
Université Grenoble Alpes

ANNALES DE
L’INSTITUT FOURIER

Corentin Le Bars

Central limit theorem on CAT(0) spaces with contracting
isometries
Article à paraître, mis en ligne le 17 juin 2025, 42 p.

Article mis à disposition par son auteur selon les termes de la licence

Creative Commons attribution – pas de modification 3.0 France

http://creativecommons.org/licenses/by-nd/3.0/fr/

C EN T R E
MER S ENN E

Les Annales de l’Institut Fourier sont membres du

Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org e-ISSN : 1777-5310

http://creativecommons.org/licenses/by-nd/3.0/fr/
https://www.centre-mersenne.org/


Ann. Inst. Fourier, Grenoble
Article à paraître
Mis en ligne le 17 juin 2025.

CENTRAL LIMIT THEOREM ON CAT(0) SPACES
WITH CONTRACTING ISOMETRIES

by Corentin LE BARS (*)

Abstract. — Let G be a group acting on a CAT(0) space with contracting
isometries. We study the random walk generated by an admissible measure on G.
We prove that if the action is non-elementary and under optimal moment assump-
tions on the measure, the random walk satisfies a central limit theorem. The general
approach is inspired from the cocycle argument of Y. Benoist and J-F. Quint, and
our strategy relies on the use of hyperbolic models introduced by H. Petyt, A. Za-
lloum and D. Spriano, which are analogues of the contact graph for the class of
CAT(0) spaces. As a side result, we prove that the probability that the nth-step
the random walk acts as a contracting isometry goes to 1 as n goes to infinity.

Résumé. — Soit G un groupe agissant sur un espace CAT(0) avec des isométries
contractantes. On étudie une marche aléatoire engendrée par une mesure admis-
sible sur G et on prouve, sous des hypothèse optimales de moment, que la marche
aléatoire satisfait un théorème de la limite centrale. L’approche générale est inspi-
rée d’un argument sur les cocycles dû à Y. Benoist et J-F. Quint, et notre stratégie
repose sur l’utilisation de modèles hyperboliques pour les espaces CAT(0) intro-
duits par H. Petyt, A. Zalloum et D. Spriano, une construction analogue au graphe
de contact pour les complexes cubiques CAT(0). Nous prouvons également que la
probabilité que le n-ième pas de la marche aléatoire soit une isométrie contractante
tend vers 1 lorsque n tend vers +∞.

1. Introduction

Let G be a discrete group acting by isometries on a proper CAT(0) space
X. Let µ be a probability measure on G, which we always assume admis-
sible, meaning that the support of µ generates G as a semigroup. Consider
the sequence ω = (ωi)i, where the ω′

is are chosen independently according
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2 Corentin LE BARS

to the measure µ. The random walk (Zn(ω))n on G generated by µ is then
defined by Zn(ω) = ω1 . . . ωn. Taking o ∈ X, we want to study the asymp-
totic behaviour of the random variables (Zn(ω)o)n. To be more precise, we
want to study limit laws of the random walk in a natural compactification
of X. Even though these questions may be hard to solve for general metric
spaces, the theory is very rich when X possesses nice linear or hyperbolic-
like properties. In the fundamental paper of V. Kaimanovich [24], the con-
vergence of (Zno)o to a point of the visual boundary is proven for groups
acting geometrically on proper hyperbolic spaces and several other classes
of actions. More recently this result has been extended by J. Maher and
G. Tiozzo in [29] for groups acting by isometries on non proper hyperbolic
spaces. A major difficulty in the proof of the latter result was that in the
non proper setting, the completion of a hyperbolic space by its Gromov
boundary might be non compact. The results of Maher and Tiozzo will be
fundamental in the sequel because we will deal with hyperbolic spaces with-
out properness assumption. In [25, Theorem 2.1], Karlsson and Margulis
proved a first general result of convergence of the random walk on CAT(0)
spaces, under the assumption that the escape rate λ = lim inf d(Zno,o)

n is
positive.

In [26] we proved that if G acts on a CAT(0) space X with rank one
isometries, then the random walk (Zn(ω))n almost surely converges to a
point of the boundary of the visual compactification ∂∞X. A rank one
element is an axial isometry whose axes do not bound any flat half plane.
We give more details on this notion in Section 2, but a rank one element
must be thought of as a contracting isometry with features that typically
arise in hyperbolic settings. In this context, we also prove that the escape
rate (the drift) is almost surely positive: there exists λ > 0 such that almost
surely, limn

d(Zno,o)
n = λ. We review these results in Section 4. The present

paper can be thought of as a continuation of [26], and the goal of this
work is to study further limit laws of the random walk (Zno)n, and more
specifically central limit theorems for the random variables (d(Zno, o))n.

In the case of a random product of matrices, a classical result of Fursten-
berg [15] is the following. Take (Mn) a sequence of matrices in GLn(R),
independent and identically distributed according to a probability measure
µ whose support generates a noncompact subgroup of GLn(R) that does
not preserve any proper linear subspace of Rn. Assume that µ has finite
first moment. Then there exists λ > 0 such that for all v ∈ Rn − {0},

1
n

log∥Mn . . .M1v∥ −→
n

λ

ANNALES DE L’INSTITUT FOURIER
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almost surely. This result can be thought of as an analogue of a law of large
numbers on the random walk (Mn . . .M1v)n. In this context, central limit
theorems and other limit laws were proven by Furstenberg–Kesten [16], Le
Page [28] and Guivarc’h–Raugi [19]. These state that there exists σµ > 0
such that for every v ∈ Rn \ {0},

log∥Mn . . .M1v∥ − nλ√
n

−→
n

N (0, σ2
µ),

where N (0, σ2) is a centred Gaussian law on R. We recall that the conver-
gence in law means that for any bounded continuous function F : R → R,
one has

lim
n→∞

∫
G

F

(
log∥Mn . . .M1v∥ − nλ√

n

)
dµ∗n(g) =

∫
R
F (t)exp(−t2/2σ2)√

2πσ2
dt.

Those kinds of results were also obtained in negative curvature settings,
for example in Gromov-hyperbolic groups [5]. However, the results stated
thus far were proven under rather strong moment conditions. Typically, µ
was assumed to have a finite exponential moment, that is, for which there
exists α > 0 such that

∫
G

exp(αd(o, go))dµ(g) < ∞.
Recently, Benoist and Quint have developed a new approach to this ques-

tion and have proven central limit theorems in the linear context [2] and for
hyperbolic groups [3]. They could weaken the moment condition and only
assume that the measure µ has finite second moment

∫
G

(log∥gv∥)2dµ(g) <
∞. Namely, if µ is such a measure on a group G acting non elementarily
on a proper hyperbolic space Y with basepoint o, then there exists λ > 0
such that the random variables 1√

n
(d(Zn(ω)o, o) − nλ) converge in law to

a non-degenerate Gaussian distribution [3, Theorem 1.1].
Using this approach, C. Horbez proved central limit theorems for map-

ping class groups of closed connected orientable hyperbolic surfaces and on
Out(FN ) [22]. More recently, T. Fernós, J. Lécureux and F. Mathéus proved
that if G is a group acting non-elementarily on a finite-dimensional CAT(0)
cube complex, then we also have a central limit theorem for the random
variables (d(Zn(ω)o, o))n [14]. In both cases, the authors only assume a
second moment condition.

The main result of this paper is to prove a similar result in the context
of a group acting on a general CAT(0) space, under the assumption that
an element of the group acts as a rank one isometry. We say that the group
action G ↷ X is non-elementary if there are no fixed points in X nor a
fixed pair of points in ∂∞X.

TOME 0 (0), FASCICULE 0
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Theorem 1.1. — Let G be a discrete group and G ↷ X a non-elem-
entary action by isometries on a proper CAT(0) space X. Let µ ∈ Prob(G)
be an admissible probability measure on G with finite second moment, and
assume that G contains a rank one element. Let o ∈ X be a basepoint of the
random walk. Let λ be the (positive) drift of the random walk. Then the
random variables 1√

n
(d(Zno, o) − nλ) converge in law to a non-degenerate

Gaussian distribution Nµ.

Our strategy relies heavily on the approach developed by Benoist and
Quint. To summarize, one needs to approximate the random walk by a well-
chosen cocycle. Then, they give a general criterium (Theorem 5.3 below)
under which this cocycle converges in law to a Gaussian distribution.

To apply this strategy, one needs to obtain good estimates on this cocycle.
The general idea of this paper is then the following. In order to get a
precise description of the random walk, we use a hyperbolic space that
is conveniently attached to the original CAT(0) space. As the theory of
random walks in hyperbolic spaces is rich, we study the behavior of {Zno}n

on this model, and then we lift this information back to the original CAT(0)
space. This strategy was implemented successfully in [14] and [22]:

• for Mod(S), the hyperbolic model is the curve complex C(S), and
the lifting to T (S) is done in [22, Section 3.4];

• for a CAT(0) cube complex, the hyperbolic model is the contact
graph CX, and the lifting is implemented in [14, Section 5].

In [31], H. Petyt, D. Spriano and A. Zalloum introduced analogues of
curve graphs and cubical hyperplanes for the class of CAT(0) spaces. Using
a generalized notion of hyperplane, they build a family of hyperbolic metrics
(dL)L on X which conserve many of the geometric features of the original
CAT(0) space. These spaces capture hyperbolic behaviours in X and be-
have very well under the isometric action of a group. Moreover, a rank one
isometry of X acts on some hyperbolic model as a loxodromic isometry.
Our strategy will be to chose a good hyperbolic model XL = (X, dL), and
then to make use of the limit laws proven by Maher and Tiozzo in [29], or
by Gouëzel in [18]. A key fact is that there is an equivariant homeomorphic
embedding of the Gromov boundary ∂GromXL of the hyperbolic model XL

into the visual boundary of the CAT(0) space [31, Theorem 7.1].
Another interesting question in the study of (Zn(ω))n is the proportion

of steps that are “hyperbolic”. In the context of random walks on hyper-
bolic spaces, Maher and Tiozzo show that the probability that a random
walk of size n is a loxodromic isometry goes to 1 as n goes to infinity [29,
Theorem 1.4]. For a non-elementary action on an irreducible CAT(0) cube

ANNALES DE L’INSTITUT FOURIER
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complex, Fernós, Lécureux and Mathéus show that the proportion of steps
Zn that are contracting goes to 1 as n goes to infinity. They use this re-
sult to show that if a group G acts non-elementarily and essentially on a
(possibly reducible) finite-dimensional CAT(0) cube complex, then there
exist regular elements, extending a result of Caprace and Sageev [11]. In
our context, we also prove that “most” of the steps in the random walk are
rank one. This result is not involved in the proof of Theorem 1.1, but is of
independent interest.

