[Géométrisation des solutions de l’équation de Yang–Baxter classique généralisée et nouvelle preuve de la trichotomie de Belavin–Drinfeld]
We study the generalized classical Yang–Baxter equation (short: GCYBE) for central simple Lie algebras over fields of characteristic 0. Using a novel geometrization procedure, we assign to a solution of the GCYBE a cohomology free sheaf of Lie algebras on a projective curve. This assignment implies that all such solutions are algebraic in nature, i.e. they extend to rational functions on the product of two algebraic curves. Furthermore, the curves assigned to skew-symmetric solutions turn out to be either smooth, nodal, or cuspidal cubic plane curves. This results in a geometric trichotomy of skew-symmetric solutions of the GCYBE. Over the field of complex numbers, this geometric trichotomy implies the well-known Belavin–Drinfeld trichotomy, which states that skew-symmetric solutions of the GCYBE are either elliptic, trigonometric, or rational. As an interesting side result, we show that sheaves of Lie algebras with constant geometric fibers are locally free in the étale topology. This is used to classify such sheaves on the complex plane with at most one puncture.
Nous étudions l’équation de Yang–Baxter classique généralisée (abréviation anglaise : GCYBE) pour les algèbres de Lie simples centrales sur des corps de caractéristique 0. En utilisant une nouvelle procédure de géométrisation, nous attribuons à une solution de la GCYBE un faisceau sans cohomologie d’algèbres de Lie sur une courbe projective. Cette attribution implique que toutes ces solutions sont de nature algébrique, c’est-à-dire qu’elles s’étendent à des fonctions rationnelles sur le produit de deux courbes algébriques. De plus, les courbes assignées aux solutions antisymétrique s’avèrent être des courbes cubiques lisses, nodales ou cuspidales. Il en résulte une trichotomie géométrique des solutions antisymétrique de la GCYBE. Dans le domaine des nombres complexes, cette trichotomie géométrique implique la trichotomie bien connue de Belavin–Drinfeld, qui stipule que les solutions antisymétrique de la GCYBE sont soit elliptiques, trigonométriques ou rationnelles. Comme résultat secondaire intéressant, nous montrons que les faisceaux d’algèbres de Lie avec des fibres géométriques constantes sont localement libres dans la topologie étale. Ceci est utilisé pour classifier de telles faisceaux sur le plan complexe avec au plus un point supprimé.
Révisé le :
Accepté le :
Première publication :
Keywords: classical Yang–Baxter equation, sheaves of Lie algebras, infinite-dimensional Lie algebras
Mots-clés : géométrisation des solutions de l’équation de Yang–Baxter classique généralisée et nouvelle preuve de la trichotomie de Belavin–Drinfeld
Abedin, Raschid 1
@unpublished{AIF_0__0_0_A10_0, author = {Abedin, Raschid}, title = {Geometrization of solutions of the generalized classical {Yang{\textendash}Baxter} equation and a new proof of the {Belavin{\textendash}Drinfeld} trichotomy}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3722}, language = {en}, note = {Online first}, }
TY - UNPB AU - Abedin, Raschid TI - Geometrization of solutions of the generalized classical Yang–Baxter equation and a new proof of the Belavin–Drinfeld trichotomy JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3722 LA - en ID - AIF_0__0_0_A10_0 ER -
%0 Unpublished Work %A Abedin, Raschid %T Geometrization of solutions of the generalized classical Yang–Baxter equation and a new proof of the Belavin–Drinfeld trichotomy %J Annales de l'Institut Fourier %D 2025 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3722 %G en %F AIF_0__0_0_A10_0
Abedin, Raschid. Geometrization of solutions of the generalized classical Yang–Baxter equation and a new proof of the Belavin–Drinfeld trichotomy. Annales de l'Institut Fourier, Online first, 78 p.
