The Teichmüller–Randers metric
[La métrique de Teichmüller–Randers]
Annales de l'Institut Fourier, Online first, 24 p.

In this paper, we introduce a new asymmetric weak metric on the Teichmüller space of a closed orientable surface with (possibly empty) punctures. This new metric, which we call the Teichmüller–Randers metric, is an asymmetric deformation of the Teichmüller metric and is obtained by adding to the infinitesimal form of the Teichmüller metric a differential 1-form. We study basic properties of the Teichmüller–Randers metric. In the case when the 1-form is exact, any Teichmüller geodesic between two points is also a unique Teichmüller–Randers geodesic between them. A particularly interesting case is when the differential 1-form is the differential of the logarithm of the extremal length function associated with a measured foliation. We show that in this case the Teichmüller–Randers metric is incomplete in any Teichmüller disc, and we give a characterisation of geodesic rays with bounded length in this disc in terms of their directing measured foliations.

Dans cet article, nous introduisons une nouvelle métrique asymétrique sur l’espace de Teichmüller d’une surface fermée orientable avec ou sans perforations que nous appelons la métrique de Teichmüller–Randers. C’est une déformation asymétrique de la métrique de Teichmüller obtenue en ajoutant une forme différentielle de degré 1 à la forme infinitésimale de cette dernière. Nous étudions les propriétés de base de cette nouvelle métrique. Nous démontrons que dans le cas où la forme différentielle ajoutée est exacte, toute géodésique entre deux points pour la métrique de Teichmüller est aussi une géodésique unique pour la métrique de Teichmüller–Randers. Un cas particulièrement intéressant est celui où la forme différentielle est la différentielle du logarithme de la fonction longueur extrémale associée à un feuilletage mesuré. Nous montrons que dans ce cas la métrique de Teichmüller–Randers restreinte à un disque de Teichmüller quelconque n’est pas complète et nous caractérisons les rayons géodésiques de longueur bornée dans ce disque.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3716
Classification : 53B40, 30F60, 32G15
Keywords: Thurston metric, Teichmüller space, Teichmüller disc, Finsler manifold, Randers metric, Teichmüller–Randers metric, extremal length
Mots-clés : métrique de Thurston, espace de Teichmüller, disque de Teichmüller, variété de Finsler, métrique de Randers, métrique de Teichmüller–Randers, longueur extrémale

Miyachi, Hideki 1 ; Ohshika, Ken’ichi 2 ; Papadopoulos, Athanase 3

1 School of Mathematics and Physics College of Science and Engineering Kanazawa University Kakuma-machi, Kanazawa Ishikawa 920-1192 (Japan)
2 Department of Mathematics Gakushuin University Mejiro, Toshima-ku Tokyo 171-8588 (Japan)
3 Institut de Recherche Mathématique Avancée Université de Strasbourg et CNRS 7 rue René Descartes 67084 Strasbourg Cedex (France)
@unpublished{AIF_0__0_0_A4_0,
     author = {Miyachi, Hideki and Ohshika, Ken{\textquoteright}ichi and Papadopoulos, Athanase},
     title = {The {Teichm\"uller{\textendash}Randers} metric},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3716},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Miyachi, Hideki
AU  - Ohshika, Ken’ichi
AU  - Papadopoulos, Athanase
TI  - The Teichmüller–Randers metric
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3716
LA  - en
ID  - AIF_0__0_0_A4_0
ER  - 
%0 Unpublished Work
%A Miyachi, Hideki
%A Ohshika, Ken’ichi
%A Papadopoulos, Athanase
%T The Teichmüller–Randers metric
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3716
%G en
%F AIF_0__0_0_A4_0
Miyachi, Hideki; Ohshika, Ken’ichi; Papadopoulos, Athanase. The Teichmüller–Randers metric. Annales de l'Institut Fourier, Online first, 24 p.

[1] Antonakoudis, Stergios M. Isometric disks are holomorphic, Invent. Math., Volume 207 (2017) no. 3, pp. 1289-1299 | DOI | MR | Zbl

[2] Belkhirat, Abdelhadi; Papadopoulos, Athanase; Troyanov, Marc Thurston’s weak metric on the Teichmüller space of the torus, Trans. Am. Math. Soc., Volume 357 (2005) no. 8, pp. 3311-3324 | DOI | MR | Zbl

[3] Busemann, Herbert Recent synthetic differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, 54, Springer, 1970, vii+110 pages | DOI | MR | Zbl

