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THE TEICHMÜLLER–RANDERS METRIC

by Hideki MIYACHI,
Ken’ichi OHSHIKA & Athanase PAPADOPOULOS (*)

Abstract. — In this paper, we introduce a new asymmetric weak metric on the
Teichmüller space of a closed orientable surface with (possibly empty) punctures.
This new metric, which we call the Teichmüller–Randers metric, is an asymmetric
deformation of the Teichmüller metric and is obtained by adding to the infinitesimal
form of the Teichmüller metric a differential 1-form. We study basic properties
of the Teichmüller–Randers metric. In the case when the 1-form is exact, any
Teichmüller geodesic between two points is also a unique Teichmüller–Randers
geodesic between them. A particularly interesting case is when the differential 1-
form is the differential of the logarithm of the extremal length function associated
with a measured foliation. We show that in this case the Teichmüller–Randers
metric is incomplete in any Teichmüller disc, and we give a characterisation of
geodesic rays with bounded length in this disc in terms of their directing measured
foliations.

Résumé. — Dans cet article, nous introduisons une nouvelle métrique asymé-
trique sur l’espace de Teichmüller d’une surface fermée orientable avec ou sans
perforations que nous appelons la métrique de Teichmüller–Randers. C’est une
déformation asymétrique de la métrique de Teichmüller obtenue en ajoutant une
forme différentielle de degré 1 à la forme infinitésimale de cette dernière. Nous
étudions les propriétés de base de cette nouvelle métrique. Nous démontrons que
dans le cas où la forme différentielle ajoutée est exacte, toute géodésique entre
deux points pour la métrique de Teichmüller est aussi une géodésique unique pour
la métrique de Teichmüller–Randers. Un cas particulièrement intéressant est celui
où la forme différentielle est la différentielle du logarithme de la fonction longueur
extrémale associée à un feuilletage mesuré. Nous montrons que dans ce cas la mé-
trique de Teichmüller–Randers restreinte à un disque de Teichmüller quelconque
n’est pas complète et nous caractérisons les rayons géodésiques de longueur bornée
dans ce disque.

Keywords: Thurston metric, Teichmüller space, Teichmüller disc, Finsler manifold, Ran-
ders metric, Teichmüller–Randers metric, extremal length.
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1. Introduction

A Randers metric is a deformation of a Riemannian or Finsler metric
obtained by adding to its infinitesimal form a differential 1-form. In [17],
in the case where the surface is a torus, we exhibited a natural family of
Randers metrics which connects the Teichmüller metric on the Teichmüller
space of that surface to its Thurston asymmetric metric. It is natural to
study now the same kind of deformation of the Teichmüller metric on the
Teichmüller space Tg,m of a general closed orientable surface Σg,m of genus
g with m punctures, and this is what we do in the present paper. It turns
out that the metrics in this family are interesting to study in this general
setting and this is what we propose to show in this paper.

In its original form given in [19], a Randers metric is associated with an
n-dimensional Riemannian manifold (M, g) and a 1-form ω on M satisfy-
ing ∥ω∥g < 1 at every point of M . In this situation, the associated Ran-
ders metric is a Finsler asymmetric metric on M defined infinitesimally by
F (v) = g(v, v)1/2 +ω(v). Randers metrics have applications in the physical
world, and they have been widely studied since their appearance. The same
construction also works when the original metric is not Riemannian, but
Finsler, like in the case we study here.

In this paper we study a Randers deformation of the infinitesimal form of
the Teichmüller metric κ on Tg,m, which we call the Teichmüller–Randers
metric associated with a real 1-form ω, defined by

(1.1) κω (x; v) = κ (x; v) + ω(v)

where x is a point in Teichmüller space and v a tangent vector at x.
In a natural way, the lengths of differentiable arcs on Tg,m can be defined

using this metric, and the distance δω
T between two points is set to be the

infimum of the lengths of arcs connecting them. The Teichmüller–Randers
distance δω

T may take negative values for a general 1-form ω, but it gives a
Finsler metric when the Teichmüller norm ∥ω∥T (x) of ω at x (i.e., the supre-
mum of the value of ω on the tangent vectors at x with Teichmüller norm
⩽ 1) is less than 1 at every point x of Tg,m. The Teichmüller–Randers metric
is a weak metric when the Teichmüller norm of ω is 1 (see Section 2.1).

We have already introduced and studied the Teichmüller–Randers met-
ric in the case of the torus. In [2], Belkhirat, Papadopoulos and Troyanov
showed that Thurston’s asymmetric metric coincides with the weak dis-
tance on the upper-half plane H defined by

(1.2) δ(ζ1, ζ2) = log sup
x∈R

∣∣∣∣ζ2 − x

ζ1 − x

∣∣∣∣
ANNALES DE L’INSTITUT FOURIER



THE TEICHMÜLLER–RANDERS METRIC 3

for ζ1, ζ2 ∈ H if we identify the Teichmüller space of a torus T with the
hyperbolic plane by choosing a generator system a, b of π1(T ), and consider
normalised flat structures on T such that a has length 1. In [17], we showed
that this weak distance is indeed a Finsler metric and that it is also given
by the formula

(1.3) dshyp + 1
2d log Im(ζ),

where dshyp is the hyperbolic metric on H of constant curvature −4. Since
the Teichmüller metric coincides with the hyperbolic metric in this setting,
the weak distance in (1.2) is nothing but the Teichmüller–Randers metric
given by (1.3), that is, associated with the 1-form

ω = −1
2d log Im(ζ)−1.

For 0 ⩽ t ⩽ 1, we define δt to be the weak metric defined by the Finsler
norm dshyp + t

2 d log Im(ζ). Then {δt} constitutes a continuous family of
Teichmüller–Randers metrics joining the hyperbolic metric and δ. We note
that the 1-form ω = − 1

2 d log Im(ζ)−1 is exact and Im(ζ)−1 coincides with
the extremal length of the isotopy class of simple closed curves correspond-
ing to a.

We now turn to stating our main theorems. Before that, we recall that
the Teichmüller distance is a uniquely geodesic metric, and that any ge-
odesic extends to a holomorphic disc called a Teichmüller disc. Namely,
for any two points in Tg,m, there is a holomorphic (or anti-holomorphic)
isometry (H, dhyp) → (Tg,m, dT ) whose image contains the two points, and
this image, which is unique, is called a Teichmüller disc. A Teichmüller disc
is determined by a holomorphic quadratic differential q, hence we denote
it by Dq (see Section 4.2).

For a measured foliation F on Σg,m, we denote by Extx(F ) the function
on Tg,m taking a point x to the extremal length of a measured foliation F at
x, and by qF,x the Hubbard–Masur differential on x for F (see Section 2.2).
We shall show the following three main theorems.

Theorem 1.1 (Geodesics of the Teichmüller–Randers metric). — Let F
be a measured foliation on Σg,m, and set

ω = −1
2d log Ext(·)(F ).

Then the following hold:
(1) For any 0 ⩽ t ⩽ 1, the (asymmetric) metric space (Tg,m, δ

tω
T ) is a

uniquely geodesic space such that the Teichmüller geodesics are the
geodesics.

TOME 0 (0), FASCICULE 0
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(2) For any x ∈ Tg,m and for any 0 ⩽ t ⩽ 1, the Teichmüller disc
defined by qF,x coincides with the image of an isometric embedding
of (H, δt) into (Tg,m, δ

tω
T ).