[1] Classification of -bialgebra structures on power series algebras, J. Algebra, Volume 635 (2023), pp. 137-202 | DOI | MR | Zbl
[2] Algebraic geometry of Lie bialgebras defined by solutions of the classical Yang–Baxter equation, Commun. Math. Phys., Volume 387 (2021), p. 11051-1109 | DOI | MR | Zbl
[3] Classification of classical twists of the standard Lie bialgebra structure on a loop algebra, J. Geom. Phys., Volume 164 (2021), 104149 | DOI | MR | Zbl
[4] Topological Lie bialgebra structures and their classification over (2022) | arXiv | Zbl
[5] Algebraic Integrability, Painlevé Geometry and Lie Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 47, Springer, 2004 | DOI | MR | Zbl
[6] On a Central Identity for Matrix Rings, J. Lond. Math. Soc. (2), Volume 14 (1976), pp. 1-6 | DOI | MR | Zbl
[7] Introduction to Classical Integrable Systems, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2003 | DOI | MR | Zbl
[8] On the classical Young–Baxter equation for simple Lie algebras, Funct. Anal. Appl., Volume 17 (1983) no. 3, pp. 220-221 | DOI | Zbl
[9] Solutions of the classical Yang–Baxter equation for simple Lie algebras, Funct. Anal. Appl., Volume 16 (1983) no. 3, pp. 159-180 | DOI | Zbl
[10] Triangle Equations and Simple Lie Algebras, Soviet Scientific Reviews. Section C, Harwood Academic, 1984 | MR
[11] Torsion Free Sheaves on Weierstrass Cubic Curves and the Classical Yang–Baxter Equation, Commun. Math. Phys., Volume 364 (2018), pp. 123-169 | DOI | MR | Zbl
[12] Vector bundles on plane cubic curves and the classical Yang–Baxter equation, J. Eur. Math. Soc., Volume 17 (2015) no. 3, pp. 591-644 | DOI | MR | Zbl
[13] A Guide to Quantum Groups, Cambridge University Press, 1995 | MR | Zbl
[14] Bäcklund–Darboux transformation for classical Yang–Baxter bundles, Funct. Anal. Appl., Volume 17 (1983) no. 2, pp. 155-157 | DOI | Zbl
[15] Definition of functions for generalized affine Lie algebras, Funct. Anal. Appl., Volume 17 (1983), pp. 243-245 | DOI | Zbl
[16] Grothendieck Duality and Base Change, Lecture Notes in Mathematics, 1750, Springer, 2000 | DOI | MR | Zbl
[17] Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Première partie), Publ. Math., Inst. Hautes Étud. Sci., Volume 20 (1964), pp. 101-355 | DOI | Zbl
[18] Éléments de géométrie algébrique. IV : Étude locale des schémas et des morphismes de schémas (Quatrième partie), Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 1-361 | Zbl
[19] Quantum groups, J. Sov. Math., Volume 41 (1988) no. 2, pp. 898-915 | DOI | Zbl
[20] Lectures on Quantum Groups, Lectures in Mathematical Physics, International Press, 2002 | MR | Zbl
[21] Algebro-Geometric Aspects of the Classical Yang–Baxter Equation, Ph. D. Thesis, Universität zu Köln, Deutschland (2015)
[22] Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type, Funct. Anal. Appl., Volume 36 (2002) no. 3, pp. 172-181 | DOI | Zbl
[23] Algebraic Geometry I. Schemes. With examples and exercises., Advanced Lectures in Mathematics, Springer, 2010 | DOI | Zbl
[24] Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., Volume 135 (1958), pp. 263-273 | DOI | MR | Zbl
[25] Principles of Algebraic Geometry, Pure and Applied Mathematics, John Wiley & Sons, 2014 | MR | Zbl
[26] Topics on Real Analytic Spaces, Advanced Lectures in Mathematics, Vieweg und Teubner, 1986 | DOI | MR | Zbl
[27] Analytic functions of several complex variables, Prentice Hall Series in Modern Analysis, Prentice Hall, 1965 | MR | Zbl
[28] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | MR | Zbl
[29] Vector Bundles over an Elliptic Curve and Factors of Automotphy, Rend. Ist. Mat. Univ. Trieste, Volume 43 (2011), pp. 61-94 | MR | Zbl
