Let be a locally compact space. A lifting of where is a positive measure on , is almost strong if for each bounded, continuous function , and coincide locally almost everywhere. We prove here that the set of all measures on such that there exists an almost strong lifting of is a band.
Soit un espace localement compact. Un relèvement de , où est une mesure positive sur , est presque fort si pour toute fonction continue et bornée , et coïncident localement -presque partout. On démontre ici que l’ensemble des mesures sur telles qu’il existe un relèvement presque fort de , est une bande.
@article{AIF_1971__21_2_35_0, author = {Ionescu-Tulcea, C. and Maher, R.}, title = {A note on almost strong liftings}, journal = {Annales de l'Institut Fourier}, pages = {35--41}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {21}, number = {2}, year = {1971}, doi = {10.5802/aif.372}, zbl = {0205.42201}, mrnumber = {48 #9393}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.372/} }
TY - JOUR AU - Ionescu-Tulcea, C. AU - Maher, R. TI - A note on almost strong liftings JO - Annales de l'Institut Fourier PY - 1971 SP - 35 EP - 41 VL - 21 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.372/ DO - 10.5802/aif.372 LA - en ID - AIF_1971__21_2_35_0 ER -
Ionescu-Tulcea, C.; Maher, R. A note on almost strong liftings. Annales de l'Institut Fourier, Volume 21 (1971) no. 2, pp. 35-41. doi : 10.5802/aif.372. https://aif.centre-mersenne.org/articles/10.5802/aif.372/
[1] An existence theorem for strong liftings, to appear in the J. Math. Anal. and Appl. | Zbl
,[2] On the strong lifting property, in manuscript. | Zbl
,[3] Intégration, Chap. I-IV (1965), and Chap. v (1967), Hermann, Paris.
,[4] Sur le théorème de Lebesgue-Nikodym, IV, J. Indian Math. Soc., N.S., 15, 77-86 (1951). | MR | Zbl
,[5] On the lifting property, (IV). Disintegration of measures, Ann. Inst. Fourier, 14, 445-472 (1964). | Numdam | Zbl
and ,[6] On the existence of a lifting commuting with the left translations of an arbitrary locally compact group, Proceedings Fifth Berkeley Symposium on Math. Stat. and Probability, Univ. of California Press (1967). | MR | Zbl
and ,[7] Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48 (1969), Springer-Verlag, Berlin. | MR | Zbl
and ,[8] A note on strong liftings, J. Math. Anal. and Appl., 29, 633-639 (1970). | MR | Zbl
,Cited by Sources: