[Vers une dérivation de l’électromagnétisme des charges et des champs à partir de l’électrodynamique quantique]
The purpose of this article is twofold:
- (1) On one hand, we rigorously derive the Newton–Maxwell equation in the Coulomb gauge from first principles of quantum electrodynamics in agreement with the formal Bohr correspondence principle of quantum mechanics.
- (2) On the other hand, we establish the global well-posedness of the Newton–Maxwell system on energy-spaces under weak assumptions on the charge distribution.
Both results improve the state of the art, and are obtained by incorporating semiclassical and measure theoretical techniques. One of the novelties is the use of quantum propagation properties in order to build global solutions of the Newton–Maxwell equation.
L’objectif de cet article est double :
- (1) D’une part, la dérivation rigoureuse et cohérente avec le principe de correspondance de Bohr de l’équation de Newton–Maxwell dans la jauge de Coulomb à partir de l’électrodynamique quantique.
- (2) D’autre part, la preuve du caractère bien posé du système de Newton–Maxwell sur des espaces d’énergies adaptés avec des hypothèses faibles sur la distribution des charges.
Les deux résultats améliorent l’état de l’art et sont obtenus en incorporant des techniques semi-classiques et de la théorie des mesures. L’une des nouveautés est l’utilisation des propriétés de propagation quantique afin de construire des solutions globales de l’équation de Newton–Maxwell.
Révisé le :
Accepté le :
Première publication :
Keywords: Pauli–Fierz, Newton–Maxwell system, semiclassical analysis, Wigner measures, Liouville equation, generalized flow
Mots-clés : Modèle de Pauli–Fierz, système d’équations de Newton–Maxwell, analyse semi-classique, mesures de Wigner, équation de Liouville, flot généralisé
Ammari, Zied 1 ; Falconi, Marco 2 ; Hiroshima, Fumio 3
@unpublished{AIF_0__0_0_A8_0, author = {Ammari, Zied and Falconi, Marco and Hiroshima, Fumio}, title = {Towards a derivation of {Classical} {ElectroDynamics} of charges and fields from {QED}}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3720}, language = {en}, note = {Online first}, }
TY - UNPB AU - Ammari, Zied AU - Falconi, Marco AU - Hiroshima, Fumio TI - Towards a derivation of Classical ElectroDynamics of charges and fields from QED JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3720 LA - en ID - AIF_0__0_0_A8_0 ER -
%0 Unpublished Work %A Ammari, Zied %A Falconi, Marco %A Hiroshima, Fumio %T Towards a derivation of Classical ElectroDynamics of charges and fields from QED %J Annales de l'Institut Fourier %D 2025 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3720 %G en %F AIF_0__0_0_A8_0
Ammari, Zied; Falconi, Marco; Hiroshima, Fumio. Towards a derivation of Classical ElectroDynamics of charges and fields from QED. Annales de l'Institut Fourier, Online first, 87 p.
[1] Semiclassical limit of quantum dynamics with rough potentials and well-posedness of transport equations with measure initial data, Commun. Pure Appl. Math., Volume 64 (2011) no. 9, pp. 1199-1242 | DOI | MR | Zbl
[2] Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2005, viii+333 pages | MR | Zbl
[3] Propagation of chaos for many-boson systems in one dimension with a point pair-interaction, Asymptotic Anal., Volume 76 (2012) no. 3-4, pp. 123-170 | DOI | MR | Zbl
[4] Wigner measures approach to the classical limit of the Nelson model: convergence of dynamics and ground state energy, J. Stat. Phys., Volume 157 (2014) no. 2, pp. 330-362 | DOI | MR | Zbl
[5] Bohr’s correspondence principle for the renormalized Nelson model, SIAM J. Math. Anal., Volume 49 (2017) no. 6, pp. 5031-5095 | DOI | MR | Zbl
[6] On uniqueness of measure-valued solutions to Liouville’s equation of Hamiltonian PDEs, Discrete Contin. Dyn. Syst., Volume 38 (2018) no. 2, pp. 723-748 | DOI | MR | Zbl
[7] On well-posedness for general hierarchy equations of Gross–Pitaevskii and Hartree type, Arch. Ration. Mech. Anal., Volume 238 (2020) no. 2, pp. 845-900 | DOI | MR | Zbl
