[Théorème de la limite centrale pour les marches aléatoires sur des espaces en présence d’éléments contractants]
Let be a group acting on a space with contracting isometries. We study the random walk generated by an admissible measure on . We prove that if the action is non-elementary and under optimal moment assumptions on the measure, the random walk satisfies a central limit theorem. The general approach is inspired from the cocycle argument of Y. Benoist and J-F. Quint, and our strategy relies on the use of hyperbolic models introduced by H. Petyt, A. Zalloum and D. Spriano, which are analogues of the contact graph for the class of spaces. As a side result, we prove that the probability that the th-step the random walk acts as a contracting isometry goes to as goes to infinity.
Soit un groupe agissant sur un espace avec des isométries contractantes. On étudie une marche aléatoire engendrée par une mesure admissible sur et on prouve, sous des hypothèse optimales de moment, que la marche aléatoire satisfait un théorème de la limite centrale. L’approche générale est inspirée d’un argument sur les cocycles dû à Y. Benoist et J-F. Quint, et notre stratégie repose sur l’utilisation de modèles hyperboliques pour les espaces introduits par H. Petyt, A. Zalloum et D. Spriano, une construction analogue au graphe de contact pour les complexes cubiques . Nous prouvons également que la probabilité que le -ième pas de la marche aléatoire soit une isométrie contractante tend vers lorsque tend vers .
Révisé le :
Accepté le :
Première publication :
Keywords: Geometric group theory, random walks, central limit theorem, non-positive curvature
Mots-clés : Théorie géométrique des groupes, Marches aléatoires, Théorème central limite, courbure non-positive
Le Bars, Corentin 1
@unpublished{AIF_0__0_0_A5_0, author = {Le Bars, Corentin}, title = {Central limit theorem on $\mathrm{CAT}(0)$ spaces with contracting isometries}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3717}, language = {en}, note = {Online first}, }
Le Bars, Corentin. Central limit theorem on $\mathrm{CAT}(0)$ spaces with contracting isometries. Annales de l'Institut Fourier, Online first, 42 p.
[1] Lectures on spaces of nonpositive curvature, DMV Seminar, 25, Birkhäuser, 1995 (with an appendix by Misha Brin) | DOI | MR | Zbl
[2] Central limit theorem for linear groups, Ann. Probab., Volume 44 (2016) no. 2, pp. 1308-1340 | DOI | MR | Zbl
[3] Central limit theorem on hyperbolic groups, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 80 (2016) no. 1, pp. 3-23 | DOI | MR | Zbl
[4] A characterization of higher rank symmetric spaces via bounded cohomology, Geom. Funct. Anal., Volume 19 (2009) no. 1, pp. 11-40 | DOI | MR | Zbl
[5] Central limit theorems for Gromov hyperbolic groups, J. Theor. Probab., Volume 23 (2010) no. 3, pp. 871-887 | DOI | MR | Zbl
[6] Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal., Volume 10 (2000) no. 2, pp. 266-306 | DOI | MR | Zbl
[7] Large deviations for random walks on Gromov-hyperbolic spaces, Ann. Sci. Éc. Norm. Supér. (4), Volume 56 (2023) no. 3, pp. 885-944 | DOI | MR | Zbl
[8] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999 | DOI | MR | Zbl
[9] Martingale Central Limit Theorems, Ann. Math. Stat., Volume 42 (1971) no. 1, pp. 59-66 | DOI | MR | Zbl
[10] Rank-one isometries of buildings and quasi-morphisms of Kac–Moody groups, Geom. Funct. Anal., Volume 19 (2010) no. 5, pp. 1296-1319 | DOI | MR | Zbl
[11] Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal., Volume 21 (2011) no. 4, pp. 851-891 | DOI | MR | Zbl
[12] Random walks and contracting elements I: Deviation inequality and Limit laws (2022) | arXiv | DOI | Zbl
[13] Spaces with nonpositive curvature and their ideal boundaries, Topology, Volume 39 (2000) no. 3, pp. 549-556 | DOI | MR | Zbl
[14] Contact graphs, boundaries, and a central limit theorem for CAT(0) cubical complexes, Groups Geom. Dyn., Volume 18 (2024) no. 2, pp. 677-704 | DOI | MR | Zbl
[15] Noncommuting Random Products, Trans. Am. Math. Soc., Volume 108 (1963) no. 3, pp. 377-428 | DOI | MR | Zbl
[16] Products of Random Matrices, Ann. Math. Stat., Volume 31 (1960) no. 2, pp. 457-469 | DOI | MR | Zbl
[17] Hyperbolicities in cube complexes, Enseign. Math., Volume 65 (2019) no. 1-2, pp. 33-100 | DOI | MR | Zbl
[18] Exponential bounds for random walks on hyperbolic spaces without moment conditions, Tunis. J. Math., Volume 4 (2022) no. 4, pp. 635-671 | DOI | MR | Zbl
[19] Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 69 (1985) no. 2, pp. 187-242 | DOI | MR | Zbl
[20] Weak hyperbolicity of cube complexes and quasi-arboreal groups, J. Topol., Volume 7 (2014) no. 2, pp. 385-418 | DOI | MR | Zbl
[21] Rank-one isometries of proper -spaces, Discrete groups and geometric structures (Contemporary Mathematics), Volume 501, American Mathematical Society, 2009, pp. 43-59 | DOI | MR | Zbl
[22] Central limit theorems for mapping class groups and , Geom. Topol., Volume 22 (2018) no. 1, pp. 105-156 | DOI | MR | Zbl
[23] Isometric group actions with vanishing rate of escape on spaces, Geom. Funct. Anal., Volume 33 (2023) no. 1, pp. 170-244 | DOI | MR | Zbl
[24] The Poisson formula for groups with hyperbolic properties, Ann. Math. (2), Volume 152 (2000) no. 3, pp. 659-692 | DOI | MR | Zbl
[25] A Multiplicative Ergodic Theorem and Nonpositively Curved Spaces, Commun. Math. Phys., Volume 208 (1999), pp. 107-123 | DOI | MR | Zbl
[26] Random walks and rank one isometries on CAT(0) spaces (2022) | arXiv | DOI | Zbl
[27] Marches aléatoires et éléments contractants sur des espaces CAT(0), Ph. D. Thesis, Université Paris-Saclay (2023) (directed by Jean Lécureux, http://www.theses.fr/2023upasm017)
[28] Théorèmes limites pour les produits de matrices aléatoires, Probability Measures on Groups (Heyer, Herbert, ed.), Springer (1982), pp. 258-303 | DOI | Zbl
[29] Random walks on weakly hyperbolic groups, J. Reine Angew. Math., Volume 742 (2018), pp. 187-239 | DOI | MR | Zbl
[30] Deviation inequalities for random walks, Duke Math. J., Volume 169 (2020) no. 5, pp. 961-1036 | DOI | MR | Zbl
[31] Hyperbolic models for spaces, Adv. Math., Volume 450 (2024), 109742, 66 pages | DOI | MR | Zbl
[32] Sublinearly Morse boundary I: CAT(0) spaces, Adv. Math., Volume 404 (2022), 108442, 51 pages | DOI | MR | Zbl
[33] Sublinearly Morse Boundary II: Proper geodesic spaces, Geom. Topol., Volume 28 (2024) no. 4, pp. 1829-1889 | DOI | MR | Zbl
Cité par Sources :