Theorem 1.2 (Isometric discs). — Suppose that there is an isome-
try ϕ : (H, δ) → (Tg,m, δ

ω
T ) where ω is exact and satisfies ∥ω∥T ⩽ 1 in a

neighbourhood of the image of ϕ. Then, there is a measured foliation F

on Σg,m such that ϕ is a holomorphic or anti-holomorphic isometry onto
the Teichmüller disc associated with qF,x with x = ϕ(i), and such that
ω = − 1

2 d log Ext(·)(F ) holds on the image of that isometry.

From Theorem 1.1 and Theorem 1.2, for a fixed measured foliation F ,
we have a characteristic property of the geometry of the weak distance
δω

T with ω = − 1
2 d log Ext(·)(F ) on the Teichmüller disc defined by the

Hubbard–Masur differential for F . Since, by Theorem 1.1, any Teichmüller
disc is totally geodesic with respect to δω

T , it is natural to ask how the weak
distance δω

T behaves on Teichmüller discs that are different from the one
associated with qF,x.

Theorem 1.3. — Let F be a measured foliation on Σg,m, and set ω =
− 1

2 d log Ext(·)(F ). For any x ∈ Tg,m and for any measured foliation G on
Σg,m, we have the following.

(1) If qG,x is not a complex constant multiple of qF,x, then the restric-
tion of δω

T to the Teichmüller disc DqG,x
is a weak non-negative

distance function which separates any two points.
(2) The following two conditions are equivalent:

• i(F,G) ̸= 0.
• The Teichmüller geodesic ray directed by qG,x has bounded

length with respect to δω
T .

In particular, the restriction of δω
T to every Teichmüller disc is incomplete.

We note that the weak distance δ on H, which corresponds to the Te-
ichmüller space of a torus, does not separate points. Theorem 1.3 gives a
generalisation of this torus case. See Section 2.1 for more details.

As can be seen in the definition, our Teichmüller–Randers metric depends
on the choice of the (projective class) of a measured foliation F . Because
of this, our metric is not invariant under the entire mapping class group.
Still, if we consider the family of metrics making x and F vary, then the
resulting family is invariant under the action of the mapping class group.

Besides the theorems stated above, we shall also discuss the extension of
the Hamilton–Krushkal condition (see Theorem 3.1), and the Teichmüller–
Randers cometric on the cotangent space (see Theorem 3.3).

ANNALES DE L’INSTITUT FOURIER
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2. Preliminaries

2.1. Weak metric

A weak metric δ on a set X is a map δ : X × X → R satisfying the
following.

(1) δ(x, x) = 0 for every x in X;
(2) δ(x, y) ⩾ 0 for every x and y in X;
(3) δ(x, y) + δ(y, z) ⩾ δ(x, z) for every x, y and z in X.

A weak metric δ is said to separate points if δ(x1, x2) = 0 for x1, x2 ∈
X implies x1 = x2, and to be complete if for any sequence (xn) in X

satisfying δ(xn, xn+m) → 0 as n,m → ∞, the sequence (xn) converges in
X (see [3, I.1]). (Notice that since the metric is not symmetric, the order
of the arguments in δ(x1, x2) is important.)

In [2], the following weak metric was introduced on H. First, for ζ1 ̸=
ζ2 ∈ H, we set

(2.1) M(ζ1, ζ2) = sup
x∈R

∣∣∣∣ζ2 − x

ζ1 − x

∣∣∣∣.
For ζ1 = ζ2, we set M(ζ1, ζ2) = 1. We set

δ(ζ1, ζ2) = logM(ζ1, ζ2) (ζ1, ζ2 ∈ H).

Then, δ is an asymmetric weak metric on H. Furthermore, δ does not
separate points of H. Indeed, when ζ1 = y1i, ζ2 = y2i ∈ H with y1 > y2, we
have δ(ζ1, ζ2) = 0. In particular, δ is not complete (see [2, Proposition 1]).
The distance between ζ1 and ζ2 ∈ H is explicitly given by

δ(ζ1, ζ2) = log
(

|ζ2 − ζ1| + |ζ2 − ζ1|
|ζ1 − ζ1|

)
(see [2]). Hence, any hyperbolic geodesic ray tending to a point on R ⊂ ∂H
has bounded length, and the length of a geodesic ray is infinite only if it
goes upward in the vertical direction.

We note that when we identify H with the Teichmüller space of a torus,
the ideal boundary ∂H is naturally thought of as the Thurston boundary,

TOME 0 (0), FASCICULE 0
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which is the space of projective measured foliations on the torus (see [6]).
Using this identification, we see that the intersection number i(Fx, F∞) is
zero if and only if x = ∞, where [Fx] is the projective measured foliation
corresponding to an arbitrary x ∈ ∂H. This corresponds to the condition
of Theorem 1.3 in the case of the torus.

2.2. Teichmüller theory

We review some infinitesimal Teichmüller theory. We refer the reader
to [10] for more details.

2.2.1. Teichmüller space

Let Σg,m be an orientable surface of type (g,m), that is, of genus g with
m points deleted. The integers g and m may take all non-negative values
except that if g = 0 we assume m ⩾ 4 and if g = 1 we assume that
m ⩾ 1. A marked Riemann surface (X, f) of type (g,m) is a pair of an
analytically finite Riemann surface X of type (g,m) and an orientation-
preserving homeomorphism f : Σg,m → X. Two marked Riemann surfaces
(X1, f1) and (X2, f2) are said to be Teichmüller equivalent if there is a
conformal mapping h : X1 → X2 such that h ◦ f1 is homotopic to f2. The
set Tg,m of Teichmüller equivalence classes of marked Riemann surfaces of
type (g,m) is called the Teichmüller space of analytically finite Riemann
surfaces of type (g,m). The Teichmüller distance dT on Tg,m is defined by

dT (x, y) = 1
2 log inf

h
K(h)

where h ranges over all quasi-conformal maps h : X1 → X2 homotopic to
f2 ◦f−1

1 and where K(h) denotes the maximal quasiconformal dilatation of
h. The Teichmüller space is known to be a complex manifold which is bi-
holomorphically equivalent to a bounded domain in C3g−3+m. Furthermore,
the Teichmüller distance is complete, uniquely geodesic, and coincides with
the Kobayashi distance.

2.2.2. Infinitesimal theory

For a Riemann surface X, let L∞(X) be the complex Banach space of
bounded measurable (−1, 1)-forms µ = µ(z)(dz/dz) on X with the norm

∥µ∥∞ = ess. sup
{

|µ(z)|
∣∣ z ∈ X

}
.

ANNALES DE L’INSTITUT FOURIER
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A form in L∞(X) is called a Beltrami differential.
Let A2(X) be the Banach space of holomorphic quadratic differentials

φ = φ(z)dz2 on X with the norm

∥φ∥1 =
∫

X

|φ(z)|dxdy.

There is a natural pairing between Beltrami differentials and holomorphic
quadratic differentials, defined as follows.

(2.2) L∞(X) ×A2(X) ∋ (µ, φ) 7−→
∫

X

µφ.

Let N∞(X) ⊂ L∞(X) be the subspace orthogonal to A2(X) with respect
to the pairing. Namely,

N∞(X) :=
{
µ ∈ L∞(X)

∣∣∣∣ ∫
X

µφ = 0, ∀ φ ∈ A2(X)
}
.