[8] Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré, Volume 9 (2008) no. 8, pp. 1503-1574 | DOI | MR | Zbl
[9] Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl., Volume 95 (2011) no. 6, pp. 585-626 | DOI | MR | Zbl
[10] Mean field propagation of infinite-dimensional Wigner measures with a singular two-body interaction potential, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 14 (2015) no. 1, pp. 155-220 | MR | Zbl
[11] Mass and spin renormalization in Lorentz electrodynamics, Ann. Phys., Volume 289 (2001) no. 1, pp. 24-83 | DOI | MR | Zbl
[12] A note on scattering theory in nonrelativistic quantum electrodynamics, J. Phys. A. Math. Gen., Volume 16 (1983) no. 1, pp. 49-69 http://stacks.iop.org/0305-4470/16/49 | DOI | MR | Zbl
[13] Smooth Feshbach map and operator-theoretic renormalization group methods, J. Funct. Anal., Volume 203 (2003) no. 1, pp. 44-92 | DOI | MR | Zbl
[14] Quantum electrodynamics of confined nonrelativistic particles, Adv. Math., Volume 137 (1998) no. 2, pp. 299-395 | DOI | MR | Zbl
[15] Some rigorous results on the Pauli–Fierz model of classical electrodynamics, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 58 (1993) no. 2, pp. 155-171 | Numdam | MR | Zbl
[16] On classical electrodynamics of point particles and mass renormalization: some preliminary results, Lett. Math. Phys., Volume 37 (1996) no. 4, pp. 449-460 | DOI | MR | Zbl
[17] On the ground state energy of the translation invariant Pauli–Fierz model, Proc. Am. Math. Soc., Volume 136 (2008) no. 3, pp. 1057-1064 | DOI | MR | Zbl
[18] Maxwell–Lorentz dynamics of rigid charges, Commun. Partial Differ. Equations, Volume 38 (2013) no. 9, pp. 1519-1538 | DOI | MR | Zbl
[19] The Maxwell–Lorentz system of a rigid charge, Ann. Henri Poincaré, Volume 2 (2001) no. 1, pp. 179-196 | DOI | MR | Zbl
[20] Resolvent smoothness and local decay at low energies for the standard model of non-relativistic QED, J. Funct. Anal., Volume 262 (2012) no. 3, pp. 850-888 | DOI | MR | Zbl
[21] Semi-classical measures and defect measures, Séminaire Bourbaki : volume 1996/97, exposés 820-834 (Astérisque), Société Mathématique de France, 1997 no. 245, pp. 167-195 (talk:826) | MR | Zbl
[22] A new proof of existence of solutions for focusing and defocusing Gross–Pitaevskii hierarchies, Proc. Am. Math. Soc., Volume 141 (2013) no. 1, pp. 279-293 | DOI | MR | Zbl
[23] On the Klainerman–Machedon conjecture for the quantum BBGKY hierarchy with self-interaction, J. Eur. Math. Soc., Volume 18 (2016) no. 6, pp. 1161-1200 | DOI | MR | Zbl
[24] Magnetic Schrödinger operators as the quasi-classical limit of Pauli–Fierz-type models, J. Spectr. Theory, Volume 9 (2019) no. 4, pp. 1287-1325 | DOI | MR | Zbl
[25] Ground state properties in the quasiclassical regime, Anal. PDE, Volume 16 (2023) no. 8, pp. 1745-1798 | DOI | MR | Zbl
[26] Quasi-classical dynamics, J. Eur. Math. Soc., Volume 25 (2023) no. 2, pp. 731-783 | DOI | MR | Zbl
[27] Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians, Rev. Math. Phys., Volume 11 (1999) no. 4, pp. 383-450 | DOI | MR | Zbl
[28] Global solution of the electromagnetic field-particle system of equations, J. Math. Phys., Volume 55 (2014) no. 10, 101502, 12 pages | DOI | MR | Zbl
[29] Self-adjointness criterion for operators in Fock spaces, Math. Phys. Anal. Geom., Volume 18 (2015) no. 1, 2, 18 pages | DOI | MR | Zbl
[30] Commutators and self-adjointness of Hamiltonian operators, Commun. Math. Phys., Volume 35 (1974), pp. 39-48 | DOI | MR | Zbl
[31] On Rayleigh scattering in non-relativistic quantum electrodynamics, Commun. Math. Phys., Volume 328 (2014) no. 3, pp. 1199-1254 | DOI | MR | Zbl
[32] Asymptotic electromagnetic fields in models of quantum-mechanical matter interacting with the quantized radiation field, Adv. Math., Volume 164 (2001) no. 2, pp. 349-398 | DOI | MR | Zbl
