construction κ is the specialisation at wo of a balanced class,
hence κp belongs to the kernel of

η : H1(Qp, V ) −→ H1(Qp, V/F
2V
)
.

Consider the following commutative diagram of L[GQp
]-modules with exact

rows:

0 // V + //

��

V

��

// V −

��

// 0

0 // V +
αα

// V/F 2V // V −
αβ ⊕ V −

βα ⊕ V −
αα

// 0

where the vertical maps are the natural projections. The non-exceptionality
assumption (3.1) implies that H0(Qp, V

−
ij ) = 0 for each (i, j) ∈ {α, β}2.

Moreover the inclusion V + ↪→ V induces an isomorphism (cf. Section 2.3)

H1(Qp, V
+) ≃ H1

fin(Qp, V ).

We then obtain the following commutative diagram with exact rows.

0 // H1(Qp, V
+) //

γ

��

H1
fin(Qp, V )

η

��

// 0

0 // H1(Qp, V
+
αα) // H1(Qp, V/F 2V

)
By definition logαα factors through γ, hence the statement follows from the
previous diagram and the identity η(κ) = 0. □

When L(f ⊗g⊗h, s) vanishes at s = 1, the following theorem relates the
linear form ⟨⟨κ(f, gαhα), ·⟩⟩fgαhα

on Sel(Q, V (f, g, h)) and the derivative of
L αα
p (A, ϱ).
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Theorem 3.3. — Assume that the complex Garrett L-function L(A,
ϱ, s) vanishes at s = 1, so that κ(f, gα, hα) is a Selmer class. Then(

1 − αgαh

αf

)
(

1 − αf

pαgαh

) · ⟨⟨κ(f, gα, hα), ·⟩⟩fgαhα

= logαα
(
resp(·)

)
· L αα

p (A, ϱ)
(
mod I 2)

as I /I 2-valued linear maps on the Selmer group Sel(Q, V (f, g, h)).

Theorem 3.3 is proved in Section 3.4 below.

Remark 3.4. — The construction of the class κ(f , gα,hα) and the proof
of the reciprocity law (3.2) given in [11] work also when the assump-
tion (3.1) is not satisfied, id est if A has multiplicative reduction at p
and αf equals either αg ·αh or βg ·αh. (Since g is p-regular by an assump-
tion of Section 1, one has αg · αh ̸= βg · αh.) Assume that αf = αg · αh
and that L(A, ϱ, s) vanishes at s = 1, so that κ(f, gα, hα) is crystalline at
p by [11, Theorem B]. Let q and q′ be generators of Qp(A, ϱ). For Selmer
classes x and y in Sel(Q, V (f, g, h)), denote by h̃ααp (x ⊗ y) the square-
root of the discriminant of ⟨⟨·, ·⟩⟩fgαhα

computed on the Q(ϱ)-submodule
of H̃1

f (Q, V (f, g, h)) generated by x, y, q and q′. The article [8] proves the
equality

h̃ααp
(
κ(f, gα, hα) ⊗ y

)
= logαα

(
resp(y)

)
· L αα

p (A, ϱ)
(
mod I 3)

in (I 2/I 3)/Q(ϱ)∗ for each Selmer class y.

3.3. Perrin-Riou conjecture for diagonal classes

Recall the map

γgh : A(Kϱ)ϱ ⊗Q(ϱ) L ↪→ Sel(Q, V (f, g, h))

defined in Equation (2.13), arising from the Kummer map onA(Kϱ) and the
isomorphisms γg and γh fixed in (1.4). Assume that A(Kϱ)ϱ has dimension 2
over Q(ϱ) and that Lααp (A, ϱ) is not identically zero. The classical Birch and
Swinnerton-Dyer conjecture predicts that the Shafarevich–Tate group of A
over Kϱ is finite, hence that γgh is an isomorphism. Moreover, it implies
in this case the vanishing of L(E, ϱ, s) at s = 1, which combined with the
explicit reciprocity law shows that κ(f, gα, hα) is a Selmer class. Then, if
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(P,Q) is a Q(ϱ)-basis of A(Kϱ)ϱ, one has κ(f, gα, hα) = a·γgh(P )+b·γgh(Q)
with a and b in L. After setting