Theorem 1.2 (Rank one elements in the random walk). — Let G be
a discrete group and G ↷ X a non-elementary action by isometries on a
proper CAT(0) space X. Let µ ∈ Prob(G) be an admissible probability
measure on G, and assume that G contains a rank one element. Then

P(ω : Zn(ω) is a contracting isometry ) −→
n→∞

1.

Using the curtain models from [31], such a result is actually straight-
forward. We emphasize the idea that a systematic approach of dynamics
on CAT(0) spaces using these hyperbolic models can prove fruitful, espe-
cially when quantitative estimates are required. Indeed, curtain models also
benefit from their combinatorial structure. In this paper, we exploit this
richness in several ways, especially in the main geometric lemma 6.1. In [27,
Section 5], the author develops these connections in order to study other
limit laws on general Hadamard spaces.

A different approach for the study of such limit laws was implemented
in [30], where the authors prove central limit theorems on acylindrically
hyperbolic groups. Their strategy relies on a control of deviation inequali-
ties, which encapsulate the way the random walk progresses in an “almost
aligned” way, hence their approach apply to possibly non-proper spaces.
While there is a slight overlap with the results stated here (especially [30,
Theorem 13.4]), Mathieu and Sisto study random walks on acylindrically
hyperbolic groups with a word metric. This situation does not immediately
apply here. Indeed, in our main theorem, the pull-back metric induced on
G by an orbit map need not be quasi-isometric to a word metric, and in
fact need not even be proper. Also, their assumptions on the measure µ are
much more restrictive: they assume that µ has finite exponential moment.
In particular, their assumption is not optimal, while it is the case here.
Last, the techniques involved are completely different: their approach has
a “local” flavor, whereas here we use boundary theory and compactifica-
tions.

TOME 0 (0), FASCICULE 0
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While we were working on this project, Inhyeok Choi released a paper
in which he states central limit theorems along with other limit laws in
CAT(0) spaces, Teichmüller spaces and outer spaces [12]. One of the main
assumptions is still the presence of a pair of independent contracting isome-
tries in the group, but the methods and the proofs are different. Indeed,
Choi uses a pivotal technique introduced by Boulanger, Mathieu and Sisto
in [7] and [30] and further developed by Gouëzel in [18]. These techniques
have a “local flavor”, while our paper relies on boundary theory, and uses
hyperbolic models that depend on specific features of CAT(0) spaces. We
think this approach is natural from a geometric point of view, and we
believe that the interplay between CAT(0) spaces and their underlying hy-
perbolic models will be useful in the study of still open questions about
limit laws. In any case, it is always interesting to have different strategies
and techniques for studying radom walks and limit laws.

The essential assumption in these results is the presence of contracting
elements for the action of G on the CAT(0) space X. In [27, Chapter 5],
the author proves that actually, all the results presented here hold in the
more general context of a Hadamard space, i.e. a separable and complete
CAT(0) space, removing the properness assumption on X. Notice that the
boundary of a general Hadamard spaces may be no longer compact, and
that the embedding of the boundaries ∂GromXL ↪→ ∂∞X is only stated
for proper CAT(0) spaces in [31]. In [27, Theorem 5.3.5], we prove that
this embedding actually holds in this more general setting. Once this is
done, the general strategy for proving the central limit theorem 1.1 is sim-
ilar, although with some additional technical difficulties. We refer to the
manuscript [27, Chapter 5] for details.

We believe our approach can be of use in order to determine if the bound-
ary ∂∞X endowed with the hitting measure is actually the Poisson bound-
ary of (G,µ), extending a result of Karlsson and Margulis for cocompact
actions [25, Corollary 6.2].

Moreover, it seems natural to use these hyperbolic spaces to prove that
if µ has finite first moment, then limit points of the random walk almost
surely belong to the sublinear Morse boundary constructed by Qing and
Rafi in [32]. Note that this question is linked to the previous one, because
it is believed that the sublinear Morse boundary is often a good candidate
for the Poisson boundary, especially for finitely supported measures, see for
example [32, Theorem F] and [33, Theorem B]. In both cases, the use of
hyperbolic models seems useful because of precision of estimates that can
be derived from the combinatorial structure of these spaces.

ANNALES DE L’INSTITUT FOURIER
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In Section 2, we review basic definitions about random walks, rank one
isometries and explain our setting. In Section 3, we explicit the construction
and properties of the hyperbolic models (X, dL), and give various geometric
lemmas that will be useful afterwards. Section 4 is dedicated to presenting
the works of Maher and Tiozzo in [29] and of Gouëzel in [18], and the first
results in proper CAT(0) spaces that were found in [26]. We explain the
strategy developed by Benoist and Quint in Section 5, and give the proof
of our main Theorem in Section 6.
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2. Background

2.1. Random walks and CAT(0) spaces

Let G be a discrete countable group and µ ∈ Prob(G) a probability
measure on G. Recall that the support of µ is

supp(µ) := {g ∈ G |µ(g) > 0}.

Definition 2.1. — We say that a measure µ on a discrete countable
group is admissible if its support supp(µ) generates G as a semigroup.

Throughout the article we will assume that µ is admissible. Let (Ω,P)
be the probability space (GN, δe × µN∗), where δe is the Dirac measure at
e. The application

(n, ω) ∈ N × Ω 7−→ Zn(ω) = ω1ω2 . . . ωn,

TOME 0 (0), FASCICULE 0
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where ω is chosen according to the law P, defines the random walk on G

generated by the measure µ.
Let now (X, d) be a proper CAT(0) metric space, on which G acts by

isometries. If the reader wants a detailed introduction to CAT(0) spaces,
the main references that we will use are [1] and [8]. We recall that the
boundary ∂∞X of a CAT(0) space X is the set of equivalent classes of rays
σ : [0,∞) → X, where two rays σ1, σ2 are equivalent if they are asymptotic,
i.e. if d(σ1(t), σ2(t)) is bounded uniformly in t.

Given two points on the boundary ξ and η, if there exists a geodesic line
σ : R → X such that the geodesic ray σ[0,∞) is in the class of ξ and the
geodesic ray t ∈ [0,∞) 7→ σ(−t) is in the class of η, we will say that the
points ξ and η are joined by a geodesic line. The reader should be aware
that in general, such a geodesic need not exist between any two points of
the boundary, as can be seen in R2. A point ξ of the boundary is called a
visibility point if, for all η ∈ ∂∞X−{ξ}, there exists a geodesic from ξ to η.
We will see in the next section a criterion to prove that a given boundary
point is a visibility point.

An important feature in CAT(0) spaces is the existence of closest-point
projections on complete convex subsets. More precisely, given a complete
convex subset C in a CAT(0) space, there exists a map πC : X → C such
that πC(x) minimizes the distance d(x,C):

Proposition 2.2 ([8, Lemma 2.4]). — The projection πC onto a convex
complete subset in a CAT(0) space satisfies the following properties:

• ∀ x ∈ X, πC(x) is uniquely defined and d(x, πC(x)) = d(x,C) =
infc∈C d(x, c);

• if x′ belongs to the geodesic segment [x, π(x)], then πC(x′) = πC(x);
• πC is a retraction of X onto C that does not increase the distances:

for all x, y ∈ X, we have d(πC(x), πC(y)) ⩽ d(x, y).

It is immediate to see that the above properties can be applied to geodesic
segments, which are convex and complete with the induced metric. When
γ : [a, b] → X is a geodesic segment, we will write πγ for the projection
onto the image [γ(a), γ(b)] ⊆ X.

When X is a proper space, the space X = X ∪ ∂X is a compactification
of X, that is, X is compact and X is an open and dense subset of X.
We recall that the action of G on X extends to an action on ∂∞X by
homeomorphisms.

Another equivalent construction of the boundary can be done using ho-
rofunctions. If xn → ξ ∈ ∂∞X and x ∈ X, we denote by bx

ξ : X 7→ R the

ANNALES DE L’INSTITUT FOURIER
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horofunction given by

bx
ξ (z) = lim

n
d(xn, z) − d(xn, x).

It is a standard result in CAT(0) geometry (see for example [1, Proposi-
tion II.2.5]) that this limit exists and that given any basepoint x, a horo-
function characterizes the boundary point ξ. When the context is clear we
will often omit the basepoint and just write bξ.

2.2. Rank one elements

Let g ∈ G. We say that g is a semisimple isometry if its displacement
function x ∈ X 7→ τg(x) = d(x, gx) has a minimum in X. If this minimum
is non-zero, it is a standard result (see for example [1, Proposition II.3.3])
that the set on which this minimum is obtained is of the form C×R, where
C is a closed convex subset of X. On the set {c} × R for c ∈ C, g acts as a
translation, which is why g is called axial and the subset {c} × R is called
an axis of g. A flat half-plane in X is defined as a euclidean half plane
isometrically embedded in X.

Definition 2.3. — We say that a geodesic in X is rank one if it does
not bound a flat half-plane. If g is an axial isometry of X, we say that g is
rank one if no axis of g bounds a flat half-plane.

If G acts on X by isometries and possesses a rank one element g ∈ G for
this action, we may say that G is rank one. However, the theory of CAT(0)
groups is not as clear as for Gromov hyperbolic groups. For example, there
is no good (i.e. invariant under quasi isometry) notion of boundary of a
CAT(0) group, as shown by Croke and Kleiner in [13]. To summarize, it is
better to keep in mind that “rank one” is always attached to a given action
G↷ X on a CAT(0) space.

More information on rank one isometries and geodesics can be found
in [1, Section III.3], and more recently in [4] and in [10].

Definition 2.4. — We say that the action G↷ X of a rank one group
G on a CAT(0) space X is non-elementary if G neither fixes a point in
∂∞X nor stabilizes a geodesic line in X.

To justify this definition, we use a result from Caprace and Fujiwara
in [10]. What follows comes from the aforementioned paper.

TOME 0 (0), FASCICULE 0
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Definition 2.5. — Let g1, g2 ∈ G be axial isometries of G, and fix
x0 ∈ X. The elements g1, g2 ∈ G are called independent if the map

(2.1) Z × Z −→ [0,∞) : (m,n) 7−→ d(gm
1 x0, g

n
2 x0)

is proper.

Remark 2.6. — In particular, the fixed points of two independent axial
elements form four distinct points of the visual boundary.

Let us end this section by stating two results about rank one isometries.
The first one was proven by P-E. Caprace and K. Fujiwara in [10].

Proposition 2.7 ([10, Proposition 3.4]). — Let X be a proper CAT(0)
space and let G < Isom(X). Assume that G contains a rank one element.
Then exactly one of the following assertions holds:

(1) G either fixes a point in ∂∞X or stabilizes a geodesic line. In both
cases, it possesses a subgroup of index at most 2 of infinite Abelian-
ization. Furthermore, if X has a cocompact isometry group, then
G < Isom(X) is amenable.