Two Beltrami differentials µ and ν are said to be infinitesimally Teichmüller
equivalent if µ − ν ∈ N∞(X). The (holomorphic) tangent space TxTg,m

at x = (X, f) ∈ Tg,m is canonically identified with the quotient space
L∞(X)/N∞(X). Hence, for x = (X, f) ∈ Tg,m, the pairing (2.2) descends
to a non-degenerate pairing

TxTg,m ×A2(X) ∋ (v, φ) 7−→ ⟨v, φ⟩ =
∫

X

µφ

where v = [µ] with µ ∈ L∞(X). From this observation, the space A2(X)
is canonically identified with the (holomorphic) cotangent space T ∗

x Tg,m at
x∈Tg,m. A real 1-form ω is presented by ψ∈A2(X) at x=(X, f)∈Tg,m if

ω(v) = Re⟨v, ψ⟩

for all v ∈ TxTg,m. Notice that in general any real 1-form on a complex
manifold is the real part of a (1, 0)-form.

Teichmüller defined in [23, 24] a metric dT on the Teichmüller space,
which is called the Teichmüller metric today, and proved that it is induced
by a Finsler structure. The norm on each tangent space of the Teichmüller
space takes the form of

κ (x; v) = sup
{

Re⟨v, φ⟩
∣∣φ ∈ A2(X), ∥φ∥1 = 1

}
for v ∈ TxTg,m (see Royden [20, 21]). The distance as a Finsler space
coincides with the Teichmüller distance defined above.

We call a Beltrami differential µ on X a Teichmüller differential when
it has a form µ = cφ/|φ| for some φ ∈ A2(X) − {0}. It is known that
the Beltrami differential µ above is infinitesimally extremal in the sense
that ∥v∥∞ ⩾ ∥µ∥∞ for any Beltrami differential v such that ⟨v, ϕ⟩ = ⟨µ, ϕ⟩

TOME 0 (0), FASCICULE 0
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for all ϕ ∈ A2(X). Fix a basepoint x0 = (X0, f0) in Tg,m. For t ⩾ 0 and
φ ∈ A2(X0), we denote by Ft : X0 → Xt = Ft(X0) a quasi-conformal map
with the property that ∂Ft = tanh(t)(φ/|φ|)∂Ft. Then, a path

rφ : [0,∞) ∋ t 7−→ (Xt, Ft ◦ f0) ∈ Tg,m

constitutes a geodesic ray with respect to dT . We call such a geodesic
a Teichmüller geodesic ray emanating from x0. It is known that for any
x ∈ Tg,m −{x0}, there is a unique Teichmüller geodesic ray passing through
x and emanating from x0. Furthermore,

(0,∞) ×
{
φ ∈ A2(X0)

∣∣ ∥φ∥1 = 1
}

∋ (t, φ) 7−→ rφ(t) ∈ Tg,m − {x0}

is a homeomorphism.
Unless (g,m) is either (1, 1) or (0, 4), the Teichmüller metric is not Rie-

mannian. This was known to Teichmüller, but we can prove it just by using
the fact that the group of linear isometries of a tangent (or cotangent) space
of any Riemannian metric is an orthogonal group, whereas by [4, 5, 21] the
linear isometry group of a tangent/cotangent space with respect to the
Teichmüller metric is a union of finite copies of S1.

The following might be well known and follows from the discussion in
the proof of [8, Lemma 3]. For completeness, we give a brief proof.

Lemma 2.1 (Derivative of the Teichmüller norm). — Take x = (X, f) ∈
Tg,m and v0 ∈ TxTg,m − {0}. Suppose that v0 is represented by the Teich-
müller differential βα0/|α0| (with ∥α0∥1 = 1, β > 0). Then

d

dt

∣∣∣∣
t=0

κ (x; v0 + tv) = Re⟨v, α0⟩

for any v ∈ TxTg,m.

Proof. — For t ∈ R, we take αt ∈ A2(X) with ∥αt∥1 = 1 such that

κ (x; v0 + tv) = Re⟨v0 + tv, αt⟩.

We claim that R ∋ t 7→ αt ∈ A2(X) is well-defined and continuous. Indeed,
by the Lebesgue dominated convergence theorem, the map
(2.3)

L1 : A2(X) ∋ α 7−→ ℓα =
[
A2(X) ∋ φ 7−→ ∥α∥1

∫
X

α

|α|
φ

]
∈ A2(X)∗

is continuous with respect to the weak topology on A2(X)∗. Since A2(X) is
finite-dimensional, the weak topology on A2(X)∗ coincides with the topol-
ogy derived from the dual norm (the operator norm). One can see that
Re(ℓα(ψ)) ⩽ ∥α∥1∥ψ∥1 for all ψ ∈ A2(X), and Re(ℓα(φ)) = ∥α∥1∥φ∥1 if
and only if φ = α. Hence, αt is well-defined for t ∈ R, and the map defined

ANNALES DE L’INSTITUT FOURIER
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in (2.3) is injective and proper. Since A2(X) and A2(X)∗ are homeomorphic
to the Euclidean space R6g−6+2m, from the invariance of domains, (2.3) is
homeomorphic. Since

(2.4) L2 : TxTg,m ∋ v 7−→
[
φ 7−→ ⟨v, φ⟩

]
∈ A2(X)∗

is a complex linear isomorphism, and continuous with respect to the Te-
ichmüller metric and the dual norm, we see that the map R ∋ t 7→ αt =
L−1

1 ◦ L2(v0 + tv) ∈ A2(X) is continuous.
Then,

κ (x; v0 + tv) − κ (x; v0) = Re⟨v0 + tv, αt⟩ − Re⟨v0, α0⟩
⩾ Re⟨v0 + tv, α0⟩ − Re⟨v0, α0⟩ = t Re⟨v, α0⟩

and

κ (x; v0 + tv) − κ (x; v0) ⩽ Re⟨v0 + tv, αt⟩ − Re⟨v0, αt⟩
= tRe⟨v, α0⟩ + tRe⟨v, αt − α0⟩
= t Re⟨v, α0⟩ + o(t)

as t → 0. Therefore,∣∣κ (x; v0 + tv) − κ (x; v0) − tRe⟨v, α0⟩
∣∣ = o(t)

as t → 0. □

2.2.3. Measured foliations

Let S be the set of homotopy classes of non-contractible and non-peripheral
simple closed curves on Σg,m. Let WS be the set of formal scalar products
{tα | t ⩾ 0, α ∈ S}, which we call the set of weighted simple closed curves
on Σg,m. Consider the embedding

WS ∋ tα 7−→
[
S ∋ β 7−→ t i(α, β)

]
∈ RS

⩾0,

where i denotes the geometric intersection number. We equip the function
space RS

⩾0 with the pointwise convergence topology. The closure MF of
the image of WS in RS

⩾0 is called the space of measured foliations on Σg,m.
For F ∈ MF , we call the value F (α) the intersection number of F with α,
and denote it by i(F, α). Set i(F, tα) = t i(F, α) for tα ∈ WS. It is known
that the intersection number i(·, ·) on MF × WS extends continuously
to a function i(·, ·) on MF × MF which satisfies i(F,G) = i(G,F ) for
F,G ∈ MF .