E =
(

1 − αgαh
αf

)
·
(

1 − αf
pαgαh

)−1
,

Theorem 3.3 and Proposition 2.1 yield the identities

E · a · ⟨⟨P,Q⟩⟩fgαhα
= logαα(γgh(Q)) · L αα

p (A, ϱ) (mod I 2)

and

−E · b · ⟨⟨P,Q⟩⟩fgαhα
= logαα(γgh(P )) · L αα

p (A, ϱ) (mod I 2)

Moreover, Conjecture 1.1 predicts that ⟨⟨P,Q⟩⟩fgαhα
and L αα

p (A, ϱ)
(mod I 2) are non-zero, and equal up to multiplication by a non-zero alge-
braic scalar in Q(ϱ)∗. To sum up, when dimQ(ϱ) A(Kϱ)ϱ = 2, one expects
that κ(f, gα, hα) is equal to logαα(γgh(Q)) ·γgh(P )−logαα(γgh(P )) ·γgh(Q)
up to multiplication by a non-zero scalar inQ(ϱ)∗. When dimQ(ϱ)A(Kϱ)ϱ>2,
Conjecture 1.1 predicts that L αα

p (A, ϱ) belongs to I 2 and that ⟨⟨·, ·⟩⟩fgαhα

is non-degenerate, hence that κ(f, gα, hα) is zero by Theorem 3.3 and the
conjectural finiteness of the relevant Shafarevich–Tate group. Under the
running assumptions of this section, the above discussion shows that the
next conjecture is a direct consequence of Conjecture 1.1 combined with
Theorem 3.3.

Conjecture 3.5.
(1) Assume that the Q(ϱ)-vector space A(Kϱ)ϱ has dimension 2. Then,

for each Q(ϱ)-basis (P,Q) of A(Kϱ)ϱ, the equality

κ(f, gα, hα) = logαα(γgh(Q)) · γgh(P ) − logαα(γgh(P )) · γgh(Q)

holds in the Selmer group Sel(Q, V (f, g, h)) up to multiplication by
a non-zero element of Q(ϱ)∗.

(2) If A(Kϱ)ϱ has dimension greater than 2 over Q(ϱ), then the diagonal
class κ(f, gα, hα) is equal to zero.

Remarks 3.6.
(1) The equality displayed in Part 1 of Conjecture 3.5 is independent

of the choice of the isomorphisms γg and γh fixed in Equation (1.4).
(2) Assume that both rMW = dimQ(ϱ) A(Kϱ)ϱ and rS = dimL Sel(Q,

V (f, g, h)) are equal to 2, and let (P,Q) be a Q(ϱ)-basis of A(Kϱ)ϱ.
If logαα is not identically zero on (the image under resp of) Sel(Q,
V (f, g, h)), then Lemma 3.2 implies

(3.3) κ(f, gα, hα) = λ ·
(
logαα(γgh(Q)) · γgh(P ) − logαα(γgh(P )) · γgh(Q)

)
TOME 0 (0), FASCICULE 0



28 Massimo BERTOLINI, Marco Adamo SEVESO & Rodolfo VENERUCCI

for some constant λ in L. In this case, the actual content of Con-
jecture 3.5 is then the non-vanishing and rationality statement λ
belongs to Q(ϱ)∗.

(3) Assume rMW = rS = 2 and that logαα is not identically zero on the
Selmer group Sel(Q, V (f, g, h)). Fix a Q(ϱ)-basis (P,Q) of A(Kϱ)ϱ.
Equation (3.3), Proposition 2.1, Theorem 3.3 and the non-triviality
of logαα give the identity

L αα
p (A, ϱ) (mod I 2) = λ · ⟨⟨P,Q⟩⟩fgαhα

in (I /I 2)/Q(ϱ)∗. According to Proposition 2.1 and the current
assumption (3.1) (which implies A(Kϱ)ϱ = A†(Kϱ)ϱ), the square
of ⟨⟨P,Q⟩⟩fgαhα

equals the regulator Rααp (A, ϱ), hence the previous
equation yields the equality