(2) G contains two independent rank one elements. In particular, G
contains a discrete non-Abelian free subgroup.

As a consequence, the action G↷ X of a rank one group G on a CAT(0)
space X is non-elementary if and only if alternative (2) of the previous
Proposition holds.

Rank one isometries are especially interesting because they induce nat-
ural contracting properties on the space. These properties mimic how lox-
odromic isometries behave in the hyperbolic setting.

Definition 2.8. — A geodesic σ in a CAT(0) space is said to be C-
contracting with C > 0 if for every metric ball B disjoint from σ, the
projection πσ(B) of the ball B onto σ has diameter at most C. An axial
isometry is contracting if there exists C > 0 such that one of its axes is
C-contracting.

It is clear that a contracting isometry is rank one. It turns out that the
converse is true if X is a proper CAT(0) space, as was shown by M. Bestvina
and K. Fujiwara in [4]. This result will allow us to use the hyperbolic models
described in Section 3.

Theorem 2.9 ([4, Theorem 5.4]). — Let X be a proper CAT(0) space,
g : X → X be an axial isometry and σ be an axis of g. Then there exists
B such that σ is B-contracting if and only if σ does not bound a half-flat.
In other words, g is contracting if and only if g is a rank one isometry.

ANNALES DE L’INSTITUT FOURIER
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2.3. Gromov products

Let (X, d) be a metric space. One defines the Gromov product of x, y ∈ X

with respect to o ∈ X as

(x |y)o = 1
2(d(x, o) + d(y, o) − d(x, y)).

The quantity (x |y)o must be thought of as representing the distance be-
tween o and the geodesic between x and y. This notion is particularly
interesting because it does not require X to be actually geodesic, and in
fact we often deal with only quasigeodesic spaces. Also, we can use Gromov
products to characterize hyperbolic spaces. We recall that a metric space
(X, d) is hyperbolic if there is δ > 0 such that for all x, y, z ∈ X,

(x |z)o ⩾ min((x |y)o, (y |z)o) − δ.

If the reader wants a detailed introduction to hyperbolic spaces, a stan-
dard reference is [8].

If (X, d) is a proper CAT(0) space, the Gromov product can be extended
to the visual boundary ∂∞X of X by the following formulas: for x, y ∈
∂∞X, o,m ∈ X,

(2.2)
(m |x)o := 1

2(d(o,m) − bo
x(m));

(x |y)o := −1
2 inf

q∈X
(bx(q) + by(q)).

Assume that x, y ∈ X. A quick computation shows that the infimum of
Equation (2.2) is attained for any q ∈ [x, y]. Indeed, for any other p ∈ X,

bx(p) + by(p) − (bx(q) + by(q))
= d(x, p) + d(y, p) − (d(o, x) + d(o, y))

−(d(x, q) + d(y, q)) + (d(o, x) + d(o, y))
= d(x, p) + d(y, p) − d(x, y) because q ∈ [x, y]
⩾ 0 by the triangular inequality.

When x, y ∈ ∂∞X, take (xn) and (yn) sequences converging to x, y ∈
∂∞X respectively for the visual topology. Since the visual compactification
is equivalent to the compactification by Busemann functions (see for in-
stance [8, Theorem II.8.13]), {bxn

} and {byn
} converge to bx and by respec-

tively (for the topology of uniform converge on bounded sets). In particular,
if there exists a geodesic line γ such that γ(t) →

t→∞
x and γ(t) →

t→−∞
y, then

TOME 0 (0), FASCICULE 0
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the previous computation shows that for any point q ∈ γ:

(x|y)o = lim
n,m→∞

−1
2 (bγ(n)(q) + bγ(−m)(q))

= lim
n,m→∞

(xn|ym)o.

3. Hyperbolic models for proper CAT(0) spaces

The goal of this section is to briefly present some ideas of [31], in which
the authors build a way of attaching a family of hyperbolic metric spaces
XL = (X, dL)L to a proper CAT(0) space. What is interesting about these
spaces is that they convey much of the geometry of the original space,
especially at infinity, and they behave very well under isometric actions.
More specifically, rank one isometries will act on some well-chosen spaces as
loxodromic isometries. This construction can be understood as the analogue
(and generalization) of the curve graphs that exist in the context of CAT(0)
cube complexes, see [17] and [20].

Definition 3.1. — Let X be a CAT(0) space, and let γ : I → X be
a geodesic. Let πγ be the projection onto the geodesic γ characterized by
Proposition 2.2. Let t ∈ I be such that [t− 1

2 , t+ 1
2 ] belongs to I. Then the

curtain dual to γ at t is

h = hγ,t = π−1
γ

(
γ

([
t− 1

2 , t+ 1
2

]))
.

The pole of hγ,t is γ([t − 1
2 , t + 1

2 ]). Borrowing from the vocabulary of
hyperplanes, we will call h− = π−1

γ (γ((−∞, t− 1
2 )∩I)) and h+ = π−1

γ (γ((t+
1
2 ,+∞) ∩ I)) the halfspaces determined by h. Note that {h−, h, h+} is a
partition of X. If A ⊆ h− and B ⊆ h+ are subsets of X, we say that h
separates A from B.

We will often denote a curtain by the letter h, even though one must
keep in mind that h = hγ,t is characterized by a given geodesic γ : I → X

and a point t ∈ I (which defines a unique pole P ⊆ γ). Sometimes, we may
also write h = hγ,P to emphasize on the pole P .

Remark 3.2. — By Proposition 2.2, it is immediate that curtains are
closed subsets of X, and that they are thick: if h is a curtain, then
d(h−, h+) = 1.

Curtains can fail to be convex: if x, y ∈ h−, it may happen that there
exists z ∈ [x, y] ∩ h+, see [31, Remark 2.4]. Nonetheless, we have a weaker
notion of convexity that the authors call star convexity:
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Proposition 3.3 ([31, Lemma 2.6]). — Let h be a curtain dual to γ

and P ⊆ γ be its pole. For every x ∈ h, then [x, πP (x)] ⊆ h.

Definition 3.4. — A family of curtains {hi} is said to be a chain if hi

separates hi−1 from hi+1 for every i. Chains can be used in order to define
a metric on X by the following: for x ̸= y ∈ X,

d∞(x, y) = 1 + max{ |c| : c is a chain separating x from y}.

One can check that this definition gives a metric. If h is a curtain, we
have seen that d(h−, h+) = 1, hence for any x, y ∈ X, d∞(x, y) ⩽ ⌈d(x, y)⌉.
Conversely, it turns out that d and d∞ may differ by at most 1, as shown
by the following lemma.

Lemma 3.5 ([31, Lemma 2.10]). — Let x, y ∈ X. Then there is a chain
of curtains c dual to [x, y] that realizes d∞(x, y) = 1 + |c|. and for which
1 + |c| = ⌈d(x, y)⌉.

We are now ready to refine the notion of separation in order to capture
only some of the hyperbolic features of the space.

We say that a chain c of curtains meets a curtain h if every single curtain
hi ∈ c intersects h.

Definition 3.6 (L-separation). — Let L ∈ N∗, we say that disjoint
curtains are L-separated if every chain meeting both has cardinality at
most L. A chain of pairwise L-separated curtains is called an L-chain.

The following geometric Lemma is a key ingredient for the proof of The-
orem 3.10, and will be used several times in the sequel. It means that
L-separation induces good Morse properties. The picture one has to keep
in mind is given by Figure 3.1.

Lemma 3.7 ([31, Lemma 2.14]). — Suppose that A, B are two sets
which are separated by an L-chain {h1, h2, h3} all of whose elements are
dual to a geodesic γ = [x1, y1] with x1 ∈ A and y1 ∈ B. Then for any
x2 ∈ A, y2 ∈ B, if p ∈ h2 ∩ [x2, y2], then d(p, πγ(p)) ⩽ 2L+ 1.

The next Lemma states that if there is a L-chain separating two points x
and y, we can find a (smaller) L-chain of curtains separating those, which
is dual to the geodesic [x, y] and whose size can be controlled. It will prove
useful later on, especially when we want to use Lemma 3.7.

Lemma 3.8 ([31, Lemma 2.21]). — Let L, n ∈ N, and let {h1, . . . ,

h(4L+10)n} be an L-chain separating A, B ⊆ X. Take x ∈ A, y ∈ B.
Then A and B are separated by an L-chain of size ⩾ n+ 1 dual to [x, y].
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⩽ 2L+ 1

x1

h2h1 h3

x2

y1

y2

Figure 3.1. Illustration of Lemma 3.7.

We are now ready to define a family of metrics using L-separation.

Definition 3.9. — Given distinct points x ̸= y ∈ X, we define

dL(x, y) = 1 + max{|c| : c is an L-chain separating x from y}.

It turns out that for every L, dL gives a metric onX [31, Lemma 2.17]. We
will denote by XL = (X, dL) the resulting metric space. With this definition
in hand, Petyt, Spriano and Zalloum prove that the metric spaces (X, dL)
are hyperbolic.

Theorem 3.10 ([31, Theorem 3.9]). — For any CAT(0) space X and
any integer L, the space (X, dL) is a quasi-geodesic hyperbolic space with
hyperbolicity constants depending only on L. Moreover, Isom(X) acts by
isometries on (X, dL).

We will then call (X, dL) a hyperbolic model for the CAT(0) space X.
A useful fact about these spaces is that they behave well under isometries
with “hyperbolic-like” properties.

Theorem 3.11 ([31, Theorem 4.9]). — Let g be a semisimple isometry
of X. The following are equivalent:

(1) g is a contracting isometry of the CAT(0) space X;
(2) there exists L ∈ N such that g acts loxodromically on XL.

Another piece of information brought by this construction is the rela-
tion between the Gromov boundaries ∂XL of the hyperbolic models XL =
(X, dL) and the visual boundary of the original CAT(0) space (X, d).
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Definition 3.12. — We say that a geodesic ray γ : [0,∞) → X crosses
a curtain h if there exists t0 ∈ [0,∞) such that h separates γ(0) from
γ([t0,∞)). Alternatively, we may say that h separates γ(0) from γ(∞).
Similarly, we say that a geodesic line γ : R → X crosses a curtain h if there
exist t1, t2 ∈ R such that h separates γ((−∞, t1]) from γ([t2,∞)). We say
that γ crosses a chain c = {hi} if it crosses each individual curtain hi.

As a consequence of Lemma 3.7 and Lemma 3.8, if two geodesic rays
with the same starting point cross an infinite L-chain c, then they are
asymptotic, and hence equal.

Remark 3.13. — Since curtains are not convex, it is not obvious that
any geodesic ray γ meeting a given curtain h must cross it (γ could meet
h infinitely often). However, by [31, Corollary 3.2] if γ is a geodesic ray
that meets every element of an infinite L-chain c = {hi}i∈N, then γ must
cross c: for every i, there exists ti ∈ [0,∞) such that hi separates γ(0) from
γ([ti,∞)).

