[Construction de noeuds -hyperboliques]
We use Dehn surgery methods to construct infinite families of hyperbolic knots in the -sphere satisfying a weak form of the Turaev–Viro invariants volume conjecture. The results have applications to a conjecture of Andersen, Masbaum and Ueno about quantum representations of surface mapping class groups. We obtain an explicit family of pseudo-Anosov mapping classes acting on surfaces of any genus and with one boundary component that satisfy the conjecture.
Nous utilisons des méthodes de chirurgie de Dehn pour construire des familles infinies de noeuds hyperboliques dans vérifiant une forme faible de la conjecture du volume pour les invariants de Turaev–Viro. Ces résultats ont des applications à la conjecture d’Andersen–Masbaum–Ueno sur les représentations quantiques des groupes de difféotopie des surfaces. Nous obtenons une famille explicite de difféotopies pour les surfaces de chaque genre à une composante de bord qui vérifient la conjecture
Accepté le :
Première publication :
Keywords: annulus presentation, Dehn surgery, double twist knot, hyperbolic knot, pseudo-Anosov mapping class, $q$-hyperbolic knot, quantum representation, Turaev–Viro invariants
Mots-clés : présentation en anneau, chirurgie de Dehn, noeud double twist, noeuds hyperboliques, difféotopie pseudo-Anosov, noeud q-hyperbolique, représentation quantique, invariants de Turaev–Viro
Kalfagianni, Efstratia 1 ; Melby, Joseph M. 1
@unpublished{AIF_0__0_0_A7_0, author = {Kalfagianni, Efstratia and Melby, Joseph M.}, title = {Constructions of $q$-hyperbolic knots}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3719}, language = {en}, note = {Online first}, }
Kalfagianni, Efstratia; Melby, Joseph M. Constructions of $q$-hyperbolic knots. Annales de l'Institut Fourier, Online first, 29 p.
[1] Infinitely many knots admitting the same integer surgery and a four-dimensional extension, Int. Math. Res. Not., Volume 2015 (2015) no. 22, pp. 11667-11693 | DOI | MR | Zbl
[2] Annulus twist and diffeomorphic 4-manifolds, Math. Proc. Camb. Philos. Soc., Volume 155 (2013) no. 2, pp. 219-235 | DOI | MR | Zbl
[3] Knots with infinitely many non-characterizing slopes, Kodai Math. J., Volume 44 (2021) no. 3, pp. 395-421 | DOI | MR | Zbl
[4] Topological quantum field theory and the Nielsen–Thurston classification of M(0,4), Math. Proc. Camb. Philos. Soc., Volume 141 (2006) no. 3, pp. 477-488 | DOI | MR | Zbl
[5] Growth of quantum -symbols and applications to the volume conjecture, J. Differ. Geom., Volume 120 (2022) no. 2, pp. 199-229 | DOI | MR | Zbl
[6] On Roberts’ proof of the Turaev-Walker theorem, J. Knot Theory Ramifications, Volume 5 (1996) no. 4, pp. 427-439 | DOI | MR | Zbl
[7] Topological quantum field theories derived from the Kauffman bracket, Topology, Volume 34 (1995) no. 4, pp. 883-927 | DOI | MR | Zbl
[8] The simplest hyperbolic knots, J. Knot Theory Ramifications, Volume 8 (1999) no. 3, pp. 279-297 | DOI | MR | Zbl
[9] The 500 simplest hyperbolic knots, J. Knot Theory Ramifications, Volume 23 (2014) no. 12, 1450055, 34 pages | DOI | MR | Zbl
[10] The next simplest hyperbolic knots, J. Knot Theory Ramifications, Volume 13 (2004) no. 7, pp. 965-987 | DOI | MR | Zbl
[11] Volume conjectures for the Reshetikhin-Turaev and the Turaev-Viro invariants, Quantum Topol., Volume 9 (2018) no. 3, pp. 419-460 | DOI | MR | Zbl
[12] On the asymptotic expansions of various quantum invariants I: the colored Jones polynomial of twist knots at the root of unity (2023) | arXiv
[13] SnapPy, a computer program for studying the geometry and topology of -manifolds, Available at http://snappy.computop.org
[14] Growth of Turaev–Viro invariants and cabling, J. Knot Theory Ramifications, Volume 28 (2019) no. 14, 1950041, 8 pages | DOI | MR | Zbl
[15] Quantum representations and monodromies of fibered links, Adv. Math., Volume 351 (2019), pp. 676-701 | DOI | MR | Zbl
[16] Gromov norm and Turaev-Viro invariants of 3-manifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 53 (2020) no. 6, pp. 1363-1391 | DOI | MR | Zbl
[17] Cosets of monodromies and quantum representations, Indiana Univ. Math. J., Volume 71 (2022) no. 3, pp. 1101-1129 | DOI | MR | Zbl
[18] Turaev-Viro invariants, colored Jones polynomials, and volume, Quantum Topol., Volume 9 (2018) no. 4, pp. 775-813 | DOI | MR | Zbl
[19] Angled decompositions of arborescent link complements, Proc. Lond. Math. Soc. (3), Volume 98 (2009) no. 2, pp. 325-364 | DOI | MR | Zbl
[20] Excluding cosmetic surgeries using hyperbolic geometry, Code available at http://github.com/saulsch/Cosmetic.git
[21] Excluding cosmetic surgeries on hyperbolic 3-manifolds (2024) | arXiv | Zbl
[22] Pseudo-Anosov maps and surgery on fibred 2-bridge knots, Topology Appl., Volume 37 (1990) no. 1, pp. 93-100 | DOI | MR | Zbl
[23] On the Volume Conjecture for hyperbolic Dehn-filled 3-manifolds along the twist knots (2024) | arXiv
[24] KnotInfo: Table of Knot Invariants, knotinfo.math.indiana.edu, 2023
[25] On the asymptotic expansion of the quantum invariant at for closed hyperbolic 3-manifolds obtained by integral surgery along the figure-eight knot, Algebr. Geom. Topol., Volume 18 (2018) no. 7, pp. 4187-4274 | DOI | MR | Zbl
[26] Invariants of -manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991) no. 3, pp. 547-597 | DOI | MR | Zbl
[27] Skein theory and Turaev-Viro invariants, Topology, Volume 34 (1995) no. 4, pp. 771-787 | DOI | MR | Zbl
[28] Knots and Links, AMS Chelsea Publishing, American Mathematical Society, 2003 https://books.google.com/books?id=s4egeecsghyc
[29] The geometry and topology of three-manifolds, Princeton University Math Department Notes, 1979
[30] Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter, 1994, x+588 pages | DOI | MR | Zbl
[31] State sum invariants of -manifolds and quantum -symbols, Topology, Volume 31 (1992) no. 4, pp. 865-902 | DOI | MR | Zbl
[32] On the Volume Conjecture for hyperbolic Dehn-filled -manifolds along the figure-eight knot (2022) | arXiv | Zbl
Cité par Sources :