TOME 0 (0), FASCICULE 0
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2.2.4. Hubbard–Masur differentials and extremal length

Let x = (X, f) be a point in Tg,m. For q = q(z)dz2 ∈ A2(X), we set

v(q)(α) = inf
α′∈f(α)

∫
α′

∣∣∣Re
(√

q(z)dz
)∣∣∣

for α ∈ S. Regarding v(q) as contained in RS
⩾0, we call it the vertical

foliation of q. It is known that v(q) ∈ MF .
For x = (X, f) ∈ Tg,m and F ∈ MF , there is a unique quadratic differ-

ential qF,x ∈ A2(X) such that i(F, α) = v(q)(α) for all α ∈ S. We call the
differential qF,x the Hubbard–Masur differential for F on x. The norm

Extx(F ) =
∫

X

|qF,x(z)|dxdy

is called the extremal length of F on x. The extremal length function

Tg,m × MF ∋ (x, F ) 7−→ Extx(F )

is continuous. When F ∈ MF is fixed, the extremal length function is of
class C1. The following formula, called the Gardiner formula, is known:

(2.5) d Ext·(F ) = −2 Re
∫

X

µqF,x

for v = [µ] ∈ TxTg,m
∼= L∞(X)/N∞(X) (cf. [7]). Notice that the minus

sign in the right-hand side of (2.5) comes from the fact that qF,x has F
as the vertical foliation, while Gardiner considers the horizontal foliations
when he concludes the formula (2.5).

2.3. Teichmüller–Randers metric

For a given n-dimensional Riemannian manifold (M, g) and a 1-form ω

on M with ∥ω∥g < 1 at every point of M , the associated Randers metric is
a Finsler metric on M defined by the functional F (v) = g(v, v)1/2 + ω(v)
on the tangent space of M . Although in the general literature Randers
metrics refer to deformations of Riemannian metrics by 1-forms, we can
consider such deformations for Finsler (symmetric) metrics in the same
way. Furthermore, even in the case when ∥ω∥g = 1, the Randers metric
makes sense as a weak Finsler metric. In this paper, we study Randers-
type deformations of the Teichmüller metric κ on Tg,m which we explained
in the previous subsection, by taking the 1-form ω as presented in the
introduction:

(2.6) κω (x; v) = κ (x; v) + ω(v).

ANNALES DE L’INSTITUT FOURIER
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As a 1-form ω, we shall consider in particular the form expressed as

−1
2d log Ext(·)(F )

for a measured foliation F on Σg,m. This metric depends on the choice
of F , but only on the projective class of F since we are taking log in the
second term. This metric can be regarded as a generalisation of the weak
Finsler metric which we studied in [17].

2.4. References to background material

We now give some references for the background material which we
briefly presented in this section. The Teichmüller metric was introduced
and studied thoroughly by Teichmüller in his paper [23] (see its English
translation [24]). In this paper there is a long section (§25) on the Finsler
nature of this metric. In the same section, Teichmüller introduced and
studied what are now called Teichmüller discs (holomorphic images of the
hyperbolic plane, defined by quadratic differentials), which he calls com-
plex geodesics. As modern introductions to Teichmüller theory, we refer
the reader to [8] and [10]. For the theory of measured foliations and mea-
sured foliation spaces, we refer the reader to [6], and for a comprehensive
introduction to extremal length, to [16] for instance. For Randers metric,
we refer the reader to Randers’s original paper [18].

3. Extension of the Hamilton–Krushkal condition

In this section, we discuss the infinitesimal extremal property for our
Teichmüller–Randers metric.

Let X be a Riemann surface, and fix φ0 ∈ A2(X). We consider the
following functional on the space L∞(X) of Beltrami differentials:

(3.1) β(µ, φ0) = sup
{∣∣∣∣∫

X

µφ

∣∣∣∣+ Re
∫

X

µφ0

∣∣∣∣∣φ ∈ A2(X), ∥φ∥1 = 1
}

for µ ∈ L∞(X). It immediately follows from the definition that

(3.2) β(µ, φ0) ⩽ ∥µ∥∞ + Re
∫

X

µφ0

for all µ ∈ L∞(X). We say that a Beltrami differential µ is infinitesimally
φ0-extremal if

β(µ, φ0) = ∥µ∥∞ + Re
∫

X

µφ0,

TOME 0 (0), FASCICULE 0
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and that µ satisfies the Hamilton condition if

sup
{∣∣∣∣∫

X

µφ

∣∣∣∣
∣∣∣∣∣φ ∈ A2(X), ∥φ∥1 ⩽ 1

}
= ∥µ∥∞.

It is known that µ ∈ L∞(X) is infinitesimally Teichmüller extremal in the
sense that ∥µ − ν∥∞ ⩾ ∥µ∥∞ for all ν ∈ N∞(X) if and only if it satisfies
the Hamilton condition [9, 12].

Theorem 3.1 (Extension of the Hamilton–Krushkal condition). — Let
X be a Riemann surface and φ0 a holomorphic quadratic differential on X.

(1) If two Beltrami differentials µ, ν ∈ L∞(X) are infinitesimally Te-
ichmüller equivalent, then β(µ, φ0) = β(ν, φ0).

(2) For a Beltrami differential µ ∈ L∞(X), the following three condi-
tions are equivalent:
(a) µ is infinitesimally φ0-extremal;
(b) µ is infinitesimally Teichmüller extremal;
(c) µ satisfies the Hamilton condition.

Proof.

(1). — The assumption that µ and ν are Teichmüller equivalent means
by definition that

∫
X
µφ =

∫
X
νφ for all φ ∈ A2(X). Hence, we have∣∣∣∣∫

X

µφ

∣∣∣∣+ Re
∫

X

µφ0 =
∣∣∣∣∫

X

νφ

∣∣∣∣+ Re
∫

X

νφ0

for all φ ∈ A2(X), which implies β(µ, φ0) = β(ν, φ0).

(2). — We only need to show the equivalence between conditions (2a)
and (2b), for the equivalence of the condition (2c) with (2a) and (2b) follows
immediately then. Suppose that µ is infinitesimally φ0-extremal. Then for
ν ∈ N∞(X), we have

∥µ∥∞ + Re
∫

X

µφ0 = β(µ, φ0) = β(µ− ν, φ0)

⩽ ∥µ− ν∥∞ + Re
∫

X

(µ− ν)φ0 = ∥µ− ν∥∞ + Re
∫

X

µφ0,

hence ∥µ∥∞ ⩽ ∥µ− ν∥∞. This means that µ is infinitesimally Teichmüller
extremal.
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Conversely, suppose that µ is infinitesimally Teichmüller extremal. Then,
by definition, there exists a sequence (φn) in A2(X) such that

∣∣∫
X
µφn

∣∣ →
∥µ∥∞. Therefore,

∥µ∥∞ + Re
∫

X

µφ0 = lim
n→∞

∣∣∣∣∫
X

µφn

∣∣∣∣+ Re
∫

X

µφ0 ⩽ β(µ, φ0).

Combining this with (3.2), we see that µ is infinitesimally φ0-extremal. □

In the case of analytically finite Riemann surfaces, an infinitesimally
Teichmüller extremal Beltrami differential is a Teichmüller–Beltrami dif-
ferential, and vice versa. Hence we have the following.

Corollary 3.2 (Analytically finite case). — Let X be an analytically
finite Riemann surface and φ0 a holomorphic quadratic differential on X.
Then, for µ ∈ L∞(X), the following two conditions are equivalent.

(1) µ is infinitesimally φ0-extremal;
(2) µ is a Teichmüller–Beltrami differential. Namely, there are ψ ∈

A2(X) − {0} and c ⩾ 0 such that µ = cψ/|ψ|.