Lααp (A, ϱ) (mod I 3) = λ2 ·Rααp (A, ϱ)

in (I 2/I 3)/Q(ϱ)∗2. As a consequence Conjecture 3.5, namely the
statement λ belongs to Q(ϱ)∗, and the non-degeneracy of⟨⟨·, ·⟩⟩fgαhα

on the Mordell–Weil group A(Kϱ)ϱ, is equivalent to Conjecture 1.1.
(4) Since by assumption the forms g and h are p-regular (cf. Section 1),

one can actually consider the four diagonal classes κ(f, gα, hα),
κ(f, gα, hβ), κ(f, gβ , hα) and κ(f, gβ , hβ) arising from the different
choices of the roots of the pth Hecke polynomials of g and h. Con-
jecture 3.5, combined with standard conjectures, predicts that these
classes generate a non-trivial submodule of Sel(Q, V (f, g, h)) pre-
cisely when rMW = 2. Assuming rMW = 2, one has that resp is not
identically zero on Sel(Q, V (f, g, h)), hence one of the logarithms
logαα, logαβ , logβα and logββ (defined similarly as in Section 3.1)
is not identically zero on Sel(Q, V (f, g, h)). Reordering the roots
(αg, βg) and (αh, βh) if necessary, one can assume that logαα is
not identically zero. It follows from Conjecture 3.5 that the class
κ(f, gα, hα) is non-zero. Conversely, assume that κ(f, gα, hα) is non-
zero. According to the parity conjecture and the conjectural finite-
ness of the p-primary part of the ϱ-component of the Shafarevich–
Tate group of A over Kϱ one has rMW ⩾ 2. Conjecture 3.5 implies
the equality rMW = 2.

(5) Conjecture 3.5 is a reformulation of [16, Conjecture 3.12], which (to-
gether with Conjecture 2.1 of loc. cit.) is a refinement of the Elliptic
Stark Conjecture formulated in [15] (cf. [16, Proposition 3.13 and
Remark 3.14]). The above discussion then gives a conceptual expla-
nation of the conjectures formulated in [15, 16] in the framework of
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the p-adic analogues of the Birch and Swinnerton-Dyer conjecture.
Theoretical evidence for these conjectures is obtained in [9, 13, 17]

(6) Assume in this remark that (A, ϱ) is exceptional at p. When αf =
αg · αh we expect that Conjecture 3.5 holds verbatim in light of
Remark 3.4. By contrast, if αf = βg · αh, then the specialisation
κ(f, gα, hα) of κ(f , gα,hα) at wo = (2, 1, 1) is equal to zero, in-
dependently on whether L(f ⊗ g ⊗ h, s) vanishes or not at s = 1.
In this case, we expect that Conjecture 3.5 holds after replacing
κ(f, gα, hα) with the improved diagonal class κ∗(f, gα, hα) defined
in [11, Section 1.2] (cf. Theorem B of loco citato).

3.4. Proof of Theorem 3.3

This section proves Theorem 3.3.
Under the running assumption (3.1), the module H0(Qp, V (f, g, h)−) is

equal to zero and we identify the Block–Kato Selmer group Sel(Q, V (f,
g, h)) with Nekovář’s extended Selmer group H̃1

f (Q, V (f, g, h)) under the
isomorphism (2.9). Fix a 1-cocycle

z̃ = (z, z+, a) ∈ C̃1
f (GNp, V (f, g, h))

which represents the diagonal class κ(f, gα, hα) in H̃1
f (Q, V (f, g, h)). Then

z ∈ C1
cont(GNp, V (f, g, h)), z+ ∈ C1

cont
(
Qp, V (f, g, h)+)

and
a = (av)v|Np ∈

⊕
v|Np

V (f, g, h)

satisfy the relations

dz = 0, κ(f, gα, hα) = cl(z), dz+ = 0 and resNp(z) = i+
(
z+)− da,

where d denotes the differentials of the complexes C•
cont and cl(·) denotes

the cohomology class represented by ·. Let

Z ∈ C1
cont(GNp, V (f , gα,hα))

be a 1-cocycle representing κ(f , gα,hα) and specialising to z at wo:

dZ = 0, κ(f , gα,hα) = cl(Z) and ρwo
(Z) = z

(cf. Equation (2.5)). The 1-cocycle z̃ is then lifted by a 1-cochain of the
form

Z̃ = (Z,Z+, A) ∈ C̃1
f (GNp, V (f , gα,hα))
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under the morphism of complexes

ρwo : C̃•
f (GNp, V (f , gα,hα)) −→ C̃•

f (GNp, V (f, g, h))

induced by ρwo
(cf. Equation (2.6)), where the cochains

Z+ ∈ C1
cont(Qp, V (f , gα,hα)) and A = (Av)v|Np ∈

⊕
v|Np

V (f , gα,hα)

are lifts of z+ and a respectively under the map induced by ρwo
.