[33] Spectral theory of massless Pauli–Fierz models, Commun. Math. Phys., Volume 249 (2004) no. 1, pp. 29-78 | DOI | MR | Zbl
[34] Homogenization limits and Wigner transforms, Commun. Pure Appl. Math., Volume 50 (1997) no. 4, pp. 323-379 | DOI | MR | Zbl
[35] Positive commutators, Fermi golden rule and the spectrum of zero temperature Pauli–Fierz Hamiltonians, J. Funct. Anal., Volume 256 (2009) no. 8, pp. 2587-2620 | DOI | MR | Zbl
[36] Ground states in non-relativistic quantum electrodynamics, Invent. Math., Volume 145 (2001) no. 3, pp. 557-595 | DOI | MR | Zbl
[37] On the self-adjointness and domain of Pauli–Fierz type Hamiltonians, Rev. Math. Phys., Volume 20 (2008) no. 7, pp. 787-800 | DOI | MR | Zbl
[38] Essential self-adjointness of translation-invariant quantum field models for arbitrary coupling constants, Commun. Math. Phys., Volume 211 (2000) no. 3, pp. 585-613 | DOI | MR | Zbl
[39] Self-adjointness of the Pauli–Fierz Hamiltonian for arbitrary values of coupling constants, Ann. Henri Poincaré, Volume 3 (2002) no. 1, pp. 171-201 | DOI | MR | Zbl
[40] Soliton-type asymptotics for the coupled Maxwell–Lorentz equations, Ann. Henri Poincaré, Volume 5 (2004) no. 6, pp. 1117-1135 | DOI | MR | Zbl
[41] Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit, Monatsh. Math., Volume 142 (2004) no. 1-2, pp. 143-156 | DOI | MR | Zbl
[42] Scattering asymptotics for a charged particle coupled to the Maxwell field, J. Math. Phys., Volume 52 (2011) no. 4, 042701, 33 pages | DOI | MR | Zbl
[43] Classical electrodynamics, John Wiley & Sons, 1975, xxii+848 pages | MR | Zbl
[44] Classical electron theory and conservation laws, Phys. Lett. A, Volume 258 (1999) no. 4-6, pp. 197-204 | DOI | MR | Zbl
[45] Limiting dynamics in large quantum systems, Ph. D. Thesis, ETH Zürich (2009)
[46] Long-time asymptotics for the coupled Maxwell–Lorentz equations, Commun. Partial Differ. Equations, Volume 25 (2000) no. 3-4, pp. 559-584 | DOI | MR | Zbl
[47] Classical electrodynamics. A modern perspective, Unitext for Physics, Springer, 2018, xix+688 pages | DOI | MR | Zbl
[48] Mean-field dynamics for the Nelson model with fermions, Ann. Henri Poincaré, Volume 20 (2019) no. 10, pp. 3471-3508 | DOI | MR | Zbl
[49] Derivation of the Maxwell–Schrödinger equations from the Pauli–Fierz Hamiltonian, SIAM J. Math. Anal., Volume 52 (2020) no. 5, pp. 4900-4936 | DOI | MR | Zbl
[50] Sur les mesures de Wigner, Rev. Mat. Iberoam., Volume 9 (1993) no. 3, pp. 553-618 | DOI | MR | Zbl
[51] Pauli-Fierz type operators with singular electromagnetic potentials on general domains, Math. Phys. Anal. Geom., Volume 20 (2017) no. 2, 18, 41 pages | DOI | MR | Zbl
[52] A rigorous derivation of the Hamiltonian structure for the nonlinear Schrödinger equation, Adv. Math., Volume 365 (2020), 107054, 115 pages | DOI | MR | Zbl
[53] Spectral analysis of the semi-relativistic Pauli–Fierz Hamiltonian, J. Funct. Anal., Volume 256 (2009) no. 7, pp. 2123-2156 | DOI | MR | Zbl
[54] Radiation reaction in nonrelativistic quantum electrodynamics, Phys. Rev. D, Volume 15 (1977), pp. 2850-2865 | DOI | Zbl
[55] Probability measures on metric spaces, Probability and Mathematical Statistics, 3, Academic Press Inc., 1967, xi+276 pages | MR | Zbl
[56] Classical charged particles, World Scientific, 2007, xvi+305 pages | DOI | MR | Zbl
[57] On the general principle of the mean-field approximation for many-boson dynamics (2018) (https://arxiv.org/abs/1809.01450) | Zbl
[58] Randomization and the Gross–Pitaevskii hierarchy, Arch. Ration. Mech. Anal., Volume 218 (2015) no. 1, pp. 417-485 | DOI | MR | Zbl
[59] Dynamics of charged particles and their radiation field, Cambridge University Press, 2004, xvi+360 pages | DOI | MR | Zbl
[60] -measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. R. Soc. Edinb., Sect. A, Math., Volume 115 (1990) no. 3-4, pp. 193-230 | DOI | MR | Zbl
[61] The quantum theory of fields. Vol. I: Foundations, Cambridge University Press, 1996, xxvi+609 pages | DOI | MR | Zbl
Cité par Sources :