3.1. Teichmüller–Randers cometric

Let x=(X, f) be a point in Tg,m, and ω a 1-form on Tg,m with ∥ω∥T (x)⩽1.
We define the Teichmüller–Randers cometric Gω on the space of holomor-
phic quadratic differentials, which is identified with the cotangent space as
A2(X) ∼= T ∗

x Tg,m, by

Gω(φ) = sup
κω(x;v)=1

|⟨v, φ⟩| = sup
κω(x;v)=1

Re⟨v, φ⟩

for φ ∈ A2(X). This is dual to the Teichmüller–Randers metric. When
ω = 0, it is known that

G0(φ) = ∥φ∥1.

More generally, if ∥ω∥T (x) < 1 for all x ∈ Tg,m, then Gω defines a norm.
Even if ∥ω∥T (x) = 1 for some x ∈ Tg,m, as we have seen above, Gω defines
an (asymmetric) weak norm on A2(X), whereas Gω is not a norm then.
Indeed, assuming ∥ω∥T (x) = 1, take a tangent vector v ∈ TxTg,m with
κ (x; v) = 1 and ω(v) = −1. Then, κω (x; v) = 0 by definition of κω. Take
α ∈ A2(X) such that Re⟨v, α⟩ = ∥α∥1 = 1, and (vn) ⊂ TxTg,m converging
to v. Then, we have

Re⟨vn, α⟩
κω (x; vn) −→ ∞

as n → ∞, which shows that Gω is not a norm. For this reason, when we
discuss the dual Gω, we always assume that ∥ω∥T (x) < 1.
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Theorem 3.3 (Teichmüller–Randers cometric). — Let x = (X, f) be a
point in Tg,m. Suppose that ω is represented by ψ ∈ A2(X) ∼= T ∗

x Tg,m at x
and that ∥ω∥T (x) = ∥ψ∥1 < 1. Then,

(3.3) Gω(φ) = inf
{
t > 0

∣∣∣∣ ∥∥∥φt − ψ
∥∥∥

1
⩽ 1
}
.

In particular, if φ ̸= 0, then we have∥∥∥∥ φ

Gω(φ) − ψ

∥∥∥∥
1

= 1.

Proof. — By Corollary 3.2, for a Teichmüller–Beltrami differential µ =
α/|α| (α ∈ A2(X)), we have

(3.4) κω
(
x; [µ]

)
= 1 + Re

∫
X

α

|α|
ψ.

We may assume that neither φ nor ψ is 0, for our claim evidently holds if
one of them is 0. From the definition of Gω and (3.4), we have

(3.5) Gω(φ) = sup
κ(x;v)=1

Re⟨v, φ⟩
1 + Re⟨v, ψ⟩

.

If v is represented by the Teichmüller–Beltrami differential φ/|φ|, the func-
tion in the supremum in the right-hand side of (3.5) is positive. Hence we
have Gω(φ) > 0.

Let v0 be a tangent vector represented by a Teichmüller–Beltrami differ-
ential α0/|α0| (∥α0∥1 = 1) which attains the supremum in the right-hand
side of (3.5). Then

Gω(φ) = Re⟨v0, φ⟩
1 + Re⟨v0, ψ⟩

.

We note that Re⟨v0, φ⟩ > 0 and |⟨v0, ψ⟩| < 1 sinceGω(φ) > 0 and ∥ψ∥1 < 1.
For v ∈ TxTg,m, we can compute

Re⟨v0+tv, φ⟩
1+Re⟨v0+tv, ψ⟩

=Gω(φ) + tGω(φ) Re
〈
v,

φ

Re⟨v0, φ⟩
− ψ

1+Re⟨v0, ψ⟩

〉
+o(t)

as t → 0. As remarked above, Gω(φ) > 0. Since the left-hand side of
the above equality attains the supremum in {v |κ(x; v) = 1} at v0, by
Lemma 2.1, we have

Re
〈
v,

φ

Re⟨v0, φ⟩
− ψ

1 + Re⟨v0, ψ⟩

〉
= 0

for all v ∈ TxTg,m with Re⟨v, α0⟩ = 0. This means that there exists t ∈ R
such that

φ

Re⟨v0, φ⟩
− ψ

1 + Re⟨v0, ψ⟩
= tα0.
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By taking pairing with v0 on both sides, we get
Re⟨v0, φ⟩
Re⟨v0, φ⟩

− Re⟨v0, ψ⟩
1 + Re⟨v0, ψ⟩

= t∥α0∥1 = t,

which means t = (1 + Re⟨v0, ψ⟩)−1. Thus we obtain
φ

Gω(φ) − ψ = 1 + Re⟨v0, ψ⟩
Re⟨v0, φ⟩

φ− ψ = α0,

which implies the desired equalities. □

3.2. The case when ω is exact

Assume that ω is a continuous exact form, that is, ω = dhω for some
C1-function hω on Tg,m. Then, the length of any C1-path γ : [a, b] → Tg,m

is expressed as∫ b

a

κω
(
γ(t); γ̇(t)

)
dt =

∫ b

a

(
κ
(
γ(t); γ̇(t)

)
+ ω

(
γ̇(t)

))
dt

=
∫ b

a

κ
(
γ(t); γ̇(t)

)
dt+ hω

(
γ(b)

)
− hω

(
γ(a)

)
with respect to the Teichmüller–Randers metric κω. Therefore, taking the
infimum on the lengths of paths connecting x1 ∈ Tg,m to x2 ∈ Tg,m, the
weak metric δω

T associated with the Teichmüller–Randers metric satisfies

(3.6) δω
T (x1, x2) = dT (x1, x2) + hω(x2) − hω(x1).

This equality implies the following proposition.

Proposition 3.4. — For any continuous exact form ω on Tg,m, any
Teichmüller geodesic is a unique geodesic with respect to the Teichmüller–
Randers distance δω

T .

This gives a generalisation of Theorem 2.1 in [17]. We also note that in the
case when ω is exact, the symmetrisation of the weak metric associated with
the Teichmüller–Randers metric coincides with the Teichmüller distance.
Indeed, we have

S(δω
T )(x1, x2) = 1

2
(
δω

T (x1, x2) + δω
T (x2, x1)

)
= 1

2

(
dT (x1, x2) +

(
hω(x2) − hω(x1)

)
+ dT (x2, x1) +

(
hω(x1) − hω(x2)

))
= 1

2
(
dT (x1, x2) + dT (x2, x1)

)
= dT (x1, x2).
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Proof of Proposition 3.4. — By (3.6), we see immediately that every
Teichmüller geodesic is also a geodesic with respect to δω

T . It remains to
check the uniqueness of geodesics. Let x1, x2 ∈ Tg,m and γ : [a, b] → Tg,m

be a C1-path connecting x1 to x2. If γ is not a Teichmüller geodesic, by
the uniqueness of Teichmüller geodesics, we have

dT (x1, x2) + hω(x2) − hω(x1)

<

∫ b

a

κ
(
γ(t); γ̇(t)

)
dt+ hω(x2) − hω(x1) =

∫ b

a

κω
(
γ(t); γ̇(t)

)
dt,

which implies that γ is not a geodesic with respect to δω
T either. □

4. Proof of theorems

4.1. Teichmüller discs

Let x = (X, f) be a point in Tg,m. For q ∈ A2(X) and λ ∈ H, we define

(4.1) µλ,q := λ− i

λ+ i

q

|q|
.

Let fλ,q be a quasi-conformal map on X with ∂fλ,q = µλ,q∂fλ,q, and set
Xλ,q to be the image of fλ,q. The Teichmüller disc associated with q, which
is denoted by Dq, is a holomorphic disc in Tg,m defined by

(4.2) ϕq : H ∋ λ 7−→ x(λ, q) := (Xλ,q, fλ,q) ∈ Tg,m.