Given o ∈ X, we define BL as the subspace of ∂∞X consisting of all
geodesic rays γ : [0,∞) → X starting from o and such that there exists an
infinite L-chain crossed by γ. In the case of the contact graph associated to
a CAT(0) cube complex X, we had the existence of an Isom(X)-equivariant
embedding of the boundary of the contact graph into the Roller boundary
∂RX. The following result is the analogue in the context of CAT(0) spaces.

Theorem 3.14 ([31, Theorem 8.1]). — Let X be a proper CAT(0)
space. Then, for every L ∈ N∗, the identity map ι : X → XL induces
an Isom(X)-equivariant homeomorphism ∂L : BL → ∂XL.

Recall that the support of a Borel measure m on a topological space
Y is the smallest closed set C such that m(Y \ C) = 0. In other words
y ∈ supp(m) if and only if for all U open containing y, m(U) > 0.

Definition 3.15. — We say that the action by isometries of a group G
on a hyperbolic space Y (not assumed to be proper) is non-elementary if
there are two loxodromic isometries with disjoint fixed points on the Gro-
mov boundary. A probability measure µ on G is said to be non-elementary
if its support generates a group acting non-elementarily on Y .

In order to use the results concerning random walks in hyperbolic spaces,
we must show that the action of a group G on a proper CAT(0) space with
rank one isometries induces a non-elementary action on some hyperbolic
model (X, dL).
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Proposition 3.16. — Let G be a group acting non-elementarily by
isometries on a proper CAT(0) space (X, d), and assume that G possesses
a rank one element for this action. Then there exists L ∈ N such that G
acts on the hyperbolic space (X, dL) non-elementarily by isometries.

Proof. — The action G↷ (X, d) is non elementary and contains a rank
one element, hence by Theorem 2.7 there exist two independent rank one
isometries g, h in G. By Theorem 2.9, those rank one isometries are B-
contracting for some B. Now, applying Theorem 3.11, there exists L ∈ N
such that g and h act on (X, dL) as loxodromic isometries. As g and h

are independent, their fixed points form four distinct points of the visual
boundary ∂∞X. Now seen in XL = (X, dL), their fixed points sets must
also form four distinct points of ∂XL because of the homeomorphism ∂L :
BL → ∂XL. This means that the action G↷ XL is non-elementary. □

4. Random walks and hyperbolicity

The results of Section 3 allow us to read some information about the ran-
dom walk in the hyperbolic models XL = (X, dL), and then translate this
information back to the original CAT(0) space. As the theory of random
walks on hyperbolic spaces is well-studied, one may hope that this process
is fruitful.

4.1. Random walks on hyperbolic spaces

In this section, we summarize what is known concerning random walks
in hyperbolic spaces. Most of the work for the non-proper case was done by
Maher and Tiozzo in [29]. The first result is the convergence of the random
walk to the Gromov boundary.

Theorem 4.1 ([29, Theorem 1.1]). — Let G be a countable group of
isometries of a separable hyperbolic space Y . Let µ be a non-elementary
probability distribution on G, and o ∈ Y a basepoint. Then the random
walk (Zn(ω)o)n induced by µ converges to a point z+(ω) ∈ ∂∞X, and the
resulting hitting measure is the unique µ-stationary measure on ∂∞X.

Remark 4.2. — Note that the previous result is stated for separable hy-
perbolic spaces, while in our case, the hyperbolic models are not separable.
However, Gouëzel shows in [18, Theorem 1.3] that this result of convergence
remains true for possibly non-separable hyperbolic spaces.
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Assume that the measure µ has finite first moment
∫
d(go, o)dµ(g) < ∞.

Let us define the drift (or escape rate) of the random walk.

Definition 4.3. — The drift of the random walk (Zno)n on a metric
space (Y, d) is defined as

l(µ) := inf
n

∫
Ω
d(Zn(ω)o, o)dP(ω) = inf

n

∫
G

d(go, o)dµ∗n(g)

if µ has finite first moment, and l(µ) := ∞ otherwise.

If µ has finite first moment, then a classical application of Kingmann
subadditive Theorem sows that

l(µ) = lim
n

1
n
d(Zn(ω)o, o),

and the above limit is essentially constant and finite.
In the context of a group acting on a hyperbolic space, Gouëzel proves

that the drift is almost surely positive with no moment condition. This can
be seen as a law of large numbers.

Theorem 4.4 ([18, Theorems 1.1 and 1.2]). — Let G be a countable
group of isometries of a hyperbolic space (Y, dY ). Let µ be a non-elementary
probability distribution on G, and o ∈ Y a basepoint. Then the drift l(µ) :=
limn

1
nd(Zno, o) is well-defined, essentially constant and positive (possibly

infinite).
Moreover, for every r < l(µ), there exists κ > 0 such that

(4.1) P
(
ω ∈ Ω : dY (Zn(ω)o, o) ⩽ rn

)
< e−κn.

Another piece of information that can be given about the random walk
is the proportion of hyperbolic isometries in the random variables (Zn)n.
Recall that the translation length of an isometry in a hyperbolic space is
defined as |g| := limn

1
nd(gno, o), which does not depend on the basepoint o.

Theorem 4.5 ([29, Theorem 1.4]). — Let G be a countable group of
isometries of a separable hyperbolic space Y . Let µ be a non-elementary
probability distribution on G, and o ∈ Y is a basepoint. Then the transla-
tion length |Zn(ω)| grows almost surely at least linearly in n: there exists
K > 0 such that

P(ω : |Zn(ω)| ⩽ Kn) −→
n→∞

0.

The above result thus implies that the probability that Zn(ω) is not a
loxodromic isometry goes to zero as n goes to infinity.
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4.2. First results for random walks in CAT(0) spaces

In CAT(0) spaces, many of the previous theorems hold if we assume
that there are elements in the acting group G that share “hyperbolic-like”
properties. Namely, if X is a proper CAT(0) space, we will assume that G
contains rank one isometries of X. The first result deals with stationary
measures on X. Recall that a measure ν ∈ Prob(X) is called stationary if
µ ∗ ν = ν.

Theorem 4.6 ([26, Theorem 1.1]). — Let G be a discrete group and
G ↷ X a non-elementary action by isometries on a proper CAT(0) space
X. Let µ ∈ Prob(G) be an admissible probability measure onG, and assume
that G contains a rank one element. Then there exists a unique µ-stationary
measure ν ∈ Prob(X).

The convergence of the random walk to the boundary can then be estab-
lished in this setting. It is the analogue of Theorem 4.1.

Theorem 4.7 ([26, Theorem 1.2]). — Let G be a discrete group and
G ↷ X a non-elementary action by isometries on a proper CAT(0) space
X. Let µ ∈ Prob(G) be an admissible probability measure onG, and assume
that G contains a rank one element. Then for every x ∈ X, and for P-almost
every ω ∈ Ω, the random walk (Zn(ω)x)n converges almost surely to a
boundary point z+(ω) ∈ ∂∞X. Moreover, z+(ω) is distributed according
to the stationary measure ν.

Interestingly, we can prove that the limit points are almost surely rank
one, meaning that for almost any pair of limit points ξ, η ∈ ∂∞X, there
exists a rank one geodesic in X joining ξ to η ([26, Corollary 1.3]). This
feature suggests the use of hyperbolic models. First, we establish a result
concerning the proportion of rank one elements in the random walk.

Theorem 4.8. — Let G be a discrete group and G ↷ X a non-elem-
entary action by isometries on a proper CAT(0) space X. Let µ ∈ Prob(G)
be an admissible probability measure on G, and assume that G contains a
rank one element. Then

P(ω : Zn(ω) is a contracting isometry ) −→
n→∞

1.

Proof. — Because of Proposition 3.16, we can then apply the results of
Maher-Tiozzo and Gouëzel. In particular, by Theorem 4.5, the translation
length |Zn(ω)|L of (Zn(ω))n grows almost surely at least linearly in n.
Therefore, the probability that Zn(ω) is a loxodromic element of XL goes
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to 1 as n goes to ∞. But thanks to Theorem 3.11, an isometry g of the
CAT(0) space X is contracting if and only if there is an L such that g acts
as a loxodromic isometry on XL. The previous argument now implies that
the probability that Zn(ω) is a contracting isometry of X goes to 1 as n
goes to ∞. □

Remark 4.9. — There is a slight omission in the proof of Theorem 4.8. In-
deed, Theorem 4.5 is stated for geodesic, separable hyperbolic spaces, while
hyperbolic models are non-separable and only almost geodesic. However,
thanks to Bonk and Schramm [6, Theorem 4.1], this result extends to non-
geodesic hyperbolic spaces. The key thing is that due to Theorem 4.4 we
have control of the displacement variables d(Zno, o) up to the escape rate
l(µ). A detailed proof of Theorem 4.8 can be found in [27, Section 5.3.5].

The analogue of Theorem 4.4 also holds in the context of CAT(0) spaces
with rank one isometries.

Theorem 4.10 ([26, Theorem 1.4]). — Let G be a discrete group and
G ↷ X a non-elementary action by isometries on a proper CAT(0) space
X. Let µ ∈ Prob(G) be an admissible probability measure on G with finite
first moment, and assume that G contains a rank one element. Let o ∈ X be
a basepoint of the random walk. Then the drift λ is almost surely positive:

lim
n→∞

1
n
d(Zno, o) = λ > 0.

Actually H. Izeki worked on the drift-free case in [23]. The author proves a
strengthening of Theorem 4.10, in that it is valid even for finite dimensional,
non proper CAT(0) spaces, and without the assumption that there are rank
one isometries. The counterpart is that one needs to assume that µ has
finite second moment. Namely, Izeki proves that in this context, either the
drift λ is strictly positive, or there is a G-invariant flat subspace in X [23,
Theorem A]. However, for our purpose, we will only need Theorem 4.10.

In the proof of Theorem 4.10, we actually show that the displacement
d(Zn(ω)x, x) is almost surely well approximated by the Busemann functions
bξ(Zn(ω)x). This result will be used later when we give geometric estimates
for the action.

Proposition 4.11 ([26, Proposition 5.2]). — Let G be a discrete group
and G ↷ X a non-elementary action by isometries on a proper CAT(0)
space X. Let µ ∈ Prob(G) be an admissible probability measure on G with
finite first moment, and assume that G contains a rank one element. Let
x ∈ X be a basepoint. Then for ν-almost every ξ ∈ ∂X, and P-almost every
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ω ∈ Ω, there exists C > 0 such that for all n ⩾ 0 we have

(4.2) |bξ(Zn(ω)x) − d(Zn(ω)x, x)| < C.