[4] Earle, Clifford J.; Gardiner, Frederick P. Geometric isomorphisms between infinite-dimensional Teichmüller spaces, Trans. Am. Math. Soc., Volume 348 (1996) no. 3, pp. 1163-1190 | DOI | MR | Zbl

[5] Earle, Clifford J.; Kra, Irwin On isometries between Teichmüller spaces, Duke Math. J., Volume 41 (1974), pp. 583-591 | MR | Zbl

[6] Fathi, Albert; Laudenbach, François; Poénaru, Valentin Travaux de Thurston sur les surfaces, Astérisque, 66, Société Mathématique de France, 1979, 284 pages | MR | Zbl

[7] Gardiner, Frederick P. Measured foliations and the minimal norm property for quadratic differentials, Acta Math., Volume 152 (1984) no. 1-2, pp. 57-76 | DOI | MR | Zbl

[8] Gardiner, Frederick P. Teichmüller theory and quadratic differentials, Pure and Applied Mathematics, John Wiley & Sons, 1987, xviii+236 pages | MR | Zbl

[9] Hamilton, Richard S. Extremal quasiconformal mappings with prescribed boundary values, Trans. Am. Math. Soc., Volume 138 (1969), pp. 399-406 | DOI | MR | Zbl

[10] Imayoshi, Yôichi; Taniguchi, Masahiko An introduction to Teichmüller spaces, Springer, 1992, xiv+279 pages | DOI | MR | Zbl

[11] Kerckhoff, Steven; Masur, Howard; Smillie, John Ergodicity of billiard flows and quadratic differentials, Ann. Math., Volume 124 (1986) no. 2, pp. 293-311 | DOI | MR | Zbl

[12] Kruškal’, Samuel L. On the theory of extremal quasiconformal mappings, Sib. Mat. Zh., Volume 10 (1969), pp. 573-583 | MR | Zbl

[13] Marden, Albert; Masur, Howard A foliation of Teichmüller space by twist invariant disks, Math. Scand., Volume 36 (1975) no. 2, pp. 211-228 | DOI | MR | Zbl

[14] Miyachi, Hideki Teichmüller rays and the Gardiner-Masur boundary of Teichmüller space, Geom. Dedicata, Volume 137 (2008), pp. 113-141 | DOI | MR | Zbl

[15] Miyachi, Hideki Teichmüller rays and the Gardiner-Masur boundary of Teichmüller space II, Geom. Dedicata, Volume 162 (2013), pp. 283-304 | DOI | MR | Zbl

[16] Miyachi, Hideki Extremal length geometry, Handbook of Teichmüller theory. Vol. IV (IRMA Lectures in Mathematics and Theoretical Physics), Volume 19, European Mathematical Society, 2014, pp. 197-234 | DOI | MR | Zbl

[17] Miyachi, Hideki; Ohshika, Ken’ichi; Papadopoulos, Athanase Tangent spaces of the Teichmüller space of the torus with Thurston’s weak metric, Ann. Fenn. Math., Volume 47 (2022) no. 1, pp. 325-334 | DOI | MR | Zbl

[18] Nag, Subhashis The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, 1988, xiv+427 pages | MR | Zbl

[19] Randers, Gunnar On an asymmetrical metric in the fourspace of general relativity, Phys. Rev., II. Ser., Volume 59 (1941), pp. 195-199 | MR | Zbl

[20] Royden, Halsey L. Report on the Teichmüller metric, Proc. Natl. Acad. Sci. USA, Volume 65 (1970), pp. 497-499 | DOI | MR | Zbl

[21] Royden, Halsey L. Automorphisms and isometries of Teichmüller space, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) (Annals of Mathematics Studies), Volume 66, Princeton University Press, 1971, pp. 369-383 | DOI | MR | Zbl

[22] Strebel, Kurt Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete, 5, Springer, 1984, xii+184 pages | DOI | MR | Zbl

[23] Teichmüller, Oswald Extremale quasikonforme Abbildungen und quadratische Differentiale, Abh. Preuß. Akad. Wiss. Math.-Nat. Kl., Volume 1939 (1940) no. 22, pp. 1-197 | MR | Zbl

[24] Teichmüller, Oswald Extremal quasiconformal mappings and quadratic differentials, Handbook of Teichmüller theory. Vol. V (IRMA Lectures in Mathematics and Theoretical Physics), Volume 26, European Mathematical Society, 2016, pp. 321-483 | DOI | MR | Zbl

[25] Walsh, Cormac The asymptotic geometry of the Teichmüller metric, Geom. Dedicata, Volume 200 (2019), pp. 115-152 | DOI | MR | Zbl

Cité par Sources :