The following lemma shows basic properties of Teichmüller discs.

Lemma 4.1. — For x = (X, f) ∈ Tg,m and a measured foliation F on
S, we have the following.

(1) The extremal length function satisfies

(4.3) Extx(λ,qF,x)(F ) = 1
Im(λ) Extx(F ).

(2) For the Teichmüller disc defined as in (4.2) for q=qF,x, the image of
any vertical geodesic line in H is the Teichmüller geodesic defined by
holomorphic quadratic differentials whose vertical foliations are F .

(3) For any λ ∈ H, the unit tangent vector vλ =(ϕqF,x
)∗ (2i Im(λ) ∂/∂λ)

is represented by
qF,ϕ(λ)

|qF,ϕ(λ)|
.
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Proof. — The assertions follow from the discussion by Marden and Ma-
sur in [13, §1.3]. We review some details for the convenience of the reader.

(1). — We shall only show (4.3) for α ∈ S. Since the weighted simple
closed curves are dense in MF and MF ∋ F 7→ qF,x ∈ A2(X) is continu-
ous, we can then conclude (4.3) for general measured foliations by taking
limits.

One of the characterisations of the extremal length of α is that it is the
reciprocal of the modulus of the “characteristic annulus” of qα,x, that is, the
maximal (open) annulus formed by closed leaves of the vertical trajectories
of qα,x (see also [22, §20.3]). By the discussion by Marden and Masur in [13,
§1.3], the extremal length Extx(λ,qF,x)(α) satisfies

(4.4) Extx(λ,qF,x)(α) = 1
1 + Re(λ′) Extx(α)

where λ′ is a complex number satisfying Re(λ′) > −1 and

λ− i

λ+ i
= λ′

2 + λ′ .

Since Re(λ′) = Re (−1 − iλ) = −1 + Im(λ), we obtain (4.3) from (4.4) in
the case when F = α ∈ S.

(2). — Let A be the characteristic annulus of qα,x. The Teichmüller map
fλ,q defined by µλ,qα,x

is expressed as a map hλ defined by

hλ(z) = z|z|−iλ−1 = z|z|Im(λ)−1−i Re(λ)

on the characteristic annulusA ∼= {1 < |z| < r} with r = exp(2π/Extx(α)).
The image hλ({1 < |z| < r}) = {1 < |z| < rIm(λ)} corresponds to the char-
acteristic annulus of the terminal quadratic differential qα,x(λ,qα,x). There-
fore, the deformation along the vertical line in H passing through λ ∈ H is
the Teichmüller geodesic associated with the differential qα,x(λ,qα,x).

(3). — Let vλ ∈ Tx(λ,qF,x)Tg,m be the unit tangent vector in DqF,x

at x(λ, qF,x) as given in the statement (3). Then vλ is represented by a
Teichmüller–Beltrami differential ψ/|ψ| with ψ ∈ A2(Xλ,qF,x

). From (1)
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above and the Gardiner formula (2.5),

− Re
∫

Xλ,qF,x

ψ

|ψ|
qF,x(λ,qF,x)

∥qF,x(λ,qF,x)∥1
= 1

2d log Extx(·,qF,x)(F )[vλ]

= Re
(

2i Im(λ) d
dλ

log Extx(·,qF,x)(F )
)

= Re
(

2i Im(λ) ·
(

− 1
2i Im(λ)

))
= −1,

which means that ψ = qF,x(λ,qF,x). □

4.2. Proof of Theorem 1.1

Part (1) follows from Proposition 3.4. Let x be a point in Tg,m and let
ϕ : H → Tg,m be the Teichmüller disc defined by qF,x with ϕ(i) = x. Since
ω is exact, by Proposition 3.4, for any two points ζ1, ζ2 ∈ H, the hyper-
bolic geodesic γ : [a, b] → H connecting ζ1 to ζ2 is mapped to a geodesic
with respect to δω

T connecting x1 = ϕ(ζ1) to x2 = ϕ(ζ2). From (1.3) and
Lemma 4.1, we have

δω
T (x1, x2) =

∫ b

a

(
κ
(
ϕ
(
γ(s)

)
;ϕ∗ ◦ γ̇(t)

)
+ ω

(
ϕ∗ ◦ γ̇(t)

))
dt

= dhyp(ζ1, ζ2) − 1
2

∫
ϕ(γ)

d log Extϕ◦γ(t)(F )

= dhyp(ζ1, ζ2) + 1
2 log Extx1(F ) − 1

2 log Extx2(F )

= dhyp(ζ1, ζ2) + 1
2 log 1

Im(ζ1) − 1
2 log 1

Im(ζ2)

=
∫

γ

(
dshyp + 1

2d log Im(ζ)
)

= δ(ζ1, ζ2),

which implies Part (2) of Theorem 1.1.

4.3. Proof of Theorem 1.2

Let ϕ : H → Tg,m be an isometry as in the statement. We may assume
that ω is exact on Tg,m by modifying it outside a neighbourhood of ϕ(H).
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Then, there is a C1-function hω on Tg,m such that dhω = ω. We set fω =
hω ◦ ϕ.

Take two points ζ1 = ξ1+iη1 and ζ2 = ξ2+iη2 ∈ H. Let γ : [0, s0] → H be a
hyperbolic geodesic connecting ζ1 to ζ2. By Proposition 3.4, ϕ◦γ : [0, s0] →
Tg,m is a Teichmüller geodesic, and since ϕ is an isometry, we obtain

(4.5)

dhyp(ζ1, ζ2) + 1
2 log η2

η1
= δ(ζ1, ζ2)

= δω
T

(
ϕ(ζ1), ϕ(ζ2)

)
=
∫ s0

0

(
κ
(
ϕ
(
γ(t)

)
;ϕ∗ ◦ γ̇(t)

)
+ω
(
ϕ∗ ◦ γ̇(t)

))
dt

= dT

(
ϕ(ζ1), ϕ(ζ2)

)
+ fω(ζ2) − fω(ζ1).

Case 1 (horizontal lines). — Suppose that η1 = η2. Since both dhyp and
dT are symmetric, from (4.5), we obtain

(4.6) fω(ζ1) = fω(ζ2), and hence dT

(
ϕ(ζ1), ϕ(ζ2)

)
= dhyp(ζ1, ζ2).

Case 2 (vertical lines). — Suppose ξ1 = ξ2 and η1 > η2. In this case, the
geodesic γ is a vertical segment from ζ1 to ζ2. Since δ(ζ1, ζ2) = 0 in this
case, from (4.5), we have

(4.7) fω(ζ1) − fω(ζ2) = dT

(
ϕ(ζ1), ϕ(ζ2)

)
.