5. Central Limit Theorems and general strategy

In order to prove our main result, we use a strategy that is largely inspired
by the works of Benoist and Quint on linear spaces and hyperbolic spaces,
see [3] and [2]. They developed a method for proving central limit theorems
for cocycles, relying on results due to Brown in the case of martingales [9].

5.1. Centerable cocycle

Let G be a discrete group, Z a compact G-space and c a cocycle c :
G × Z → R, meaning that c(g1g2, x) = c(g1, g2x) + c(g2, x), and assume
that c is continuous. Let µ be a probability measure on G.

Definition 5.1. — Let c be a continuous cocycle c : G × Z → R. We
say that c has constant drift cµ if cµ =

∫
G
c(g, x)dµ(g) does not depend on

x ∈ Z. We say that c is centerable if there exists a bounded measurable
map ψ : Z → R and a cocycle c0 : G × Z → R with constant drift
c0,µ =

∫
G
c0(g, x)dµ(g) such that

(5.1) c(g, x) = c0(g, x) + ψ(x) − ψ(gx).

We say that c and c0 are cohomologous. In this case, the average of c is
defined to be c0,µ.

Remark 5.2. — Let ν ∈ Prob(Z) be a µ-stationary measure, and let
c : G × Z → R be a centerable continuous cocycle: for g ∈ G, x ∈ Z,
c(g, x) = c0(g, x) + ψ(x) − ψ(gx) with c0 having constant drift and ψ

bounded measurable. The following computation shows that the average of
c does not depend on the particular choices of c0 and ψ. Indeed:∫

G×Z

c(g, x)dµ(g)dν(x)

=
∫

G×Z

c0(g, x)dµ(g)dν(x) +
∫

Z

ψ(x)dν(x) −
∫

G×Z

ψ(gx)dµ(g)dν(x)

=
∫

G

c0(g, x)dµ(g) +
∫

Z

ψ(x)dν(x) −
∫

G×Z

ψ(gx)dµ(g)dν(x)
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=
∫

G

c0(g, x)dµ(g) +
∫

Z

ψ(x)dν(x) −
∫

Z

ψ(x)dν(x)

because ν is µ-stationary
= c0,µ because c0 has constant drift.

Hence the average of c is given by
∫
c(g, x)dµ(g)dν(x), which explains the

terminology. Moreover, the average of c does not depend on the choices of
c0 and ψ.

The reason why we study limit laws on cocycles is the following result.
This version is borrowed from Benoist and Quint, who improved previous
results from Brown about central limit theorems for martingales [9].

Theorem 5.3 ([2, Theorem 3.4]). — Let G be a locally compact group
acting by homeomorphisms on a compact metrizable space Z. Let c : G×
Z → R be a continuous cocycle such that

∫
G

supx∈Z |c(g, x)|2dµ(g) < ∞.
Let µ be a Borel probability measure on G. Assume that c is centerable
with average λc and that there exists a unique µ-stationary probability
measure ν on Z.

Then the random variables 1√
n

(c(Zn, x) − nλc) converge in law to a
Gaussian law Nµ. In other words, for any bounded continuous function F

on R, one has∫
G

F

(
c(g, x) − nλc√

n

)
d(µ∗n)(g) −→

∫
R
F (t)dNµ(t).

Moreover, if we write c(g, z) = c0(g, z) +ψ(z) −ψ(gz) with ψ bounded and
c0 with constant drift cµ, then the covariance 2-tensor of the limit law is∫

G×Z

(c0(g, z) − cµ)2dµ(g)dν(z).

5.2. Busemann cocycle and strategy

Let G be a discrete group and G ↷ X a non-elementary action by
isometries on a proper CAT(0) space X. Let µ ∈ Prob(G) be an admissible
probability measure on G with finite first moment, and assume that G
contains a rank one element. Let o ∈ X be a basepoint of the random walk.
Theorems 4.7 and 4.10 ensure that the random walk (Zn(ω)o)n converges
to a point of the boundary and that the drift λ = limn

1
nd(Zn(ω)o, o) is

well-defined and almost surely positive.
We denote by qµ the probability measure on G defined by qµ(g) = µ(g−1).

Let ( qZn)n be the right random walk associated to qµ. Since µ is admissible
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and has finite first moment, so does qµ. We can then apply Theorems 4.6,
4.7 and 4.10 to qµ. We will denote by qν the unique qµ-stationary measure on
X, and by qλ the positive drift of the random walk ( qZno)n.

Remark 5.4. — One can check that
qλ = inf

n

1
n

∫
d(go, o)dqµ∗n(g)

= inf
n

1
n

∫
d(o, g−1o)dqµ∗n(g)

= inf
n

1
n

∫
d(o, go)dµ∗n(g),

hence λ = qλ.

In our context, the continuous cocycle that we consider is the Busemann
cocycle on the visual compactification of the CAT(0) space X: for x ∈
X, g ∈ G and o ∈ X a basepoint,

β(g, x) = bx(g−1o).

It is straightforward to show that β is continuous. Observe that for all
g1, g2 ∈ G, x ∈ Y , horofunctions satisfy a cocycle relation:

bξ(g1g2o) = lim
xn→ξ

d(g1g2, xn) − d(xn, x)

= lim
xn→ξ

d(g2, g
−1
1 xn) − d(g1o, xn) + d(g1o, xn) − d(xn, o)

= lim
xn→ξ

d(g2x, g
−1
1 xn) − d(o, g−1

1 xn) + d(g1x, xn) − d(xn, o)

= bg−1
1 ξ(g2o) + bξ(g1o).(5.2)

By (5.2), β satisfies the cocycle relation β(g1g2, x) = β(g1, g2x) + β(g2, x).
Thanks to Proposition 4.11, for every o ∈ X, for ν-almost every x ∈ ∂X,
and P-almost every ω ∈ Ω, there exists C > 0 such that for all n ⩾ 0 we
have

(5.3) |β(Zn(ω)−1, x) − d(Zn(ω)o, o)| < C.

Equation (5.3) shows that the cocycle β(Zn(ω), x) “behaves” like
d(Zn(ω)o, o). Thus it makes sense to try and apply Theorem 5.3 to the
Busemann cocycle β(g, x).

Henceforth, we will assume that µ is an admissible probability measure
on G with finite second moment

∫
G
d(go, o)2dµ(g) < ∞.

The following proposition summarizes some properties of the Busemann
cocycle. It shows that obtaining a central limit theorem on β will imply
our main result.
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Proposition 5.5. — Let G be a discrete group and G ↷ X a non-
elementary action by isometries on a proper CAT(0) space X. Let µ ∈
Prob(G) be an admissible probability measure on G with finite second
moment, and assume that G contains a rank one element. Let o ∈ X be a
basepoint of the random walk. Let λ be the (positive) drift of the random
walk, and β : G × X → R be the Busemann cocycle β(g, x) = bx(g−1o).
Then

(1)
∫

G

sup
x∈X

|β(g, x)|2dµ(g) < ∞ and
∫

G

sup
x∈X

|β(g, x)|2dqµ(g) < ∞;

(2) For ν-almost every ξ∈∂∞X, λ=limn
1
n
β(Zn(ω), ξ) P-almost surely;

(3) P-almost surely, λ =
∫

G×X

β(g, x)dµ(g)dν(x) =
∫

G×X

β(g, x)dqµ(g)dqν(x).

Proof. — As a consequence of Proposition 4.11, Equation (5.3) gives that
for ν-almost every x ∈ ∂X, and P-almost every ω ∈ Ω, there exists C > 0
such that for all n ⩾ 0 we have

(5.4) |β(Zn(ω)−1, x) − d(Zn(ω)o, o)| < C.

Because the action is isometric and µ has finite second moment, that is,∫
G
d(go, o)2dµ(g) < ∞, we obtain∫

G

sup
x∈X

|β(g, x)|2dµ(g) < ∞.

With the same argument:∫
G

sup
x∈X

|β(g, x)|2dqµ(g) < ∞.

Now thanks to Theorem 4.10, the variables { 1
nd(Zn(ω)o, o)} converge

almost surely to λ > 0. Since the action is isometric, we immediately get
that

1
n
d(Zn(ω)o, o) −→ n λ

almost surely. Again, because the action is isometric, Equation (5.4) tells
that for ν-almost every x ∈ ∂X, and P-almost every ω ∈ Ω, there exists
C > 0 such that for all n ⩾ 0 we have

|β(Zn(ω), x) − d(Zn(ω)−1o, o)| < C.

Combining these results, we obtain that for ν-almost every ξ ∈ X, and
P-almost every ω ∈ Ω,

λ = lim
n

1
n
β(Zn(ω), ξ).
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The ideas in the proof of 3 are classical. We give the details for the
convenience of the reader.

Let T : (Ω × X,P × qν) → (Ω × X,P × qν) be defined by T (ω, ξ) 7→
(Sω, ω−1

0 ξ), with S((ωi)i∈N) = (ωi+1)i∈N the usual shift on Ω. By [26,
Proposition 5.4], T preserves the measure P× qν and is an ergodic transfor-
mation. Define H : Ω ×X → R by

H(ω, ξ) = hξ(ω0o) = β(ω−1
0 , ξ).

By 1, it is clear that
∫

|H(ω, ξ)|dP(ω)dqν(ξ) < ∞.
By cocycle relation (5.2) one gets that

(5.5) bξ(Zno) =
n∑

k=1
hZ−1

k
ξ(ωko) =

n∑
k=1

H(T k(ω, ξ)).

Then β(Zn(ω)−1, ξ) =
∑n

k=1 H(T k(ω, ξ)), and by 2,

(5.6) λ = lim
n

1
n

n∑
k=1

H(T k(ω, ξ)).

Now, by Birkhoff ergodic theorem, one obtains that almost surely,

λ =
∫

Ω×X

H(ω, ξ)dP(ω)dqν(x).

=
∫

Ω×X

hξ(ω0o)dP(ω)dqν(x)

=
∫

G×X

β(g−1, ξ)dµ(g)dqν(x)

=
∫

G×X

β(g, ξ)dqµ(g)dqν(x)(5.7)

The previous computations can be done similarly for µ and ν, hence we
also have that

λ =
∫

G×X

β(g, x)dµ(g)dν(x). □

In order to apply Theorem 5.3 on the Busemann cocycle β, it remains
to show that β is centerable. If this is the case, by 3 and Remark 5.2,
its average must be the positive drift λ. In other words, we need to show
that there exists a bounded measurable function ψ : X → R such that the
cocycle

β0(g, x) = β(g, x) − ψ(x) + ψ(gx)
has constant drift, so that the cohomological equation

(5.8) β(g, x) = β0(g, x) + ψ(x) − ψ(gx).
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is verified. Then, proving the Central Limit Theorem in our context
amounts to finding such a ψ that is well defined and bounded. This will
be done by using a hyperbolic model that can give nice estimates on the
random walk.