In the rest of the proof, let u denote one of k, l and m. As z̃ is a 1-
cocycle, the differential dZ̃ of Z̃ in C̃2

f (GNp, V (f , gα,hα)) can be written
as

(3.4) dZ̃ = (k − 2) · Z̃k + (l − 1) · Z̃l + (m − 1) · Z̃m

with 2-cochains Z̃u in C̃2
f (GNp, V (f , gα,hα)) of the form

(3.5) Z̃u =
(
Zu, Z

+
u ,Wu

)
,

where the 1-cochains Wu = (Wu,v)v|Np in
⊕

v|Np C1
cont(Qv, V (f , gα,hα))

satisfy

(3.6) (k −2) ·Wk +(l−1) ·Wl +(m−1) ·Wm = i+
(
Z+)− resNp(Z)−dA.

A slight extension of [33, Lemma 5.5] (cf. [34, Appendix C]) proves that

z̃u = ρwo(Z̃u)

are 2-cocycles in C̃2
f (GNp, V (f, g, h)) and (cf. Equation (2.17))

(3.7) − β̃fgαhα(κ(f, gα, hα))
= (k − 2) · cl(z̃k) + (l − 1) · cl(z̃l) + (m − 1) · cl(z̃m).

For V = V (f , g,h), V (f, g, h), denote by

p− : C•
cont(Qp, V ) −→ C•

cont(Qp, V
−)

the morphism of complexes induced by the projection p− : V → V −. Define

Xu = p−(Wu,p) ∈ C1
cont(Qp, V (f , gα,hα)−);

xu = ρwo(Xu) = p− ◦ ρwo(Wu,p) ∈ C1
cont(Qp, V (f, g, h)−).

(3.8)

After setting A−
p = p−(Ap), Equation (3.6) yields

(3.9) (k − 2) ·Xk + (l − 1) ·Xl + (m − 1) ·Xm = −p−(resp(Z)
)

− dA−
p .

As Z is a 1-cocycle, this implies that the 1-cochains xu are 1-cocycles, and
one sets

xu = cl(xu) ∈ H1(Qp, V (f, g, h)−).
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Similarly, as Z is a 1-cocycle, Equations (3.4) and (3.5) imply that
ρwo

(Zu) = 0, hence

z̃u =
(
0, ρwo

(
Z+

u

)
, ρwo

(Wu)
)
.

Because C•
cont(Qv, V (f, g, h)) is acyclic for v ̸= p, this implies

(3.10) cl(z̃u) = ȷ(xu)

(cf. Equations (2.8) and (3.8)). After recalling the definition of Garrett–
Nekovář p-adic height ⟨⟨·, ·⟩⟩fgαhα

given in Section 2.5, Equations (3.7)
and (3.10) yield

(3.11) ⟨⟨κ(f, gα, hα), s̃ ⟩⟩fgαhα

= ⟨·, ·⟩Nek ⊗ I /I 2
(
β̃fgαhα(κ(f, gα, hα)) ⊗ s̃

)
= −

∑
u

⟨ȷ(xu), s̃ ⟩Nek · (u − uo)

= −
∑

u

〈
xu, s̃

+〉
Tate · (u − uo)

for each s̃ in H̃1
f (Q, V (f, g, h)). Here (u, uo) denotes one of the pairs (k, 2),

(l, 1) and (m, 1), where

⟨·, ·⟩Tate : H1(Qp, V (f, g, h)−) ⊗L H
1(Qp, V (f, g, h)+) −→ L

is the local Tate duality induced by the perfect pairing πfgh (cf. Section 2.1),
and where ·+ is the morphism introduced in Equation (2.11). The last
equality in Equation (3.11) follows from the adjointness of the maps ȷ and ·+
with respect to the pairings ⟨·, ·⟩Nek and ⟨·, ·⟩Tate (cf. [33, Lemma 5.7].)

To conclude the proof we will need the following lemma. Set

V (f , gα,hα)f = V (f)−⊗̂LV (gα)+⊗̂LV (hα)+ ⊗Ofgh
Ξfgh.