For ξ ∈ R, let Lξ = {ξ + ηi | η > 0}. Then by (4.7), we see that ϕ(Lξ) is
a geodesic with respect to dT . Take a measured foliation Fξ on S such
that ϕ(Lξ) is the Teichmüller geodesic defined by the Hubbard–Masur
differential for Fξ. To describe this more precisely, fix η0 > 0 and set
x(ξ) = ϕ(ξ + iη0) ∈ Tg,m. Let x(ξ + iη) be the image of the Teichmüller
map from x(ξ) with the Beltrami differential

(4.8) tanh(t)
qFξ,x(ξ)

|qFξ,x(ξ)|
,

where t = t(η) satisfies |t| = dT (x(ξ + iη), x(ξ)), t > 0 if η > η0, and
t ⩽ 0 otherwise. Then we have ϕ(Lξ) = {x(ξ + iη) | η > 0}. By the Gar-
diner formula (2.5), Extx(ξ+iη)(Fξ) decreases as η increases. Hence, from
the Kerckhoff formula, we have

Extx(ξ+iη)(Fξ) =
{
e−2dT (x(ξ+iη),x(ξ)) Extx(ξ)(Fξ) (η ⩾ η0),
e2dT (x(ξ+iη),x(ξ)) Extx(ξ)(Fξ) (η ⩽ η0).
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Now, for any η, η′, take η3 > 0 smaller than min{η, η′}. From (4.7), we
can compute as follows:

(4.9)

∫
γ′
ω = fω(ξ + iη′) − fω(ξ + iη)

=
(
fω(ξ + iη′) − fω(ξ + iη3)

)
−
(
fω(ξ + iη) − fω(ξ + iη3)

)
= 1

2 log
Extx(ξ+iη3)(Fξ)
Extx(ξ+iη′)(Fξ) − 1

2 log
Extx(ξ+iη3)(Fξ)
Extx(ξ+iη)(Fξ)

= −1
2 log

Extx(ξ+iη′)(Fξ)
Extx(ξ+iη)(Fξ)

= −1
2

∫
γ′

d log Ext(·)(Fξ),

where γ′ is the image under ϕ of the vertical segment from ξ+iη to ξ+iη′ in
H. We note that by (4.8) or Lemma 4.1(3), the tangent vector vy ∈ TyTg,m

along ϕ(Lξ) at y ∈ ϕ(Lξ) has unit length with respect to the Teichmüller
metric, and is given by the Beltrami differential

(4.10)
qFξ,x

|qFξ,x|
.

Hence we obtain∣∣∣∣−1
2d log Exty(Fξ)[vy]

∣∣∣∣ = 1
2 · 2

∥qF,x∥
Re
∫

X

qFξ,x

|qFξ,x|
qFξ,x = 1.

Since ∥ω∥T ⩽ 1 on the image ϕ(H), from (4.9), we conclude that we have

(4.11) ω = −1
2d log Ext(·)(Fξ)

on Lξ.
Case 3 (general case). — We take ζ1 = ξ1 + iη1 and ζ2 = ξ2 + iη2 ∈ H

to be arbitrary. Set ζ3 = ξ2 + iη1. By (4.3) we have

(4.12) Extϕ(ξ+iη1)(Fξ) = η2

η1
Extϕ(ξ+iη2)(Fξ)

for all ξ ∈ R and η1, η2 > 0, and Extϕ(ζ3)(Fξ2) = Extϕ(ζ1)(Fξ1). Combining
this with the argument in Case 2, we have

fω(ζ2) − fω(ζ1) =
(
fω(ζ2) − fω(ζ3)

)
+
(
fω(ζ3) − fω(ζ1)

)
= −1

2 log Extϕ(ζ2)(Fξ2) + 1
2 log Extϕ(ζ1)(Fξ2)

= −1
2 log η1

η2
.
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Then, from (4.5), we conclude that dT (ϕ(ζ1), ϕ(ζ2)) = dhyp(ζ1, ζ2) for
any ζ1, ζ2 ∈ H. Hence, ϕ : (H, dhyp) → (Tg,m, dT ) is an isometry. The-
orem 1.1 in [1] shows that in this situation, ϕ is either holomorphic or
anti-holomorphic, and the image is the Teichmüller disc. As shown in
Lemma 4.1, Fξ1 = Fξ2 for all ξ1, ξ2 ∈ R. Setting F = Fξ (ξ ∈ R), we
see that the image ϕ(H) is the Teichmüller disc defined by the Hubbard–
Masur differential for F .

Consider ζ = ξ + iη ∈ H and Lξ defined above. By (4.6), the deriv-
ative of fω at ζ in the horizontal direction is constantly zero. As shown
in Lemma 4.1(3), the image v ∈ Tϕ(ζ)Tg,m of the unit tangent vector
2i Im(ζ)(∂/∂ζ) ∈ TζH to Lξ at ζ is represented by the Teichmüller–Beltrami
differential

qF,ϕ(ζ)

|qF,ϕ(ζ)|
.

Hence, by the Gardiner formula (2.5), the derivative of the function

H ∋ ζ 7−→ −1
2 log Extϕ(ζ)(F )

is also zero in the horizontal direction in H. As a consequence, by (4.11),

ω = −1
2d log Ext(·)(F )

on the image ϕ(H).

4.4. Proof of Theorem 1.3

Let x be a point in Tg,m, and G a measured foliation on S.
(1). — Suppose that αqF,x ̸= qG,x for any complex number α, and hence

DqF,x
∩ DqG,x

= {x}.
Then we claim the following.

Claim. — For any y ∈ DqG,x
, we have DqF,y

∩ DqG,y
= {y}.

Proof of the claim. — Otherwise, there is y ∈ DqG,x
such that DqF,y

and DqG,y
share at least two points. By the uniqueness of the Teichmüller

geodesic, DqF,y
and DqG,y

share a common Teichmüller geodesic line passing
through these two points. Since DqF,y

and DqG,y
are holomorphic discs, by

the identity theorem, DqF,y
= DqG,y

. Since both x and y lie in DqG,x
= DqF,y

,
from the discussion in Lemma 4.1 (or the discussion in [13, §1.3]), we have
DqF,y

= DqF,x
and DqG,x

= DqG,y
. Therefore, we obtain

DqG,x
= DqG,y

= DqF,y
= DqF,x

,

which contradicts our assumption. □
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Let y be a point in DqG,x
, and vy the unit tangent vector to DqG,x

at y
represented by

qG,y

|qG,y|
(cf. Lemma 4.1(3)). We note that by the claim, qG,y is not a complex scalar
multiple of qF,y. Hence,∣∣∣∣−1

2d log Exty(F )[vy]
∣∣∣∣ =

∣∣∣∣∣Re
∫

Xλ,qG,y

qG,y

|qG,y|
qF,x(λ,qF,y)

∥qF,y∥1

∣∣∣∣∣ < 1.

Therefore, for any compact set K in DqG,x
, there is a constant CK < 1 such

that ∣∣∣∣−1
2d log Exty(F )[vy]

∣∣∣∣ ⩽ CK

for all y ∈ K.
Let x1 and x2 be distinct points on DqG,x

, and γ ⊂ DqG,x
the Teichmüller

geodesic containing x1 and x2. From the above discussion, we have∣∣∣∣12 log Extx1(F ) − 1
2 log Extx2(F )

∣∣∣∣ < dT (x1, x2)

and

δω
T (x1, x2) = dT (x1, x2) + 1

2 log Extx1(F ) − 1
2 log Extx2(F ) > 0,

which implies that δω
T separates two points in DqG,x

.
(2). — Let rG = rG,x : [0,∞) → Tg,m be the Teichmüller geodesic ray

defined by qG,x with arclength parameterisation. By [15, Lemma 1], the
function

[0,∞) ∋ t 7−→ e−δω
T (x,rG(t)) = e−t

(
ExtrG(t)(F )
Extx0(F )

)1/2

is non-increasing and tends to
E(F )

Extx0(F )1/2

as t → ∞ where E is some continuous function defined on MF (see also [14,
Theorem 1.1]). Let G = G1 + · · ·+Gm be the decomposition of G into inde-
composable components (for details, see [14]). In [25, Corollary 1], Walsh
showed that the limit function E is expressed as

E(H) =

√√√√ m∑
i=1

i(Gi, H)2

i
(
Gi,H(qG,x)

)
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for H ∈ MF , where H(qG,x) is the horizontal foliation of qG,x. Therefore,
E(H) = 0 if and only if i(G,H) = 0. This means that δω

T (x, rG(t)) is
uniformly bounded in terms of t ⩾ 0 if and only if i(F,G) ̸= 0.