6. Proof of the Central Limit Theorem

6.1. Geometric estimates

In this section, we prove our main Theorem, following the strategy ex-
plained in Section 5. First, we will provide geometric estimates on the
random walk that will be used later on. This is where we use the specific
contraction properties provided by the curtains and the hyperbolic models
discussed in Section 3. The goal is ultimately to prove that the candidate
ψ for the cohomological equation is bounded.

Let G be a discrete group and G ↷ X a non-elementary action by
isometries on a proper CAT(0) space X, and assume that G contains a
rank one element. Let o ∈ X be a basepoint of the random walk. Recall
that BL is defined to be the subspace of ∂∞X consisting of all geodesic rays
γ : [0,∞) → X starting from o and such that there exists an infinite L-
chain crossed by γ. By Theorem 3.14, there exists an Isom(X)-equivariant
embedding I : ∂XL → ∂∞X, whose image lies in BL.

Proposition 6.1. — Let (gn) be a sequence of isometries of G, and let
o ∈ X, x, y ∈ ∂∞X. Assume that there exists λ, ε,A > 0 such that:

(i) {gno}n converges in (XL, dL) to a point of the boundary zL ∈ ∂XL,
whose image in ∂∞X by the embedding I is not y;

(ii) dL(gno, o) ⩾ An;
(iii) |bx(g−1

n o) − nλ| ⩽ εn;
(iv) |by(gno) − nλ| ⩽ εn;
(v) |d(gno, o) − nλ| ⩽ εn.

Then, one obtains:
(1) (gnx|gno)o ⩾ (λ− ε)n;
(2) (y|gno)o ⩽ εn.

If moreover A ⩾ 2(4L+ 10)ε, then we have:
(3) (y|gnx)o ⩽ εn+ (2L+ 1).

Before getting into the proof of this proposition, let us give an idea
of what it represents. Assumptions (i) and (ii) express that the sequence
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{gno}n converge to the visual boundary following a “contracting direc-
tion”, with control on the size of the L-chain that separates o from gno.
Assumptions (iii), (iv) are to be seen as “the distance between y and gno

grows linearly” and “the distance between x and g−1
n o grows linearly” (even

though x and y are boundary points). Assumption v simply means that the
average escape rate of {gno} is close to λ. Proposition 6.1 states that in
these circumstances, we can control the quantities (gnx|gno)o, (y|gno)o and
(y|gnx)o, represented by the size of the dashed segments E1, E2 and E3 re-
spectively in Figure 6.1. In Proposition 6.4, we shall need in particular the
geometric estimate (3) in order to prove that the candidate ψ for the coho-
mological equation (5.8) is bounded, see the parallel with Proposition 6.5
below.

o

y

E3

E2
E1

gno z

gnx⩾ An

Figure 6.1. A geometric interpretation of Proposition 6.1

The proof of points (1) and (2) is straightforward, so we begin by these.
Proof of estimates (1) and (2). — A simple computation gives that

(gnx|gno)o = 1
2(bx(g−1

n o) + d(gno, o))

Then using assumptions (iii) and (v) gives immediately that (gnx|gno)o ⩾
(λ− ϵ)n, which proves (1).

Now, by definition,

(y|gno)o = 1
2(d(gno, o) − by(gno))

Then by assumptions (iv) and (v), we obtain (2). □

The proof of point (3) is the hard part. We prove it in two steps. First,
we show that under the assumptions, for n large enough, there exist at
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o

y

gno

gnx

Figure 6.2. A “hyperbolic-like” 4 points inequality in Proposition 6.1.

least three L-separated curtains dual to [o, gno] separating {gno, gnx} on
the one side and {o, y} on the other, see Figure 6.2. Then we show that the
presence of these curtains implies the result.

By assumption (ii), for every n ⩾ n0, dL(gno, o) ⩾ An. For n ⩾ n0, pick
such a L-chain separating o and gno of size ⩾ An and define S(n) ∈ N as
the size of this chain. By Proposition 3.8, there exists an L-chain dual to
[o, gno] of size greater than or equal to

⌊ S(n)
4L+1

⌋
that separates o and gno.

Denote by cn = {hn
i }S′(n)

i=1 a maximal L-chain dual to [o, gno], separating
o and gno, and orient the half-spaces so that o ∈ h−

i for all i. When the
context is clear, we might omit the dependence in n for ease of notations,
and just write {hi}S′(n)

i=1 for a maximal L-chain dual to [o, gno]. Recall that
S(n) ⩾ An, hence cn must be of length S′(n) ⩾ A′n, where A′ = A

4L+1 .

Lemma 6.2. — Under the assumptions of Proposition 6.1, there exists a
constant C such that for all n ∈ N, the number of L-separated hyperplanes
in cn that do not separate {o, y} and {gno} is less than C.

Proof of Lemma 6.2. — By assumption, {gno}n converges in (XL, dL)
to a point of the boundary zL ∈ ∂XL. By Theorem 3.14, there exists
an Isom(X)-equivariant embedding I : ∂XL → ∂∞X that extends the
canonical inclusion XL → X, and whose image lies in BL. Denote by z :=
I(zL) the image in ∂∞X of the limit point zL by this embedding.

Denote by β : [0,∞) → X a geodesic ray joining o to z. Since z ∈ BL,
there exists an infinite L-chain c = {ki}i∈N that separates o from z. Note
that because of Lemma 3.8 and Remark 3.13, we can assume that c is a
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o

γ

z

y

kp kp+1

r

kp+2

gno

β

r′

Figure 6.3. Illustration of Lemma 6.2.

chain of curtains which is dual to the geodesic ray β. Since {gno}n converges
in (XL, dL) to zL ∈ ∂XL, and z is the image of zL by the equivariant
embedding I, it implies that {gno}n converges to z in X. The fact that
z ∈ BL implies that for all i ∈ N, there exists n0 ∈ N such that for all
n ⩾ n0, ki separates o from gno. Now, we denote by γ : [0,∞) → X the
geodesic ray that represents y ∈ ∂∞X. See figure 6.3.

Due to Remark 3.13, meeting c infinitely often is equivalent to crossing
it, then since y ̸= z, there exists p ∈ N such that γ ⊆ k−

p . Now consider n0
such that for n ⩾ n0, gno ∈ k+

p+2. Fix n ⩾ n0. Recall that cn is a maximal
L-chain dual to [o, gno] separating o and gno.

Denote by r ∈ β a point in the pole of kp+1, and denote by r′ = r′(n)
the projection of r onto the geodesic [o, gno]. Then by Lemma 3.7,

d(o, r′(n)) ⩽ d(o, r) + 2L+ 1.

Due to the thickness of the curtains (Remark 3.2), the number of curtains
in cn that separate o and r′(n) is ⩽ d(o, r) + 2L + 2. We emphasize that
this number does not depend on n ⩾ n0, because for all n ⩾ n0, gn ∈ k+

p+2
and the previous equation holds.

Recall that γ ⊆ k−
p , so in particular γ ⊆ k−

p+1. Then by star convexity
of the curtains (Lemma 3.3), every curtain in cn whose pole belongs to
[r′(n), gno] separates {o, y} from gno. Then by the previous argument, the
number of curtains that do not separate {o, y} from {gno} is less than
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d(o, r′(n)). In particular, the number of curtains that do not separate {o, y}
from {gno} is less than d(o, r)+2L+2. Since this quantity does not depend
on n, we have proven the Lemma. □

Now, for a fixed n, let us give an estimate for the number of curtains in
cn = {hn

1 , . . . , h
n
S′(n)} that separate o and gnx. When a given n is fixed, we

omit the dependence in n and just write cn = {h1, . . . , hS′(n)} to ease the
notations. Let γn : [0,∞) → X be the geodesic ray joining o and gnx. Let
us take k0 = k0(n) (depending on n) large enough so that for all k ⩾ k0,

|(gno|gnx)o − (gno|γn(k))o| ⩽ 1.

Lemma 6.3. — Under the assumptions of Proposition 6.1, the number
of L-separated hyperplanes in cn that separate {o} and {gno, γn(k0)} is
unbounded in n. More precisely, for all M ∈ N, there exists n0 such that
for all n ⩾ n0, the number of L-separated hyperplanes in cn that separate
{o} and {gno, γn(k)} is greater than M for all k ⩾ k0.

Proof of Lemma 6.3. — Let k ⩾ k0. Suppose that the number of curtains
in cn = {h1, . . . , hS′(n)} separating o and γn(k) is less than or equal to p ∈
[0, S′(n) − 4]. Then {hp+2, . . . , hS′(n)} is an L-chain separating {o, γn(k)}
and {gno}. We then denote by r(n) a point on hp+3 ∩ [γn(k), gno] and by
r′(n) the projection of r(n) onto [o, gno], see Figure 6.4.

By hypothesis on k,

2((gnx|gno)o − 1) ⩽ 2(γn(k)|gno)o

= d(γn(k), o) + d(gno, o) − d(gno, γn(k)).

Now by the bottleneck Lemma 3.7 and the triangular inequality,

2(γn(k) |gno)o

= d(γn(k), o) + d(gno, o) − (d(gno, r(n)) + d(r(n), γn(k)))
⩽ d(γn(k), o) + d(gno, o) − (d(gno, r

′(n)) − (2L+ 1) + d(r(n), γn(k)))
⩽ d(r(n), o) + d(gno, o) − d(gno, r

′(n)) + 2L+ 1
⩽ d(r′(n), o) + 2L+ 1 + d(gno, o) − d(gno, r

′(n)) + 2L+ 1
⩽ 2d(r′(n), o) + 2(2L+ 1).

Because the pole of a curtain is of diameter 1, d(o, r′(n)) ⩽ d(gno, o) −
(S′(n) − (p+ 1)). However, by assumptions (ii) and (v) of Proposition 6.1,
one gets that d(gno, o) ⩽ (λ + ε)n and S(n) ⩾ An. Recall that by Lem-
ma 3.8, this means that S′(n) ⩾ A′n, where A′ = A

4L+10 . Combining this
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o

γn(k)

gnx

r(n)

hp+3hp

r′(n)

hp+2

gno

Figure 6.4. Illustration of Lemma 6.3.

with the previous result yields

(gnx|gno)o − 1 ⩽ d(o, r′(n)) + 2L+ 1
⇒ (λ−ε)n−1 ⩽ (λ+ε)n−(A′n−(p+1))+2L+1 by Proposition 6.1(1)
⇒ 0 ⩽ (2ε−A′)n+ 2L+ p+ 3.