The projection p− : V (f , gα,hα) → V (f , gα,hα)− maps F 2V (f , gα,hα)
onto V (f , gα,hα)f , hence induces in cohomology a morphism

(3.12) pf : H1
bal(Qp, V (f , gα,hα)) −→ H1(Qp, V (f , gα,hα)f ).

(Recall that the natural map H1(Qp,F 2V (f , gα,hα)) → H1(Qp, V (f ,
gα,hα)) is injective, hence identifies its source with H1

bal(Qp, V (f , gα,
hα)).)

Lemma 3.7. — There exist Yk,Yl and Ym in H1(Qp, V (f , gα,hα)f )
such that

pf (resp(κ(f , gα,hα))) = (k − 2) · Yk + (l − 1) · Yl + (m − 1) · Ym.
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Moreover, if the previous equation is satisfied, then for u = k, l,m one has

xu = −ρwo
(Yu).

Proof. — Set V (f)−
ββ = V (f)− ⊗Qp

V (g)β ⊗L V (h)β . It is an L[GQp
]-

direct summand of V (f, g, h)−, and the specialisation map ρwo
induces an

isomorphism

ρwo
: V (f , gα,hα)f ⊗wo

Ofgh ≃ V (f)−
ββ .

Since the kernel of evaluation at wo on Ofgh is generated by a regular
sequence and H2(Qp, V (f)−

ββ) is equal to zero, the specialisation isomor-
phism ρwo induces in cohomology an isomorphism (denoted by the same
symbol)

(3.13) ρwo : H1(Qp, V (f , gα,hα)f ) ⊗wo L ≃ H1
(

Qp, V (f)−
ββ

)
.

As explained in [11, Section 9.1], the Bloch–Kato finite subspace of the
local cohomology group H1(Qp, V (f, g, h)) is equal to the kernel of

p− : H1(Qp, V (f, g, h)) −→ H1(Qp, V (f, g, h)−)
(cf. Section 9.1). Because κ(f, gα, hα) = ρwo(κ(f , gα,hα)) is a Selmer class
(under the current assumption L(A, ϱ, 1) = 0), it follows that the local class

κf = pf (resp(κ(f , gα,hα)))

belongs to the kernel of (3.13), thus proving the first statement.
Let Yu in H1(Qp, V (f , gα,hα)f ) be local classes satisfying

κf =
∑

u

Yu · (u − uo).

We prove that ρwo(Yu) is equal to −xu for u = k, the cases u = l,m

being similar. Since by construction cl(Z) = κ(f , gα,hα), according to
Equation (3.9) one has

(3.14) cl
(∑

u

Xu · (u − uo)
)

= −
∑

u

if (Yu) · (u − uo) ∈ H1(Qp, V (f , gα,hα)−),

where if denotes both the inclusion V (f , gα,hα)f ↪→ V (f , gα,hα)−

and the morphism it induces in cohomology. Let ν : Ofgh → Of be the
surjective morphism of rings sending the analytic function F (k, l,m) to
F (k, 1, 1), and set

V (f , g, h)− = V (f , gα,hα)− ⊗ν Of
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and

V (f)−
ββ = V (f , gα,hα)f ⊗ν Of .

(Note that V (f)−
ββ = V (f)− ⊗LV (g)β⊗LV (h)β⊗Of

χ
1−k/2
cyc is an Of [GQp

]-
direct summand of V (f , g, h)− and if ⊗ν Of is the natural inclusion.) If
one denotes by ν also the morphisms induced in cohomology (resp., on
continuous cochains) by the projections V (f , gα,hα)− → V (f , g, h)− and
V (f , gα,hα)f → V (f)−

ββ , then ν(Xk) is a 1-cocycle in C1
cont(Qp, V (f ,

g, h)−) (cf. Equation (3.9)) and Equation (3.14) gives

(k − 2) ·
(
cl(ν(Xk)) + ν(Yk)

)
= 0.

On the other hand, the (k − 2)-torsion of H1(Qp, V (f , g, h)−) is a quo-
tient of H0(Qp, V (f, g, h)−), which is zero by assumption (viz. (A, ϱ) is
not exceptional at p). Then ν(Yk) = − cl(ν(Xk)), hence by construction
ρwo

(Yk) = −xk. □

Let Yu be as in the statement of Lemma 3.7, and let ỹ be an element of
H̃1
f (Q, V (f, g, h)). Equation (3.11) and Lemma 3.7 give the identity

(3.15) ⟨⟨κ(f, gα, hα), ỹ⟩⟩fgαhα
=
∑

u

〈
ρwo

(Yu), ỹ+〉
Tate · (u − uo).