Finally, we prove the incompleteness of the restriction of δω
T to any Te-

ichmüller disc. Let x be a point in Tg,m and G a measured foliation on S.
By [11, Theorem 2], the vertical foliation Gθ of eiθqG,x is uniquely ergodic
for almost every θ. Therefore, i(F,Gθ) ̸= 0 for almost every θ. It follows
that almost all Teichmüller geodesic rays emanating from x in DqG,x

have
bounded length with respect to the distance δω

T , and in particular, the
restriction of δω

T to DqG,x
is incomplete.

BIBLIOGRAPHY

[1] S. M. Antonakoudis, “Isometric disks are holomorphic”, Invent. Math. 207 (2017),
no. 3, p. 1289-1299.

[2] A. Belkhirat, A. Papadopoulos & M. Troyanov, “Thurston’s weak metric on
the Teichmüller space of the torus”, Trans. Am. Math. Soc. 357 (2005), no. 8,
p. 3311-3324.

[3] H. Busemann, Recent synthetic differential geometry, Ergebnisse der Mathematik
und ihrer Grenzgebiete, vol. 54, Springer, 1970, vii+110 pages.

[4] C. J. Earle & F. P. Gardiner, “Geometric isomorphisms between infinite-
dimensional Teichmüller spaces”, Trans. Am. Math. Soc. 348 (1996), no. 3, p. 1163-
1190.

[5] C. J. Earle & I. Kra, “On isometries between Teichmüller spaces”, Duke Math.
J. 41 (1974), p. 583-591.

[6] A. Fathi, F. Laudenbach & V. Poénaru, Travaux de Thurston sur les surfaces,
Astérisque, vol. 66, Société Mathématique de France, 1979, 284 pages.

[7] F. P. Gardiner, “Measured foliations and the minimal norm property for quadratic
differentials”, Acta Math. 152 (1984), no. 1-2, p. 57-76.

[8] ——— , Teichmüller theory and quadratic differentials, Pure and Applied Mathe-
matics, John Wiley & Sons, 1987, xviii+236 pages.

[9] R. S. Hamilton, “Extremal quasiconformal mappings with prescribed boundary
values”, Trans. Am. Math. Soc. 138 (1969), p. 399-406.

[10] Y. Imayoshi & M. Taniguchi, An introduction to Teichmüller spaces, Springer,
1992, xiv+279 pages.

[11] S. Kerckhoff, H. Masur & J. Smillie, “Ergodicity of billiard flows and quadratic
differentials”, Ann. Math. 124 (1986), no. 2, p. 293-311.

[12] S. L. Kruškal’, “On the theory of extremal quasiconformal mappings”, Sib. Mat.
Zh. 10 (1969), p. 573-583.

[13] A. Marden & H. Masur, “A foliation of Teichmüller space by twist invariant
disks”, Math. Scand. 36 (1975), no. 2, p. 211-228.

[14] H. Miyachi, “Teichmüller rays and the Gardiner-Masur boundary of Teichmüller
space”, Geom. Dedicata 137 (2008), p. 113-141.

[15] ——— , “Teichmüller rays and the Gardiner-Masur boundary of Teichmüller space
II”, Geom. Dedicata 162 (2013), p. 283-304.

[16] ——— , “Extremal length geometry”, in Handbook of Teichmüller theory. Vol. IV,
IRMA Lectures in Mathematics and Theoretical Physics, vol. 19, European Math-
ematical Society, 2014, p. 197-234.

TOME 0 (0), FASCICULE 0



24 Hideki MIYACHI, Ken’ichi OHSHIKA & Athanase PAPADOPOULOS

[17] H. Miyachi, K. Ohshika & A. Papadopoulos, “Tangent spaces of the Teichmüller
space of the torus with Thurston’s weak metric”, Ann. Fenn. Math. 47 (2022), no. 1,
p. 325-334.

[18] S. Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathemat-
ical Society Series of Monographs and Advanced Texts, John Wiley & Sons, 1988,
xiv+427 pages.

[19] G. Randers, “On an asymmetrical metric in the fourspace of general relativity”,
Phys. Rev., II. Ser. 59 (1941), p. 195-199.

[20] H. L. Royden, “Report on the Teichmüller metric”, Proc. Natl. Acad. Sci. USA 65
(1970), p. 497-499.

[21] ——— , “Automorphisms and isometries of Teichmüller space”, in Advances in the
Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Annals of
Mathematics Studies, vol. 66, Princeton University Press, 1971, p. 369-383.

[22] K. Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Gren-
zgebiete, vol. 5, Springer, 1984, xii+184 pages.

[23] O. Teichmüller, “Extremale quasikonforme Abbildungen und quadratische Dif-
ferentiale”, Abh. Preuß. Akad. Wiss. Math.-Nat. Kl. 1939 (1940), no. 22, p. 1-197.

[24] ——— , “Extremal quasiconformal mappings and quadratic differentials”, in Hand-
book of Teichmüller theory. Vol. V, IRMA Lectures in Mathematics and Theoretical
Physics, vol. 26, European Mathematical Society, 2016, p. 321-483.

[25] C. Walsh, “The asymptotic geometry of the Teichmüller metric”, Geom. Dedicata
200 (2019), p. 115-152.

Manuscrit reçu le 27 novembre 2022,
révisé le 4 août 2023,
accepté le 30 novembre 2023.

Hideki MIYACHI
School of Mathematics and Physics
College of Science and Engineering
Kanazawa University
Kakuma-machi, Kanazawa
Ishikawa 920-1192 (Japan)
miyachi@se.kanazawa-u.ac.jp
Ken’ichi OHSHIKA
Department of Mathematics
Gakushuin University
Mejiro, Toshima-ku
Tokyo 171-8588 (Japan)
ohshika@math.gakushuin.ac.jp
Athanase PAPADOPOULOS
Institut de Recherche Mathématique Avancée
Université de Strasbourg et CNRS
7 rue René Descartes
67084 Strasbourg Cedex (France)
papadop@math.unistra.fr

ANNALES DE L’INSTITUT FOURIER

mailto:miyachi@se.kanazawa-u.ac.jp
mailto:ohshika@math.gakushuin.ac.jp
mailto:papadop@math.unistra.fr

	1. Introduction
	Acknowledgments

	2. Preliminaries
	2.1. Weak metric
	2.2. Teichmüller theory
	2.2.1. Teichmüller space
	2.2.2. Infinitesimal theory
	2.2.3. Measured foliations
	2.2.4. Hubbard–Masur differentials and extremal length

	2.3. Teichmüller–Randers metric
	2.4. References to background material

	3. Extension of the Hamilton–Krushkal condition
	3.1. Teichmüller–Randers cometric
	3.2. The case when  is exact

	4. Proof of theorems
	4.1. Teichmüller discs
	4.2. Proof of [thm:extremallength]Theorem 1.1
	4.3. Proof of [thm:isometry]Theorem 1.2
	4.4. Proof of [thm:otherdisc]Theorem 1.3

	References