If A′ > 2ε, there exists n0 large enough such that for all n ⩾ n0, the
above inequality gives a contradiction. As a consequence, if A′ > 2ε, or
equivalently if A > 2(4L+10)ε, there exists n0 such that for all n ⩾ n0, the
number of curtains in cn separating o and {γn(k), gno} is greater than p. □

We can now conclude the proof of Proposition 6.1.
Proof of estimate (3). — Recall that we denote by γ : [0,∞) → X

the geodesic ray that represents y ∈ ∂∞X such that γ(0) = o and by
γn : [0,∞) → X the geodesic ray joining o and gnx. Combining Lemma 6.2
and Lemma 6.3, we get that if A > 2(4L + 10)ε, there exists n0, k0 such
that for all n ⩾ n0 and all k ⩾ k0, cn contains at least 3 pairwise L-
separated curtains that separate {o, γ(k)} on the one side and {gno, γn(k)}
on the other. Call these hyperplanes {h1, h2, h3} and arrange the order so
that hi ⊆ h−

i+1. Denote by mk(n) ∈ h2 some point on the geodesic segment
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o

γ

γ(k)

h1 h2 h3

gno

γn(k)

mk(n)

m′
k(n)

γn

Figure 6.5. Proof of Proposition 6.1

joining γ(k) to γn(k), and m′
k(n) belonging to the geodesic segment [o, gno]

such that d(mk(n),m′
k(n)) ⩽ 2L+ 1, see Figure 6.5. Then we have

2(γ(k) |γn(k))o

= d(γ(k), o) + d(o, γn(k)) − d(γ(k), γn(k))
⩽ d(γ(k), o) + d(o,m′

k(n)) + d(m′
k(n),mk(n))

+ d(mk(n), γn(k)) − d(γ(k), γn(k)) by the triangular inequality
⩽ d(γ(k), o) + d(o,m′

k(n)) − d(γ(k),mk(n)) + 2L+ 1

by Lemma 3.7. Since m′
k(n) is on [o, gno],

d(o,m′
k(n)) = d(o, gno) − d(gno,m

′
k(n)).

We then have:

2(γ(k)|γn(k))o

⩽ d(γ(k), o) + d(o, gno) − d(gno,m
′k(n)) − d(γ(k),mk(n)) + 2L+ 1

= d(γ(k), o) + d(o, gno) − (d(gno,m
′
k(n)) + d(γ(k),mk(n))) + 2L+ 1.

Now observe that

d(γ(k), gno) ⩽ d(gno,m
′
k(n)) + d(γ(k),mk(n)) + d(mk,m

′
k(n))

⩽ d(gno,m
′
k(n)) + d(γ(k),mk(n)) + 2L+ 1 by Lemma 3.7,
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hence d(γ(k), gno) − (2L+ 1) ⩽ d(gno,m
′
k(n)) + d(γ(k),mk(n)). Then

2(γ(k)|γn(k))o

⩽ d(γ(k), o) + d(o, gno) − (d(γ(k), gno) − (2L+ 1)) + 2L+ 1
= d(γ(k), o) + d(o, gno) − d(γ(k), gno) + 2(2L+ 1)
= 2(γ(k)|gno)o + 2(2L+ 1).

As k → ∞, one obtains that (gnx|y)o ⩽ (gno|y)o + (2L+ 1), and the result
follows from (2). □

6.2. Proof of the Central Limit Theorem

In this section, we prove the main result of the paper. Let G be a dis-
crete group and G↷ X a non-elementary action by isometries on a proper
CAT(0) space X. Let µ ∈ Prob(G) be an admissible probability measure
on G with finite second moment, and assume that G contains a rank one
element. Let o ∈ X be a basepoint of the random walk. Let λ be the (pos-
itive) drift of the random walk provided by Theorem 4.10. We assume the
action on X to be non elementary and rank one, hence due to Proposi-
tion 3.16, there exists a number L ⩾ 0 such that G acts by isometries
on XL = (X, dL) non elementarily. Then one can consider the random
walk (Zn(ω)o)n as a random walk on (X, dL), which we will write (Znõ)n

when the context is not clear. The model (X, dL) is hyperbolic, so we can
apply the results of Maher and Tiozzo [29] summarized in Section 4. In
particular, due to Theorem 4.1 (along with Gouël’s result recalled here in
Remark 4.2 for non-separable hyperbolic spaces), the random walk (Znõ)n

in XL converges to a point of the Gromov boundary ∂XL of (X, dL).
Moreover, since we assume µ to have finite first moment (for the action

on the CAT(0) space X), and since d(x, y) + 1 ⩾ dL(x, y) for all x, y ∈ X,
the measure µ is also of finite first moment for the action on the hyperbolic
model (X, dL). In particular, the drift λ̃ of the random walk (Znõ)n is
almost surely positive. In other words, we have that P-almost surely,

lim
n→∞

1
n
d(Zn(ω)õ, õ) = λ̃ > 0.

Due to Theorem 4.6, there exists a unique µ-stationary probability mea-
sure ν on X. If we define qµ ∈ Prob(G) by qµ(g) = µ(g−1), qµ is still admissi-
ble and of finite second moment. We denote by qν the unique qµ-stationary
measure on X.
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We recall that the Busemann cocycle β : G×X → R is defined by:

β(g, x) = bx(g−1o).

Our goal is to apply Theorem 5.3 to the Busemann cocycle β. The results
of Section 5 show that proving a central limit theorem for the random
walk (Zn(ω)o)n amounts to proving that β is centerable. As in the works
of [3], [14] and [22], the natural candidate to solving the cohomological
equation (5.8) is the function:

ψ(x) = −2
∫

X

(x |y)odqν(y).

Proposition 6.4. — Let G be a discrete group and G ↷ X a non-
elementary action by isometries on a proper CAT(0) space X. Let µ ∈
Prob(G) be an admissible probability measure on G with finite second
moment, and assume that G contains a rank one element. Let o ∈ X be a
basepoint of the random walk. Then the Borel map ψ(x) =

∫
X

(x |y)o dqν(y)
is well-defined and essentially bounded.

In order to show that ψ is well-defined and bounded, we need the follow-
ing statement, which resembles [3, Proposition 4.2].

Proposition 6.5. — Let G be a discrete group and G ↷ X a non-
elementary action by isometries on a proper CAT(0) space X. Let µ ∈
Prob(G) be an admissible probability measure on G with finite second
moment, and assume that G contains a rank one element. Let o ∈ X be a
basepoint for the random walk (Zn(ω)o)n. Let λ be the (positive) drift of
the random walk, and ν a µ-stationary measure on X. Assume that there
exists a > 0 and (Cn)n ∈ ℓ1(N) such that for almost every x, y ∈ X, we
have, for every n:

(1) P((Zno |Znx)o ⩽ an) ⩽ Cn;
(2) P((Zno |y)o ⩾ an) ⩽ Cn;
(3) P((Znx |y)o ⩾ an) ⩽ Cn.

Then one has:

sup
x∈X

∫
X

(x |y)odν(y) < ∞.
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Proof. — Suppose that there exist a > 0, (Cn)n ∈ ℓ1(N) such that for
almost every x, y ∈ X, we have estimates (1), (2) and (3). We get:

ν({x ∈ X | (x |y) ⩾ an})

=
∫

X

µ∗n({g ∈ G | (gx |y)o ⩾ an})dν(x) by µ-stationarity

⩽
∫

X

Cndν(x) = Cn by estimate 3.

Then, define An,y := {x ∈ X | (x |y)o ⩾ an}, so that by splitting along the
subsets An−1,y −An,y, one gets∫

X

(x |y)odν(x) ⩽
∑
n⩾1

an(ν(An−1,y) − ν(An,y))

⩽
∑
n⩾1

an(Cn−1 − Cn)

= a+
∑
n⩾1

aCn(n+ 1 − n) < ∞. □

We want to show that estimates from Proposition 6.5 hold. As we will see,
estimates (1) and (2) are quite straightforward to check using the positivity
of the drift. Most of the work concerns estimate (3).

Combining Proposition 5.5 with Theorem 4.10 and [2, Proposition 3.2],
one obtains the following:

Proposition 6.6. — Let G be a discrete group and G ↷ X a non-
elementary action by isometries on a proper CAT(0) space X. Let µ ∈
Prob(G) be an admissible probability measure on G with finite second
moment, and assume that G contains a rank one element. Let o ∈ X be a
basepoint of the random walk. Let λ be the (positive) drift of the random
walk. Then, for every ε > 0, there exists (Cn)n ∈ ℓ1(N) such that for any
x ∈ X,

P(|β(Zn, x) − nλ| ⩾ εn) ⩽ Cn;(6.1)

P(|β(Z−1
n , x) − nλ| ⩾ εn) ⩽ Cn;(6.2)

P(|d(Zno, o) − nλ| ⩾ εn) ⩽ Cn.(6.3)

Proof. — Recall that by Proposition 5.5, β is a continuous cocycle such
that ∫

G

sup
x∈X

|β(g, x)|2dµ(g) < ∞ and
∫

G

sup
x∈X

|β(g, x)|2dqµ(g) < ∞.
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Moreover,

λ =
∫

G×X

β(g, x)dµ(g)dν(x) =
∫

G×X

β(g, x)dqµ(g)dqν(x).

We can then apply [2, Proposition 3.2]: for every ε > 0, there exists a
sequence (Cn) ∈ ℓ1(N) such that for every x ∈ X,

P
(
ω ∈ Ω :

∣∣∣∣β(Zn(ω), x)
n

− λ

∣∣∣∣ ⩾ ϵ

)
⩽ Cn.

The same goes for qµ and qν, which gives estimates (6.1) and (6.2).
(6.3) is then a straightforward consequence of Proposition 4.11. □

The following Lemma will also be important in the proof of Proposi-
tion 6.4.

Lemma 6.7. — Let G be a discrete group and G↷ X a non-elementary
action by isometries on a proper CAT(0) space X. Let µ ∈ Prob(G) be
an admissible probability measure on G with finite second moment, and
assume that G contains a rank one element. Let o ∈ X be a basepoint of
the random walk. Let λ be the (positive) drift of the random walk.

Then there exist L > 0, λL > 0 such that almost surely,

lim inf
n

dL(Zno, o)
n

= λL.

Moreover, there exists A > 0 and (Cn) ∈ ℓ1(N) such that

P
(
dL(Zno, o) < An

)
⩽ Cn.

Proof. — The action G↷ (X, d) is non elementary and contains a rank
one element, hence by Proposition 3.16, there exists L such that the action
G ↷ (X, dL) is non-elementary as the loxodromic isometries g and h are
independent. We can then apply Theorem 4.4, which gives the Lemma. □

Let us now complete the proof of Proposition 6.4.

Proof of Proposition 6.4. — By assumptions, we can apply Theorem 4.1:
there exists L > 0 such that (Zn(ω)o)n converges in (XL, dL) to a point zL

of the boundary. By Theorem 4.6, there is a unique µ-stationary measure
ν on ∂∞X, and this measure is non-atomic.