[30] Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, Dover Publications, 1962 | Zbl
[31] On Automorphisms of Kac-Moody Algebras and Groups, Adv. Math., Volume 92 (1992) no. 2, pp. 129-195 | DOI | MR | Zbl
[32] Classification of Quantum Groups via Galois Cohomology, Commun. Math. Phys., Volume 377 (2020) no. 2, pp. 1099-1129 | DOI | MR | Zbl
[33] On Some Lie Bialgebra Structures on Polynomial Algebras and their Quantization, Commun. Math. Phys., Volume 282 (2008), pp. 625-662 | DOI | MR | Zbl
[34] The Belavin–Drinfeld theorem on non-degenerate solutions of the classical Yang–Baxter equation, J. Phys. Conf. Ser., Volume 346 (2011), 012011 | DOI
[35] Lie Algebra Bundles, Bull. Sci. Math. (2), Volume 102 (1978) no. 2, pp. 57-62 | MR | Zbl
[36] Semi-simple Lie algebra bundles, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér., Volume 27 (1983) no. 3, pp. 253-257 | MR | Zbl
[37] Kähler Differentials, Advanced Lectures in Mathematics, Vieweg und Teubner, 1986 | DOI | MR | Zbl
[38] Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002 | MR | Zbl
[39] Étale Cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980 | MR | Zbl
[40] Algebraic Groups. The Theory of Group Schemes of Finite Type over a Field, Cambridge Studies in Advanced Mathematics, 170, Cambridge University Press, 2017 | DOI | MR | Zbl
[41] Category of vector bundles on algebraic curves and infinite dimensional Grassmannians, Int. J. Math., Volume 1 (1990) no. 3, pp. 293-342 | DOI | MR | Zbl
[42] An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg deVries equation and related nonlinear equation, Proceedings of the International Symposium on Algebraic Geometry (Nagata, Masayoshi, ed.), Kinokuniya Book-Store Company (1977), pp. 115-153 | MR | Zbl
[43] Deformations of Lie Algebra Structures, J. Math. Mech., Volume 17 (1967), pp. 89-105 | MR | Zbl
[44] Endomorphisms of lattices of a Lie algebra over formal power series field, C. R. Math., Volume 315 (1992) no. 6, pp. 669-673 | Zbl
[45] Integrable systems and local fields, Commun. Algebra, Volume 29 (2001) no. 9, pp. 4157-4181 | DOI | MR | Zbl
[46] Vanishing of for Dedekind rings and applications to loop algebras, C. R. Math., Volume 340 (2005) no. 9, pp. 633-638 | DOI | Zbl
[47] Geometrization of trigonometric solutions of the associative and classical Yang-Baxter equations, Int. Math. Res. Not., Volume 2023 (2023) no. 4, pp. 2748-2802 | DOI | MR | Zbl
[48] Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Volume 6 (1956), pp. 1-42 | DOI | Numdam | MR | Zbl
[49] New integrable Gaudin-type systems, classical -matrices and quasigraded Lie algebras, Phys. Lett. A, Volume 334 (2005) no. 5–6, pp. 390-399 | DOI | MR | Zbl
[50] Integrable quantum spin chains, non-skew symmetric r-matrices and quasigraded Lie algebras, J. Geom. Phys., Volume 57 (2006) no. 1, pp. 53-67 | DOI | MR | Zbl
[51] Infinite-dimensional Lie algebras, classical -matrices, and Lax operators: Two approaches, J. Math. Phys., Volume 54 (2013) no. 10, 103507 | DOI | MR | Zbl
[52] Gaudin-type models, non-skew-symmetric classical -matrices and nested Bethe ansatz, Nucl. Phys., B, Volume 891 (2015), pp. 200-229 | DOI | MR | Zbl
[53] On rational solutions of Yang–Baxter equation for , Math. Scand., Volume 69 (1991), pp. 57-80 | DOI | MR | Zbl
[54] On rational solutions of Yang–Baxter equations. Maximal orders in loop algebra, Commun. Math. Phys., Volume 141 (1991) no. 3, pp. 533-548 | DOI | MR | Zbl
[55] Residues of differentials on curves, Ann. Sci. Éc. Norm. Supér. (4), Volume 1 (1968) no. 1, pp. 149-159 | DOI | Numdam | MR | Zbl
Cité par Sources :