If ỹ = ıur(y) corresponds to the Selmer class y in Sel(Qp, V (f, g, h)), then
the image of ỹ+ under the map induced in cohomology by the inclusion
V (f, g, h)+ ↪→ V (f, g, h) is equal to the restriction of y at p. In this case
we claim that

(3.16)
〈
ρwo(Yu), ỹ+〉

Tate

= logαα(resp(y)) ·
〈
exp∗

p(ρwo(Yu)), ηf ⊗ ωgα ⊗ ωhα

〉
fgh

,

where exp∗
p:H1(Qp, V (f, g, h)−) → DdR(V (f, g, h)−) is the Bloch–Kato

dual exponential. Indeed, note that the projection p− : V (f, g, h) →→
V (f, g, h)− and the inclusion i+ : V (f, g, h)+ ↪→ V (f, g, h) induce natu-
ral isomorphisms

Fil0 VdR(f, g, h) ≃ DdR(V (f, g, h)−)

and

DdR(V (f, g, h)+) ≃ VdR(f, g, h)/Fil0,

which we consider as equalities. Moreover, since by assumption (A, ϱ) is not
exceptional at p, the Bloch–Kato exponential map gives an isomorphism
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between DdR(V (f, g, h)+) and H1(Qp, V (f, g, h)+). As i+(ỹ+) = resp(y),
it follows that

(3.17)
〈
ρwo(Yu), ỹ+〉

Tate =
〈
exp∗

p(ρwo(Yu)), logp(resp(y))
〉
fgh

.

For (i, j) in {α, β}2 and · = ∅,±, define

V (f)·
ij = V (f)· ⊗Qp

V (g)i ⊗L V (h)j
(so that V (f, g, h)· is the direct sum of the submodules V (f)·

ij). Then
ρwo(Yu) belongs to H1(Qp, V (f)−

ββ) (cf. the proof of Lemma 3.7), hence
the linear form〈

exp∗
p(ρwo

(Y)u), ·
〉
fgh

: VdR(f, g, h)/Fil0 −→ L

factors through the map prαα : VdR(f, g, h)/Fil0 → DdR(V (f)αα)/Fil0

induced by the projection V (f, g, h) →→ V (f)αα. Since by definition (cf.
Section 3.1)

prαα(logp(resp(y))) = logαα(resp(y)) · ηf ⊗ ωgα
⊗ ωhα

the claim Equation (3.16) follows from Equation (3.17).
After setting

exp∗
αα(ρwo(Yu)) =

〈
exp∗

p(ρwo(Yu)), ηf ⊗ ωgα ⊗ ωhα

〉
fgh

,

Equations (3.15) and (3.16) prove the equality

(3.18) ⟨⟨κ(f, gα, hα), ·⟩⟩fgαhα

= logαα(resp(·)) ·
∑

u

exp∗
αα(ρwo(Y)u) · (u − uo)

of I /I 2-valued L-linear forms on the Selmer group Sel(Q, V (f, g, h)).
By [11, Proposition 7.3], the Perrin-Riou logarithm Lf introduced in

Section 3.2 factors through the map pf defined in Equation (3.12), and
hence gives rise to a morphism (denoted again by the same symbol)

Lf : H1(Qp, V (f , gα,hα)f ) −→ Ofgh.

Moreover, for each local class Z in H1(Qp, V (f , gα,hα)f ) one has (cf. loc.
cit.)

Lf (Z)(wo) =

(
1 − αgαh

αf

)
(

1 − αf

pαgαh

) · exp∗
αα(ρwo

(Z)).

Applying Lf to both sides of the identity

pf
(
resp

(
κ(f , gα,hα)

))
=
∑

u

Yu · (u − uo),
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and using the explicit reciprocity law Equation (3.2), one then gets the
identity

L αα
p (A, ϱ) (mod I 2) =

(
1 − αgαh

αf

)
(

1 − αf

pαgαh

) ·
∑

u

exp∗
αα(ρwo

(Yu)) · (u − uo).

Theorem 3.3 follows from the previous equation and Equation (3.18).
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