Fix A as in Lemma 6.7, and (Cn)n ∈ ℓ1(N) such that

P
(
dL(Zno, o) < An

)
< Cn.
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Now take 0 < ε < min( A
2(4L+10) , λ/2). Due to Proposition 6.6, there exists

a sequence C ′
n ∈ ℓ1(N) such that

P(|β(Zn, x) − nλ| ⩾ εn) ⩽ C ′
n

P(|β(Z−1
n , x) − nλ| ⩾ εn) ⩽ C ′

n

P(|d(Zno, o) − nλ| ⩾ εn) ⩽ C ′
n.

We can assume that Cn = C ′
n for all n. Then for ν-almost every x, y ∈ ∂∞X,

we have the quantitative assumptions in Proposition 6.1:
(i) {Zno}n converges in (XL, dL) to a point of the boundary zL ∈ ∂XL,

whose image in ∂∞X by the embedding I is not y;
(ii) P

(
dL(Zno, o) ⩾ An

)
⩾ 1 − Cn;

(iii) P
(
|bx(Z−1

n o) − nλ| ⩽ εn
)
⩾ 1 − Cn;

(iv) P
(
|by(Zno) − nλ| ⩽ εn

)
⩾ 1 − Cn;

(v) P
(
|d(gZno, o) − nλ| ⩽ εn

)
⩾ 1 − Cn.

As a consequence, one obtains that for ν-almost every x, y ∈ ∂∞X, the
probability that these estimates are not satisfied is bounded above by 4Cn.
Now choosing a ∈ (ε, λ− ε), we get that for n large enough,

(1) P
(
(gnx |gno)o ⩾ an

)
⩾ 1 − 4Cn;

(2) P
(
(y |gno)o ⩽ an

)
⩾ 1 − 4Cn;

(3) P
(
(y |gnx)o ⩽ an

)
⩾ 1 − 4Cn.

Since the sequence (4Cn)n is still summable, we can apply Proposi-
tion 6.5, that states that the function ψ defined by

ψ(x) = −2
∫

X

(x |y)odqν(y)

is well-defined, and Borel by Fubini. Moreover, ψ is essentially bounded:

sup
x∈X

∫
X

(x |y)odν(y) < ∞. □

Corollary 6.8. — Under the same assumptions as in Proposition 6.4,
the cocycle β(g, x) = bx(g−1o) is centerable.

Proof. — By Proposition 6.4, the function ψ defined by

ψ(x) = −2
∫

X

(x |y)odqν(y).

is well-defined, Borel and essentially bounded. Also, as observed in [3,
Lemma 1.2], a quick computation shows that for all g ∈ G, x, y ∈ X:

bx(g−1o) = −2(x |g−1y)o + 2(gx |y)o + by(go).
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Fix x ∈ X. Integrate this equality on (G× ∂∞X,µ⊗ qν) gives∫
G

β(g, x)dµ(g)

= −2
∫

G

∫
∂∞X

(x |g−1y)odµ(g)dqν(y)

+ 2
∫

G

∫
∂∞X

(gx |y)odµ(g)dqν(y) +
∫

G

∫
∂∞X

β(g−1, x)dµ(g)dqν(y)

= −2
∫

G

∫
∂∞X

(x |gy)odqµ(g)dqν(y) −
∫

G

ψ(gx)dµ(g)

+
∫

G

∫
∂∞X

β(g, x)dqµ(g)dqν(y).

But ∫
G

∫
∂∞X

(x |gy)odqµ(g)dqν(y) =
∫

∂∞X

(x|y)odqν(y)

because qν is qµ-stationary. Also, by point (3) in Proposition 5.5, we have
that

(6.4)
∫

G

∫
∂∞X

β(g, x)dqµ(g)dqν(y) = λ.

Combining these, we get:∫
G

β(g, x)dµ(g) = ψ(x) −
∫

G

ψ(gx)dµ(g) + λ.

Hence if we define β0(g, x) = β(g, x) − ψ(x) + ψ(gx), we obtain that for
all x ∈ X,

(6.5)
∫

G

β0(g, x)dµ(g) = λ,

and the cocycle β0 has constant drift λ. Then by Remark 5.2, β is centerable
with average λ, as wanted. □

We can now state the following.

Theorem 6.9. — Let G be a discrete group and G ↷ X a non-elem-
entary action by isometries on a proper CAT(0) space X. Let µ ∈ Prob(G)
be an admissible probability measure on G with finite second moment, and
assume that G contains a rank one element. Let o ∈ X be a basepoint of
the random walk. Let λ be the (positive) drift of the random walk. Then
the random variables ( 1√

n
(d(Zno, o) −nλ))n converge in law to a Gaussian

distribution Nµ. Furthermore, the variance of Nµ is given by

(6.6)
∫

G×∂∞X

(bx(g−1o) − ψ(x) + ψ(gx) − λ)2dµ(g)dν(x).
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Proof. — By Corollary 6.8, the cocycle β is centerable, with average λ.
Since the measure ν is the unique µ-stationary measure on X, we can
then apply Theorem 5.3: the random variables ( 1√

n
(β(Zn(ω), x) − nλ))n

converge to a Gaussian law Nµ. But thanks to Proposition 4.11, this is
equivalent to the convergence of the random variables ( 1√

n
d(Zn(ω)o, o) −

nλ)n to a Gaussian law. Moreover, by Theorem 5.3 and Proposition 5.5,
the covariance 2-tensor of the limit law is given by∫

G×∂∞X

(β0(g, z) − λ)2dµ(g)dν(z),

where β0(g, x) = β(g, x) − ψ(x) + ψ(gx). This yields the result. □

In order to prove Theorem 1.1, it only remains to prove that the limit
law is non-degenerate. This is what we do in the next Proposition.

Proposition 6.10. — With the same assumptions and notations as in
Theorem 6.9, the covariance 2-tensor of the limit law satisfies:∫

G×∂∞X

(β0(g, z) − λ)2dµ(g)dν(z) > 0.

In particular, the limit law Nµ of the random variables ( 1√
n

(d(Zno, o) −
nλ))n is non-degenerate.

Proposition 6.11. — With the same assumptions and notations as in
Theorem 6.9, the covariance 2-tensor of the limit law satisfies:∫

G×∂∞X

(β0(g, z) − λ)2dµ(g)dν(z) > 0.

In particular, the limit law Nµ of the random variables ( 1√
n

(d(Zno, o) −
nλ))n is non-degenerate.

In the course of the proof, we shall use the following fact. We give the
proof for completeness.

Lemma 6.12. — We use the same assumptions and notations as in The-
orem 6.9. Let g ∈ G be a contracting isometry of X, and let ξ+ ∈ ∂∞X

be its attracting fixed point at infinity. Then ξ+ ∈ supp(ν), where ν is the
unique µ-stationary measure on X.

Proof. — Denote by ξ− ∈ ∂∞X the repelling fixed point in of g. The
isometry g is contracting, hence by [21, Lemma 4.4] it acts on ∂∞X with
North-South dynamics. This means that for every neighbourhood U of ξ+,
V of ξ− in ∂∞X, there exists k such that for all n ⩾ k, gn(∂∞X − V ) ⊆ U

and g−n(∂∞X − U) ⊆ V . It is standard that ν is non-atomic, see for
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instance [27, Lemme 4.2.6]. Hence there exists a neighbourhood V of ξ−

such that ν(∂∞X−V ) > 0. Fix such a V , and let U be any neighbourhood
of ξ+. Take k large enough so that for all n ⩾ k, gn(∂∞X − V ) ⊆ U . Since
µ is admissible, there exists p′ ∈ N such that gk ∈ supp(µ∗p′). Check that
ν is still µ∗p′ -stationary, therefore∑

h∈G

ν(h−1U)µ∗p′
(h) = ν(U).

In particular, by North-South dynamics,

ν(U) ⩾ ν(g−kU)µ∗p′
(gk) ⩾ ν(∂∞X − V )µ∗p′

(gk) > 0.

This is true for every neighbourhood U of ξ+, hence ξ+ ∈ supp(ν). □

Proof of Proposition 6.11. — Let g be a contracting isometry in G.
Recall that g has an axis γ ⊆ X on which g acts as a translation, and let
ξ+, ξ− be its attracting and repelling fixed points in ∂∞X respectively. We
let l(g) = lim d(gno,o)

n be the translation length of g in (X, d). Observe that

(6.7) l(g) = lim
n

bξ+(g−no)
n

,

where bξ+ is the horofunction centered on ξ+ and based at o. Indeed, if o
belongs to γ, then bξ+(g−no) = d(gno, o) and Equation (6.7) is true. If o
does not belong to γ, take o′ ∈ γ, and by triangular inequality,∣∣bξ+(g−1o) − bo′

ξ+(g−1o′)
∣∣ ⩽ 2d(o, o′),

where bo′

ξ+ is the horofunction with basepoint o′. Since

l(g) = lim
n

1
n
bo′

ξ+(g−no′),

we obtain that
l(g) = lim

n

1
n
bξ+(g−no).

Suppose by contradiction that
∫

G×∂∞X
(β0(h, z) − λ)2dµ(h)dν(z) = 0.

This means that for almost every ξ ∈ supp(ν) and h ∈ supp(µ),

bξ(h−1o) − λ = ψ(ξ) − ψ(hξ).

Since ψ is bounded and continuous, we get that for every ξ ∈ supp(ν) and
every h ∈ supp(µ), |bξ(h−1o) − λ| ⩽ 2∥ψ∥.

Now consider the random walk generated by µ∗p, for p ⩾ 1. Observe
that µ∗p is still admissible of finite second moment and that ν is still a µ∗p-
stationary measure on ∂∞X. We can then apply Theorems 4.10 and 6.9,
so that the random walk generated by µ∗p converges to the boundary with
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positive drift lX(µ∗p) = pλ > 0. By the previous argument, for almost
every ξ ∈ supp(ν) and every h ∈ supp(µ∗p),

(6.8) |bξ(h−1o) − pλ| ⩽ 2∥ψ∥.

Let g be a contracting element in G, and let ξ+ be its attracting fixed
point. Because µ is admissible, there exists m such that µ∗m(g) > 0.
Then by Equation (6.8), for all n ⩾ 1, |bξ+(g−no) − nmλ| ⩽ 2∥ψ∥. By
Lemma 6.12, we can apply Equation (6.7), and we obtain that

lim
n

bξ+(g−no)
n

= l(g) = mλ.

But there also exists q∈N∗ such that 1∈supp(µ∗q), hence g∈supp(µ∗(m+q))
and by the same argument, l(g) = (m + q)λ. Since by Theorem 4.10, λ is
positive, we get a contradiction. □
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